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Abstract—Cloud computing represents a paradigm shift in
provisioning on-demand computational resources underpinned
by data center infrastructure, which now constitutes 1.5% of
worldwide energy consumption. Such consumption is not merely
limited to operating IT devices, but encompasses cooling systems
representing 40% total data center energy usage. Given the
substantive complexity and heterogeneity of data center operation
spanning both computing and cooling components, obtaining
analytical models for optimizing data center energy-efficiency
is an inherently difficult challenge. Specifically, difficulties arise
pertaining to the non-intuitive relationship between computing
and cooling energy in the data center, computationally complex
energy modeling, as well as cooling models restricted to a specific
class of data center facility geometry - all of which arise from
the interdisciplinary nature of this research domain. In this
paper we propose a framework for energy-efficient scheduling
to alleviate these challenges. It is applicable to any type of data
center infrastructure and does not require complex modeling of
energy. Instead, the concept of a target workload distribution
is proposed. If the workload is assigned to nodes according to
the target workload distribution, then the energy consumption is
minimized. The exact target workload distribution is unknown,
but an approximated distribution is delivered by the framework.
The scheduling objective is to assign workload to nodes such
that the workload distribution becomes as similar as possible to
the target distribution in order to reduce energy consumption.
Several mathematically sound algorithms have been designed to
address this novel type of scheduling problem. Simulation results
demonstrate that our algorithms reduce the relative deviation by
at least 16.9% and the relative variance by at least 22.67% in
comparison to (asymmetric) load balancing algorithms.

Keywords—Cloud Computing; Energy Efficiency; Workload
Scheduling; Thermal-Aware Scheduling; Scheduling Heuristics;
Combinatorial Optimization

I. INTRODUCTION

Cloud computing has established itself as a fundamental

aspect within modern internet infrastructure. As such, Cloud

computing is used by providers to deliver IT services as a

utility: customers have access to on-demand service enforced

by a Service Level Agreement (SLA). In order to stay com-

petitive, Cloud providers face numerous challenges towards

efficient operation with energy-efficiency emerging as a key

requirement. This is made apparent when considering that in

2010 world-wide energy consumption of data centers - the

physical infrastructure of Cloud computing - accounted for up

to 1.5 % of the world-wide total energy usage [1], while data

centers in the US accounted for up to 2.2 % of the total energy

consumption of the US [2].

Job scheduling is a core component in Cloud computing

systems as it significantly impacts numerous aspects of pro-

visioned service performance, as well as energy reduction of

a system through node load balancing, workload consolida-

tion, and temperature-aware scheduling. Although intensively

studied, energy-aware scheduling within data centers still

faces numerous challenges that remain unsolved. First, data

center energy is composed by both computing and cooling

components, and the interaction between these components is

highly complex in nature. For example, an intuitive approach

to reduce energy consumption is workload consolidation - mi-

grate workload from low utilization nodes such that nodes can

be switched off, thus reducing computing energy. However,

this approach leads to the formation of hot spots within data

centers resulting in increased cooling energy [3], [4]. This

trade-off is inherently difficult to understand and leads to sub-

optimal reduction in data center energy [5]. Second, analytical

modeling of energy consumption within the data center is

a substantive task, especially when modeling cooling energy

which captures various fluid mechanical and thermodynamic

aspects of the system. Lastly, existing approaches that directly

model total cooling energy are typically restricted to a certain

class of data center architecture [5], [6], [7]. In particular,

cooling models heavily depend on the data center geometry

(i.e. facility layout) and location of installed cooling devices

such as Computer Room Air Conditioners (CRACs).

In this paper, we propose a framework that allows to

conduct effective energy-aware scheduling without dependen-

cies pertaining to assumptions of the underlying data center

infrastructure. The framework does not need to make use of

analytical models of energy consumption. Instead, the problem

of energy-efficient scheduling is divided into components that

can be studied and applied independently from each other.

Each component makes either use of data center thermal

management, machine learning or mathematical optimization

theory. Such an approach abstracts away infrastructure depen-

dency requirements using the concept of a target utilization

distribution. For an arbitrary but fixed type of data center

(i.e. a specific size, geometry, cooling system, etc.), a rec-

ommendation pertaining to a target workload distribution that



is expected to be energy-efficient is given by a system or

expert. The scheduler then assigns tasks to nodes so that

the actual workload distribution is as “similar” as possible

to the target workload distribution. The expert or system is

expected to determine the target workload distribution based

on calculations and does not have the opportunity to execute

workload. Therefore, the target workload distribution may

have room for further improvement with respect to energy-

efficiency. To this end, a machine learning component is

embedded within the framework in order to improve the target

workload distribution over time.

This paper focuses on the task allocation component of

the framework, i.e. the challenge of assigning the workload

to nodes such that the actual workload is distributed as

“similar” as possible to the target workload distribution. In

particular, we discover that the underlying scheduling model

corresponds directly to the Generalized Assignment Problem

(GAP). As such, there is a rich literature on theoretical and

applied aspects of which we make extensively use of in our

approach to enhance energy-aware scheduling. We propose

scheduling algorithms and evaluate them against (asymmet-

ric) load balancing algorithms by conducting comprehensive

simulation of Bag-of-Task submissions to a data center. Our

main contributions are listed as follows:

An infrastructure independent framework for energy-

efficient scheduling in Cloud data centers. The framework does

not make any assumptions on the data center infrastructure

and thus, in principle, can be applied to any form of data

center. There is no complex energy modeling required. Instead,

energy-efficient scheduling decisions are made based on a

target workload distribution.

Establish a link between energy-aware scheduling algo-

rithms in Clouds and the GAP. We abstract away technical

components of a data center which allows us to formulate

the scheduling problem as an Integer Linear Programming

problem. These structural insights enable us to establish a link

to the GAP. Our proposed algorithms outperform traditional

(asymmetric) load balancing algorithms.

The rest of the paper is organized as follows. Section II

discusses related work. In Section III the framework of our

approach is explained. The system and application model is

introduced in Section IV. In Section V the algorithmic solu-

tions to the scheduling problem are presented. A simulation-

based evaluation is conducted in Section VI and Section VII

contains conclusions and provides future work.

II. RELATED WORK

The majority of energy-aware scheduling for data centers

has addressed the challenge from two perspectives: reducing

computing energy (required to operate IT devises) and reduc-

ing cooling energy (required to keep IT devices at an ac-

ceptable temperature). These challenges have been addressed

both in isolation and combined using a variety of different

techniques from different fields. This section gives an overview

of some of the relevant work for each category.

Computing energy can be reduced through workload consol-

idation [8] - with energy reduction achieved by turning off idle

nodes - and has been intensively studied, see [9], [10], [11].

This problem is typically modeled as a bin packing problem

which is NP-hard. However, a large variety of heuristics

have been proposed over the years, see surveys [12], [13].

Another technique is Dynamic Voltage and Frequency Scaling

(DVFS) that allows for controlling the operating frequency and

voltage to reduce computing energy. This technique has been

investigated both by applied researchers and practitioners of

Cloud computing [14], [15], [16] as well as by theoreticians

from mathematical perspectives [17], [18].

Reducing cooling power has received increasing attention in

recent years, especially within the Mechanical Engineering re-

search community. Cooling energy constitutes approximately

40% of the total data center energy consumption, and is

responsible for rejecting heat from the facility created from

the operation of IT devices. However, cooling energy depends

on various aspects including the installed cooling system type,

data center infrastructure or the location and climate zone of

the data center [19]. Computational Fluid Dynamics (CDF) is

a powerful yet time consuming technique in order to construct

temperature models of nodes within a data center. It also

makes a number of restrictive assumptions such as air ducting

designs for data centers [20], referred to as supply respectively

return schema. CFD models have been intensively studied

[5], [21], [22], [23] and have been found to be capable of

significantly reducing cooling energy however at the cost of

high complexity and long modeling time. For example, it

has been demonstrated [5] that combining computing and

cooling into a total energy model is an effective means to

reduce energy consumption. However, in order to achieve that

infrastructure depend assumptions have been made that restrict

the model to data centers with a raised floor and ceiling return

air ducting design schemata.

III. THE FRAMEWORK

The core concept of the framework is based on an obser-

vation presented in the following. By considering the work-

load distribution of thermal-aware scheduling algorithms at

different times, it is apparent that workload is not uniformly

distributed across nodes. This results from diversity in hard-

ware heterogeneity, variance in task allocation and resource

usage, as well as physical location within the facility. For

example, nodes which are situated closer to a CRAC can

be cooled more energy-efficiently than nodes located further

away from cooling devices. As a consequence, nodes closer to

CRACs may receive a higher workload due to the relatively

small energy required for cooling. Figure 1 illustrates this

phenomenon observed in [5] for a data center consisting of 24
nodes with 4 CRACs. Nodes located close to CRACs receive

a higher workload (up to 9% of the data center workload),

whereas nodes located further away receive a significantly

lower workload. Note that a percent value of 9% does not

signify that the corresponding node is utilized to 9%, but that

9% of the data center workload is assigned to the node.

This observation suggests that a key aspect of thermal-aware

scheduling is determining an appropriate workload distribution

pattern. In all previous works, this is typically achieved by

modeling cooling energy analytically using sophisticated and

complex techniques such as Computational Fluid Dynamics

(CFD). In this paper, we propose a framework that does

not require complex analytical models to find an appropriate



Fig. 1. Thermal-aware workload distribution for 24 nodes and 4 CRACs.

workload distribution. This is useful as it makes it much easier

for developers to implement a proposed scheduling algorithm.

Furthermore, our approach can be applied to any type of data

center which is not the case for algorithms based on CFD.

The framework is illustrated in Figure 2 and consists of the

following components:

• Scientist: A domain-specific expert gives a recommenda-

tion of an appropriate workload distribution based on pre-

vious experience and supporting tools. This recommenda-

tion is used to initiate the machine learning procedure and

is not required to be of high quality. Recommendations

do not require actual execution of workload but are based

on previous experience and supporting tools.

• Task Allocation: Responsible for assigning tasks to nodes

such that the workload distribution becomes as similar as

possible to the target workload distribution.

• Migration: Responsible for task migration in order to

perform consolidation.

• Consolidation: Determines how many and which nodes

should be turned off in order to save computing energy

when data center utilization is low. When node M with

target utilization fraction of ρ is turned off, the target

utilization fraction of M is set to ρ = 0 and the

target utilization fraction of other nodes are adjusted by

factor 1
1−p

. Note that after this transformation the target

utilization fractions still sum up to 1. As a consequence,

the framework can be applied without any further adjust-

ments when nodes are dynamically turned-on or off.

• Improvement: Enhances the initial workload distribution

obtained by the scientist. Improvement of workload dis-

tribution is performed via machine learning techniques.

In this work, we focus on the task allocation component, i.e.

developing scheduling algorithms that assign tasks to nodes

such that the actual workload distribution approximates the

target workload distribution as good as possible. Formally, for

a data center consisting of m potentially heterogeneous nodes

Mi with 1 ≤ i ≤ m, we are given target utilization fractions

ρi ∈ [0, 1] that satisfy
∑m

i=1 ρi = 1. These target utilization

fractions should be such that if Mi is utilized with a fraction

of ρi of the data center workload over time, the cooling energy

is expected to be minimized. Note that the target utilization

fraction values ρi depend on the data center architecture and

are obtained by the scientist component.

A. Metrics For Analyzing Workload Distribution

The problem of distributing the workload such that the

actual workload distribution gets as close as possible to the

target workload distribution, can be considered as an asymmet-

ric load balancing problem. In an asymmetric load balancing

problem, each node is assigned a weight and the total workload

is then distributed according to such weights. For example,

for two nodes M1 and M2 with weights ρ1 = 1
3 and ρ2 = 2

3 ,

node M2 should ideally receive twice as much as M1. For

scheduling problems in this work, the weight for Mi is ρi.
In the literature, there have been proposed a number of

metrics to evaluate asymmetric load balancing algorithms. In

this work we consider the total imbalance level (IBL) and

also propose two new metrics termed total relative deviation

(RD) and relative variance (RVar). The IBL metric is based

on absolute comparisons whereas the RD and the RVar are

based on relative comparisons.

Let Ui(t) denote the CPU utilization (in terms of work)

of Mi at time t and let U(t) :=
∑m

i=1 Ui(t) be the total

data center CPU utilization at time t. We refer to the average

value over time by adding an overline to the symbol. For

example, we write Ui to denote the average CPU utilization

over time, i.e. Ui := 1
t2−t1

∫ t2

t1
Ui(τ)dτ if the time period

under consideration is given by interval [t1, t2]. The total

imbalance level IBL is then defined by

IBL :=
1

m

m
∑

i=1

(

Ui − ρiU
)2
.

As the IBL is quadratic, large deviations are penalized more

severely. This is not the case for our proposed RD metric

which is described in the following. First we consider

RD(t) :=
1

m

m
∑

i=1

|Ui(t)− ρiU(t)|

ρiU(t)

which corresponds to the relative deviation at time t. The

relative deviation is then defined by RD := RD. This metric

compares two distributions based on first-order comparisons.

Therefore we also introduce the second-order metric

RVar :=
1

m

m
∑

i=1

Var (Ui(t))

Var (ρiU(t))
.

We believe that all three metrics together give sufficient

information for an appropriate comparison.

IV. SYSTEM AND APPLICATION MODEL

The chosen system model is depicted in Figure 3 and based

on the model proposed in [24]. Although we consider a similar

system model, the research focus of [24] is to achieve energy-

efficiency using DVFS techniques - which is substantially

different to this work’s research objectives (and as a result,

would not represent a suitable comparison for evaluation).

We consider a virtualized IaaS Cloud data center composed

of m potentially heterogeneous hosts Mi with 1 ≤ i ≤ m.

Node Mi consists of γi identical cores. We assume that each

VM operates on one core and that VMs do not share CPU



Fig. 2. The framework for energy-efficient scheduling proposed in this paper. An initial suggestion for the target workload distribution is suggested by a
domain specific expert. Task allocation is conducted in such that the workload is distributed as similar as possible to the target workload distribution. The
target workload distribution is improved over time by machine learning techniques.

Fig. 3. The system and application model considered in this paper. Clients submit BoT applications to a data center. The data center consists of nodes with
multiple cores. Each core operates a single VM. The RMS manages queues on each VM to store tasks in a waiting list while the VM is occupied.

cores. As a consequence, each VM has full access to the

physical resources of the underlying core (apart from small

amounts dedicated to components such as the Virtual Machine

Manager). The VMs on Mi are denoted by Viℓ with 1 ≤ ℓ ≤ γi
and have a CPU capacity of ωi each. Note that VMs on the

same node have identical CPU capacities as we assume that

cores on the same node are identical.

Jobs j = 1, 2, . . . are submitted to the system over time.

In this work, each job j is a CPU intensive Bag-of-Tasks

(BoT) application. We focus on CPU intensive jobs as it allows

for considering only CPU as a computational resource. This

enables us to focus on the capability of our algorithms to

provide good scheduling results. Without loss of generality, we

assume that at each point of time at most one job is submitted.

In case several jobs are submitted by the exact same time, jobs

are stored in a queue to be scheduled shortly one after another.

In the following we consider a single job j and omit indices

referring to j. The notation is summarized in Table I.

Job j consists of a set of n independent tasks Tk with

1 ≤ k ≤ n. The release time r denotes the time at which

j is submitted to the system and the deadline d denotes the

time at which all tasks of j have to be completed. If at least

one task does not finish by d, then the SLA agreed with the

customer who submitted j, is violated and j gets rejected.

The processing time of Tk on Mi is denoted by pik and we

assume that it can be predicted at the time j is submitted

to the system. These predictions can be obtained through

historical analysis, predicting techniques or a combination of

them as demonstrated in [25]. Note that pik is only a predicted

value and not the actual processing time which is unknown

at time r. Since all cores are assumed to be identical, the

processing time depends on the node Mi only rather than on

the individual core. A job is completed once all its tasks are

completed. The scheduler has to assign tasks to VMs such

that the common deadline is respected. Tasks assigned to the

same VM are stored in a queue and are executed in a first-

in-first-out (FIFO) manner. As a VM may be accessed by

applications of different customers, a component managing

these accesses is required. To this end, the virtualized IaaS

Cloud data center also supports a PaaS layer that provides a



TABLE I
SUMMARY AND EXPLANATION OF NOTATION USED IN THIS PAPER

Notation Description
m number of nodes in the data center
j a job submitted as a BoT application
n number of tasks of job j
Mi a node in the data center
γi number of cores/VMs of Mi

Viℓ a VM of Mi, 1 ≤ ℓ ≤ γi
ωi CPU capacity of each core of Mi

ρi target utilization fraction for Mi

r time at which j is submitted
Tk a task of job j, 1 ≤ k ≤ n
d deadline at which all tasks of j have to be completed
pik estimated processing time of Tk on Viℓ

δiℓ estimated remaining busy time of Viℓ at time r
πiℓ weight of Viℓ

V set of VMs
Vh set of VMs with hth lowest weight

Ui(t) CPU utilization of Mi at time t

U i CPU utilization averaged over the time horizon
U(t) data center CPU utilization at time t

U data center CPU utilization averaged over the time horizon
fhk desirability of assigning Tk to Vh

[q] [q] = {1, . . . , q}, q ∈ N

Resource Management System (RMS). The RMS coordinates

job execution of various users in the data center. When j is

submitted to the system, a VM Viℓ may still be busy executing

tasks from previous jobs. We assume that we can predict the

remaining busy time of Viℓ, i.e. the time needed until all tasks

currently hold in the queue of Viℓ are executed. The remaining

busy time of Viℓ at time r is denoted by δiℓ. As for pik, the

value δiℓ is only a prediction.

V. ALGORITHMIC SOLUTIONS

In this section we present algorithms to solve the optimiza-

tion problem obtained from the framework. The approach is

based on assigning weights to VMs. Let V = {Viℓ | 1 ≤
i ≤ m, 1 ≤ ℓ ≤ γi} denote the set of VMs. We chose a

node Mi∗ such that i∗ := argmax1≤i≤m ρi. A preliminary

weight π′
iℓ := ⌈10ℓρi∗ωi

ρiωi∗
⌉ is first defined for Viℓ. The number

of different values of preliminary weights may be large. To

increase the number of identical values, we define the weights

of VMs by categorizing preliminary weights into ten groups:

πiℓ := min
0≤α≤9

{

π = π′
min +

α

9
(π′

max − π′
min) | π ≥ π′

iℓ

}

.

The remainder of this section introduces algorithms that aim at

minimizing the metrics introduced in Section III-A. In Section

V-A this is attempted by approximately solving a generalized

assignment problem. The approach presented in Section V-B

iteratively assigns subsets of tasks to subsets of VMs.

A. Generalized Assignment Problem

An Integer Linear Programming (ILP) formulation of our

scheduling problem is presented in the following:

min

m
∑

i=1

γi
∑

ℓ=1

n
∑

k=1

πiℓpikxiℓk

s.t.

n
∑

k=1

pikxiℓk ≤ d− r − δiℓ i ∈ [m],

ℓ ∈ [γi]
m
∑

i=1

γi
∑

ℓ=1

xiℓk = 1 k ∈ [n]

xiℓk ∈ {0, 1} i ∈ [m],
ℓ ∈ [γi],
k ∈ [n],

(1)

where the notation [q] := {1, 2, . . . , q} for q ∈ N is used. If

xiℓk = 1, then Tk is assigned to Viℓ. If xiℓk = 0 for all i and

ℓ, then task Tk is not assigned to any VM and j is rejected

as a consequence. The objective function in (1) minimizes

the total processing time of assigned tasks weighted by the

weight of the operating VM. The first restriction ensures that

tasks respect the common deadline and the remaining busy

time of the assigned VM. The second restriction ensures that

each task is assigned to at most one VM. In the following

we show that the ILP in (1) can be reformulated as a

Generalized Assignment Problem (GAP) [26], [27] which is

of the following form:

min

M
∑

h=1

n
∑

k=1

ahkxhk

s.t.

n
∑

k=1

bhkxhk ≤ ch h ∈ [M ]

M
∑

h=1

xhk = 1 k ∈ [n]

xhk ∈ {0, 1} h ∈ [M ], k ∈ [n].

(2)

To get from (1) to (2), we renumber VMs and ignore actual

nodes. Formally, we replace indices i ∈ [m] and ℓ ∈ [γi] by

index h(i, ℓ) := m(i−1)+ ℓ for h ∈ [M ] and M :=
∑m

i=1 γi.
Then, for πh := πiℓ and δh := δiℓ, we set

ahk := πhpi(h),k, bhk := pi(h),k and ch := d−δh,

where i(h) is the unique node index i ∈ [m] that corresponds

to index h ∈ [M ]. With above substitutions we have com-

pletely transformed Problem (1) into the GAP formulated in

(2). As the GAP is well-known to be NP-hard, a heuristic

approach is necessary. In this work, we use a well-established

heuristic framework called MTHG [28] by Martello and Toth.

Note that this is not a “ready-to-use” algorithm as in the

heuristic framework there still needs to be chosen measures

of desirability. The desirability fhk is a heuristic indicator of

how beneficial it is to assign Tk to Vh. A pseudocode of the

MTHG algorithm is presented in Algorithm 1.

The heuristic consists of two phases. In the first phase,

unassigned tasks are iteratively considered to determine task

Tk∗ with maximum difference between the largest and second

largest desirability fhk for h ∈ [M ]. Task Tk∗ is then assigned



Algorithm 1: MTHG

Input : Bag-of-Tasks j, ahk, bhk, ch
Output: Schedule for tasks of j or decision of rejection

1 T := {T1, . . . , Tn}; // unassigned tasks

2 c̄h := ch; // remaining available time

/* Phase 1: find feasible solution */

3 while T 6= ∅ do

4 d∗ = −∞;

5 foreach TK ∈ T do

6 Fk := {Vh ∈ V | bhk ≤ c̄h};

7 if Fk = ∅ then

8 Return infeasible;

9 Choose h′ so that fh′k = max{fhk | h ∈ Fk};

10 if |Fk| = 1 then

11 d = +∞;

12 else

13 d = fh′k −max{fhk | h ∈ Fk \ {h′}};

14 if d > d∗ then

15 d∗ = d, h∗ = h′, k∗ = k;

16 end

17 Assign Tk∗ to Vh∗ ;

18 T = T \ {Tk∗}; // Tk∗ now assigned

19 c̄h∗ = c̄h∗ − bh∗k∗ ; // update availability

20 end

/* Phase 2: improve solution quality */

21 for k ∈ {1, . . . , n} do

22 Move Tk to the VM that reduces the objective

function the most;

23 end

to the VM that maximizes fhk∗ . In the second phase, the

solution is improved by local improvement exchanges.

For our problem we choose the desirability as fhk =
− πh

chωi(h)
, where ch is as in the MTHG algorithm. Lower

weights πh respectively higher CPU capacities ωi(h) or values

of ch are empirically seen as beneficial for assigning Tk to

Vh, thus contributing to a higher desirability fhk.

B. Iterative Algorithm using LPT or FFD

In this section we present an algorithm that consists of a

general procedure that iteratively assigns subsets of tasks in

phases. In each phase, unscheduled tasks of job j are attempted

to be assigned to a subset of VMs using an algorithm A. We

present two choices for A later in this section. In the first

phase, the set of VMs V0 with lowest weight is considered

and tasks of j are attempted to be assigned to VMs in V0.

If not all tasks were scheduled, then in a second phase the

remaining tasks are attempted to be assigned to the set of VMs

with second-lowest weight V1. This procedure continues until

all tasks of j are assigned or until V9 (the set of VMs with

highest weights) was investigated with at least one unassigned

task remaining. In the latter case j gets rejected. A pseudocode

for the General Procedure is presented in Algorithm 2. We

present two choices for A and justify their relevancy.

Longest Processing Time rule (LPT) “Iteratively

consider the VM that becomes available the soonest.

Algorithm 2: General Procedure

Input : Bag-of-Tasks j, algorithm A
Output: Schedule for tasks of j or decision of rejection

1 α := 0;

2 while not all tasks Tjk of j are scheduled do

3 if There exists a VM in Vα and α ≤ 9 then

4 Schedule remaining tasks to VMs in Vα using

algorithm A;

5 else

6 Reject j;

7 end

8 α = α+ 1;

9 end

Assign the unscheduled task with longest processing

time to the VM. Repeat until all tasks are scheduled

or until a task cannot be assigned to any VM.”

We choose the LPT-rule for two reasons. First, the LPT

is straightforward to implement and only requires minimal

computation time to execute. Second, the LPT-rule has proven

approximation ratios if the makespan is considered as an ob-

jective function. Algorithm A aims to assign as many tasks as

possible respecting deadline d. This feasibility-problem with

respect to a common deadline is equivalent to a makespan-

minimization problem without a deadline [29]. Therefore, we

believe that the mathematically proven approximation-ratios

are still a valuable indicator for appropriate algorithms. The

approximation-ratio for the LPT-rule is 4
3 − 1

3m in case of

identical nodes [30] and 19
12 in case of nodes of different speeds

[31]. Moreover, the LPT-rule is proven to be asymptotically

optimal [32], [33], i.e. the LPT-rule will actually deliver the

optimal solution if the number of tasks is sufficiently large.

First Fit Decreasing rule (FFD) “Iteratively consider

the VM that becomes available the latest. Assign the

unscheduled task with longest processing time to the

VM if feasible. Repeat until all tasks are scheduled or

until a task cannot be assigned to any VM.”

The difference between the LPT-rule and the FFD-rule is

that the LPT-rule first considers VMs in order of the times at

which they become free next, whereas in contrast the FFD-rule

first considers VMs in the reversed order. As a consequence,

the LPT-rule acts as a load balancer, whereas the FFD-rule

aims at reducing the number of required VMs. It is proven [34]

that the FFD-rule does not occupy more than 11
9 OPT(I) +

6
9 VMs, where OPT(I) is the minimum number of required

VMs in order to schedule all tasks.

VI. PERFORMANCE EVALUATION

We conduct a performance simulation using the SEED sim-

ulator [35]. We choose the initial target workload distribution

inspired by the simulation results from [5] which is illustrated

in Figure 1. Note that although the intention of the framework

is to obtain the recommended target workload distribution by

the scientist, we feel that it is reasonable to take the workload

distribution from [5] as a “simulated recommendation”.



The data center consists of 24 nodes. The number of

cores/VMs on each node is randomly chosen from {2, 4, 8}.

Each VM is assigned a CPU capacity ωi which is randomly

chosen from {1, 1.25, 1.5} with the restriction that VM on the

same node are assigned the same CPU capacity. The quantities

for CPU capacity have been normalized to make comparison

and interpretation easier.

Probability distributions and parameters in the following

have been chosen as in [24]. Jobs are submitted according to

a Weibull distribution with parameters (4.25, 7.86) which is

in accordance with findings from the comprehensive analysis

of workload characteristics conducted in [25]. A job consists

of 2W tasks, where W follows a Weibull distribution with

parameters (1.76, 2.11). The actual execution time Pik of

task Tk assigned to a VM on Mi is given by Pik = 2X

ωi

minutes, where X follows a normal distribution with mean

2.73 and standard deviation 6.1. The deadline d is modeled

by d = r+2E(X)T , where T follows a normal distribution with

mean 9 and standard deviation 2.2. The estimated processing

time pik and the estimated remaining busy time aiℓ are

modeled by their respective expected values. The time horizon

considered in the simulation is 24 hours.

We evaluate our MTHG and our General Procedure algo-

rithm with LPT- and FFD rule as subroutines. The evaluation

is conducted by a comparison against a load balancing algo-

rithm that assigns tasks in a round robin manner as well as

against a probabilistic asymmetric load balancing algorithm

that assigns a task to Viℓ with probability ρi

γi

if feasible. This

way, Mi is expected to be assigned a fraction ρi of the data

center workload over time. The entire simulation is conducted

five times. Averaged values for each performance metric are

presented in Table II. An illustration for the performance on

an individual node with 8 VMs is given in Figure 4.

The results show that our algorithms outperform both the

load balancing and asymmetric load balancing algorithm for

each of the three objectives. As expected, the load balancing

algorithm has the worst performance with an average relative

deviation (RD) of 187% and an average relative variance

(RVar) that is 9.66 times higher as desired. The asymmetric

load balancing algorithm improves upon the load balancing

algorithm by taking also the target utilization level into consid-

eration for the scheduling decision. This significantly reduces

the average RD to 142% with the cost of a slightly increased

average RVar. Our proposed algorithms further improve upon

the asymmetric load balancing algorithm. They not only

take into account the target utilization levels, but also other

characteristics such as the CPU capacity or estimates of task

execution times. As a result, our algorithms achieve a further

reduction of the RD to a level of between 86% and 118% as

well as a reduction of the RVar to between 6.24 and 7.47.

Similar conclusions can be drawn for the IBL metric.

Finally we highlight that although e.g. a RD of about 86%

may appear substantive, however our particular problem con-

tains many constraints making it a highly restrictive problem.

As a consequence, solutions with a very low RD or RVar value

are not likely to exist. This is further fortified by very high RD

and RVar values obtained from (asymmetric) load balancing.

Fig. 4. Performance illustration on a node with 8 VMs. The black thin graph
is the desired utilization level of the node, whereas the thick line in color is the
actual utilization level obtained by the corresponding scheduling algorithm.

TABLE II
AVERAGE PERFORMANCE RESULTS

IBL RD RVar

Load Balancing 1.29× 108 1.87 9.66

Asymmetric Load Balancing 8.69× 107 1.42 10.6

MTHG (GAP) 4.70× 10
7 0.86 6.24

LPT - Procedure 7.98× 107 1.06 7.39

FFD - Procedure 7.08× 107 1.18 7.47



VII. CONCLUSION AND FUTURE WORK

In this paper we have proposed an infrastructure indepen-

dent framework for energy-efficient scheduling in Cloud data

centers that does not require complex modeling of energy.

The framework consists of several components with the task

allocation component being the focus of this work. In the

task allocation component, a scheduler is required to assign

workload to nodes such that the workload distribution gets as

similar as possible to a given target workload distribution. We

have proposed several algorithms and conducted comprehen-

sive performance evaluation using simulation. The simulation

results demonstrate that algorithms yield a reduction with

respect to the (asymmetric) load balancing algorithm by at

least 16.9% = 1 − 1.18
1.42 for the relative deviation and a

reduction by at least 22.67% = 1 − 7.47
9.66 for the relative

variance.

As valuable insights into the task allocation component have

been found in this work, future work includes studying the

other components of the framework. Once each component

is sufficiently understood we plan to combine components

together in order to conduct a performance simulation for the

entire framework. We plan to conduct practical experiments

using real infrastructure to evaluate it’s effectiveness, and

engage with additional domain specific experts in Mechanical

Engineering to provide an initial target workload distribution

required in the framework.
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