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Abstract:  The  paper  describes  the  use  of 
reverberation  chamber  measurements  to  verify  the 
probability  of  failure  of  a  vehicle  parking  sensor 
corresponds  with  the  theoretical  log-normal  pdf 
predicted  for  current  coupled  into  cables  in  a 
reverberant environment. This provides the basis for a 
quantitative  risk  assessment  system  for  vehicle 
electronics.

I.  INTRODUCTION

The  EU  SAFETEL Project  was  concerned  with  the 
safety implications of installing electronic equipment 
on  vehicles.  Part  of  the  project  concerned  the 
development of a risk assessment model suitable for 
predicting an upper bound on the probability of failure 
of an electronic system installed inside a vehicle that is 
irradiated  externally  or  internally.   Only  limited 
information  on  the  immunity  of  the  device  and 
associated  cabling  is  required.   As  an  example,  the 
model is used to demonstrate the probability of failure 
of  a  system  due  to  irradiation  from  Digital  Audio 
Broadcast (DAB) transmitters in the United Kingdom 
(UK).   The failure probability  is  found to be highly 
sensitive to the clearance above the vehicle chassis of 
wire looms attached to the system, and to the accuracy 
with  which  the  electric  field  is  measured  during  an 
immunity test for the system/cable combination.  The 
failure  probability  predicted  by  the  risk  assessment 
model  is  consistent  with  common  observations  of  a 
log-normal  distribution  in  the  terminating  power  of 
receiving cables inside an irradiated vehicle confirmed 
by measurements in a reverberation chamber.

In this paper we describe the experiments undertaken 
in the reverberation chamber and present the results of 
the experiments which illustrate their correspondence 
with  the  theoretical  and  observed  statistics  of  the 
power  received  by  cable  terminations  in  a  lossy 
enclosed  space  such  as  a  vehicle.  The  rotational 
positions  of  the  stirrer  substitute  for  the  statistical 
nature of  the excitation fields in the vehicle and the 
variations  of  positioning  of  the  cables  within  the 
vehicle. An example system comprising a multi-sensor 
ultrasonic  parking  warning  system  was  used  in  the 

experiments  and  good  agreement  was  achieved 
between the predictions and the observed failures of 
the system when under test.

II.  IMMUNITY PROFILE OF EUT

The major route by which EMI will enter a subsystem 
is likely to be via cabling. Therefore  method used here 
to  measure  the  immunity  profile  for  a  vehicular 
subsystem is by means of bulk current injection onto a 
sensor cable.  The particular subsystem examined is an 
ultrasonic parking unit.  This device has 8 ultrasonic 
sensors (four on the front bumper of the car and four 
on  the  rear  bumper),  and  a  digital  display  of  the 
distance  to  a  potential  hazard  when  parking.   The 
display  and  ultrasonic  sensors  are  connected  to  a 
central processing unit (CPU) plastic ‘black box.’ The 
ultrasonic sensors are connected to the CPU by rather 
long  cables  which  would  normally  be  positioned 
against  the  metal  chassis  of  the  car,  thus  forming  a 
circular wire/ground plane transmission line.  
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Fig.1. Current susceptibility profile for parking sensor 
in range 284MHz-298MHz

The  mode  of  failure  of  the  parking  sensor  in  the 
frequency range 284MHz-298MHz as the current level 
was  increased  followed  a  consistent  pattern.   The 
digital  back  lit  LCD  display  would  first  become 
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erratic,  with  varying  and  inaccurate  numbers  being 
displayed.  The display would then freeze, and after or 
second or so would completely disappear,  with even 
the back illuminating light being extinguished.

III.   STATISTICAL  TREATMENT  OF  FIELD 

COUPLING

With a knowledge of the susceptibility threshold of a 
device at the end of a cable, which for example may 
have  been  obtained  using  a  Bulk  Current  Injection 
(BCI) immunity test, the signal picked up by a cable 
attached  to  the  device  within  a  vehicle  can  be 
simulated using full  wave numerical  electromagnetic 
solvers.  By comparing the level of signal induced in 
the cable with the measured immunity threshold, it can 
be determined whether or not the device at the end of 
the cable will fail.

This  deterministic  approach  is  inadequate  for  two 
reasons.  Firstly, the traditional numerical methods  are 
computationally  intensive.   Even  with  modern 
computers with clock speeds of 2-3 GHz, the methods 
will  generally  take  several  hours  to  simulate  the 
signals  picked up by a single transmission line of  a 
given  geometry  inside  an  irradiated  vehicle.   A 
statistical analysis involving variations of cable length 
and position is thus not feasible using these methods. 
We note however that some progress has been made 
using  the  Intermediate  Level  Circuit  Modelling  or 
ILCM technique [1].   Using the ILCM technique,  a 
deterministic solution to such a problem can generally 
be found in seconds, typically three to four orders of 
magnitude faster than traditional numerical techniques. 
Secondly, the actual threat signal induced on a cable or 
wire loom inside a vehicle  due to  an EM emission, 
either  from  within  the  vehicle  or  from  the  vehicle 
exterior, is a poorly posed deterministic problem.  It is 
well  known  that  even  very  small  changes  in  the 
position of the transmitter or receiving wire loom, and 
indeed any other sizeable objects within the vehicle, 
can  alter  the  signal  picked  up  by  the  wire  loom 
significantly.  Instead, the signal picked up by the wire 
loom, regarded as a transmission line, can be treated in 
a  statistical  manner.   For  example,  it  is  reported [2] 
that  the  probability  density  function  (PDF)  of  the 
power  induced  in  representative  cables  typically 
follows a log-normal distribution as the cable position 
is varied, with a typical standard deviation in the range 
3-6dB.  Such behaviour has been replicated using the 
ILCM technique.  In particular, the upper tail end of 
the power distribution is found to follow a log-normal 
distribution.  This is significant from the point of view 
of  risk  assessment  since  it  is  the  upper  tail  of  the 
distribution that  determines the probability of failure 
when the latter is relatively low.

The interior of a vehicle is a reverberant environment. 
The  power  received  by  a  dipole  in  an  ideal 
reverberation  chamber  (RC)  is  found  to  follow  an 
exponential distribution (i.e.  a chi-square distribution 
with two degrees of freedom), providing the chamber 
has sufficient losses to allow significant excitation of a 
sufficient number of modes (10-30) [3,4].  This is true 

whether  the  observation  point  is  fixed  and  the 
frequency is varied or the frequency is fixed and the 
point of observation is varied.  This is also true for a 
mode stirred/tuned  reverberation  chamber  where  the 
stirrer  angle is  the varied parameter.   Providing that 
conditions such as unequal shielding of regions,  sub 
enclosures,,  closely  spaced  walls  that  could  act  as 
waveguides  below  cut-off,  or  significant  direct 
illumination of the dipole by the source do not apply, it 
would  normally  be  expected  that  received  power 
would have an exponential distribution.  This in fact 
corresponds to a Rayleigh distribution in the modulus 
of the voltage received by a dipole antenna.  When any 
anisotropy is introduced however, the received antenna 
power  distribution  usually  resembles  a  log-normal 
distribution [2].  The fact that a cable held up against a 
vehicle  wall  in  a  general  sense  resembles  an 
anisotropic configuration for a dipole, and the fact that 
for  such  a  cable  we  usually  obtain  cable  terminal 
power statistics that are log-normal in nature, raises the 
analogy  between  an  irradiated  vehicle  and  a 
reverberation chamber.  Certainly a vehicle is a large 
metal  enclosure,  of  approximately  rectangular 
geometry, that will be electrically large at many of the 
frequencies  of  interest  for  EMC  purposes,  typically 
from tens of MHz upwards. 
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Fig. 2.  Statistical distribution of current entering the 
vehicle subsystem.

We have shown [5] elsewhere that the field behaviour 
in a vehicle, loaded with contents, passengers etc. can 
behave like a reverberation chamber. The final step in 
defining  a  probabilistic  safety  margin  comes  from 
combining the measurement of the immunity profile in 
Figure  1  with  the  statistical  treatment  of  field 
ingress/distribution.   Figures  2  and  3  illustrate  the 
principles involved.  The ideas are based on material 
presented  in  [6].   Figure  2  shows  an  approximate 
statistical  distribution  of  current  at  the  cable 
termination  near  the  parking  sensor  CPU,  when  the 
ultrasonic  probe  cable  is  installed  inside  the  vehicle 
(reverberation chamber), and the vehicle is irradiated 
by a known field.   The detailed statistical  profile of 
Figure  2  is  determined  in  Section  IV,  and  the  most 
probable  value  of  current  is  of  course  directly 
proportional  to  the  magnitude  of  the  incident  threat 
field.  Figure 3 illustrates how the profile of Figure 2, 
and  the  variation  of  its  most  probable  value  with 
frequency  (also  calculable  from  ILCM),  can  be 



combined with a typical immunity profile, for example 
as  measured  in  Figure1.   It  is  evident  that  the 
probability  of  malfunction  or  failure  of  the  vehicle 
subsystem (parking sensor) is given by the area under 
the  tail  of  the  current  statistics  profile  curve  at  the 
point where the curve intersects the immunity profile 
curve  as  obtained  by  measurement  using  a  current 
injection technique (e.g. BCI).
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Fig. 3.  Use of PDF in Figure 2 together with measured 
immunity profile of EUT to determine the probability 

of failure for a given radiated threat level.

  As  the  threat  field  increases,  the  most  probable 
current  in  the  statistical  current  profile  of  Figure  3 
moves  proportionally  up  the  ordinate,  while  the 
immunity profile remains stationary.  Note that at the 
same time the numerical value of the PDF at its peak 
will  actually  decrease,  since  higher  fields  are  more 
likely and the area under the PDF curve must remain at 
unity.  The overall result is that a greater area of the 
tail  of  the  PDF  is  encapsulated  by  the  point  of 
intersection  of  the  two  curves,  indicating  that  the 
probability of failure has increased.  In this way, the 
probability  of  failure  of  the  vehicle  subsystem  or 
parking sensor may be determined both as a function 
of frequency and incident threat field level, when the 
subsystem  is  installed  on  the  vehicle  as  intended. 
Given that the vehicle is being irradiated by a threat 
signal  of  known  frequency  and  amplitude,  we  can 
obtain  the  probability  of  malfunction of  a  particular 
vehicle subsystem.

IV.   MEASUREMENT  OF  EUT  FAILURE 

STATISTICS  IN  A  REVERBERATION 

CHAMBER
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Fig. 4.  Experimental set up of parking sensor inside 
chamber.

The ultrasonic probe cable of length 7.93m is laid out 
against  the  floor  of  the  reverberation  chamber  on  a 
polystyrene spacer of height 2.5cm.  The cable is kept 
at least 30cm away from the vertical chamber walls, to 
ensure that the distance of the cable from the walls is 
at  least  a  quarter  of  a  wavelength  at  290MHz.  The 
parking sensor exhibits a susceptibility problem at this 
frequency when the current entering the CPU exceeds 
about 190mA (-14.4dBA).  The ultrasonic probe itself 
is positioned at one end of the cable, pointing at the 
ceiling,  while  the  other  end  of  the  cable  exits  the 
chamber via  the centre of  a  10cm long copper  tube 
packed  with  plastic  foam  material.   The  relative 
permittivity  of  this  material  is  unknown,  but  is 
assumed to be close to unity.  The other end of the tube 
leads  to  the  CPU  of  the  parking  sensor  itself, 
positioned outside the chamber as in Figure 6.   The 
display and power supply cables are kept outside the 
chamber  to  simplify  the  experiment,  preventing  any 
unwanted susceptibility problems from occurring due 
to EM interference being picked up on the display or 
power supply cables. 

Fig. 5. Layout of the ultrasonic parking sensor cable in 
the reverberation chamber.

Fig.  6.   The  exterior  of  the  reverberation  chamber, 
showing the parking sensor CPU, digital display and 
current probe.

The current entering the CPU outside the chamber is 
monitored by a current probe. The electric field inside 



the  chamber  was  recorded  by  a  calibrated  dipole 
antenna  and  balun.  The  Stirrer  was  rotated  in 
approximately  half-degree  steps  with  the  field  and 
current recorded for each position.

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10 12 14 16 18 20

PD
F

Peak single component of field (V/m)

Experiment, Q=200, P=0.8W
Rayleigh

1-Vm82.4=σ

(290MHz) 

Fig. 7.  Field distribution in chamber with absorber.

Figure 7 shows the measured field distribution in the 
chamber  compared  with  the  ideal  Rayleigh  case.  At 
290 MHz the reverberation chamber is near its lower 
usable frequency and must be loaded with absorber to 
ensure the expected Rayleigh field distribution. Figure 
8 shows the measured induced current along with the 
theoretical log-normal distribution.
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Fig. 8.  Experimental distribution of cable termination 

current I
Term  for chamber with absorber

In  this  experiment  we  were  unable  to  achieve 
sufficiently  high  enough  field  strengths  without 
removing the chamber loading, resulting in the field 
distribution shown in Figure 9. This corresponds more 
nearly  to the distribution found in cavities with few 
resonant modes excited.

Figure 10 shows the probability density function of the 
terminal  current  entering  the  CPU  of  the  parking 

sensor as the stirrer is rotated through 360 ° .  It can 

be  seen  that  despite  the  lack  of  Rayleigh  statistics 
(Figure  9,  scaled  up  by  a  factor  of  7dB),  the 

distribution  of  terminal  current  I
CPU  is  still 

reasonably  well  modelled  by  a  log-normal 
distribution.The standard deviation of this distribution 
is 7.62dB. Also shown in Figure 10 is the current at 
which the  parking  sensor  was found to  fail.  This  is 
slightly  lower  than  the  value  determined  by  bulk 

current injection. The discrepancy is thought to be due 
to the slightly different terminating conditions of the 
sensor cable. 
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Fig. 9.  Field distribution in chamber - no absorber.
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Fig.  10.   Distribution  of  parking  sensor  terminal 
current with no absorber in the reverberation chamber.
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Fig.  11.  Experimental  and  theoretical  probability  of 
failure of the parking sensor.

The most probable current I
CPU  obtained in Figure 

10  was  μ=−27 . 0dBA ,  with  a  source  signal 

generator  power  of  –3dBm.   Clearly,  as  the  source 
signal generator power is increased or decreased, the 

value of μ  will rise up and down in proportion.  The 

probability of failure of the parking sensor for a signal 
generator power of –3dBm can be found from the area 
under the curve in Figure 10 that lies to the right of the 

vertical  line  at  I
CPU

=18 .9dBA .   If  the  signal 

generator  power  is  reduced  by  NdB,  the  curve  in 
Figure 10 moves to the left by NdB, and the area under 



the curve to the right of the line at I
CPU

=18 .9dBA  

decreases.  This corresponds to a decreased probability 
of failure of the parking sensor.  In the same way, an 
increase in the signal generator power of  NdB makes 
the curve in Figure 10 move to the right by NdB along 
the abscissa, and an increased probability of failure is 
predicted.

With a most probable current of  μ=−27 . 0dBA  at a 

source  signal  generator  power  of  –3dBm,  and  a 
threshold for failure of –18.9dBA, the probability of 
failure  of  the  parking  sensor  for  a  signal  generator 
power of X dBm is given by:

P
fail

 X =
1

2
erfc [ 27−3−18 .9−X

σ 2 ]
=

1

2
erfc [5.1−X

σ 2 ]
(1)

where σ=7. 62dB (the standard deviation of the curve 

in  Figure  10)  and  the  function  erfc(x)  is  the 
complementary error function.

The  theoretical  probability  of  failure  given  by 
Equation  1  is  compared  with  the  experimentally 
observed  probability  of  failure  in  Figure  11,  as  a 
function of the source signal generator power X dBm. 
The experimental  probability  of  failure in  Figure  11 
was determined by observing the number of positions 
of the stirrer at which the parking sensor was found to 

fail,  as  the  stirrer  was  rotated  through  360 ° ,  for 

each  signal  generator  power  considered.   A  total 
number  of  177  independent  positions  for  the  stirrer 

were  examined  (approximately  2 °  steps)  at  each 

signal generator power, giving a resolution in Figure 

11 of  1/177≈0. 00565  in the experimental PDF. 

At the minimum signal generator power considered in 
Figure 11 (–10dBm), only 2 out of 177 stirrer positions 
resulted  in  a  parking  sensor  failure.   Clearly  the 
experimental  probability  of  failure  below  –10dBm 
signal  generator  power  is  not  going  to  be  very 
meaningful,  and  this  imposes  a  lower  limit  on  the 
abscissa in Figure 11.

V.  CONCLUSION

This  paper  is  illustrates  the  potential  for  the  use  of 
reverberation chambers for testing systems that may be 
installed  on  vehicles  and  integrating  the  test  results 
with  a  quantitative  risk  assessment  of  the  vehicle 
operated in a real environment.
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