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SUMMARY

Ants can navigate over long distances between their

nest and food sites using visual cues [1, 2]. Recent

studies show that this capacity is undiminished

when walking backward while dragging a heavy

food item [3–5]. This challenges the idea that ants

use egocentric visual memories of the scene for

guidance [1, 2, 6]. Can ants use their visual memories

of the terrestrial cues when going backward? Our re-

sults suggest that ants do not adjust their direction of

travel based on the perceived scene while going

backward. Instead, they maintain a straight direction

using their celestial compass. This direction can be

dictated by their path integrator [5] but can also be

set using terrestrial visual cues after a forward

peek. If the food item is too heavy to enable body

rotations, ants moving backward drop their food on

occasion, rotate andwalk a few steps forward, return

to the food, and drag it backward in a now-corrected

direction defined by terrestrial cues. Furthermore, we

show that ants can maintain their direction of travel

independently of their body orientation. It thus ap-

pears that egocentric retinal alignment is required

for visual scene recognition, but ants can translate

this acquired directional information into a holo-

nomic frame of reference, which enables them to

decouple their travel direction from their body orien-

tation and hence navigate backward. This reveals

substantial flexibility and communication between

different types of navigational information: from

terrestrial to celestial cues and from egocentric to

holonomic directional memories.

RESULTS AND DISCUSSION

Our experiment was conducted near Seville, in the natural envi-

ronment of the desert ant Cataglyphis velox. We buried barriers

around an active nest to constrain the foragers to navigate along

a one-way route of our design (Figure 1A). The barriers did not

interfere with the view perceived by the ants, with the surround-

ing scenery clearly visible. A feeder with small pieces of cookie

was provided to motivate the ants to run (forward) along our

route, which included several 90� turns and baffles to regulate

the ant paths. Each forager reaching the feeder was painted

with a unique color code and was allowed to travel on the sepa-

rated outbound and inbound routes to and from the feeder until

the full route was learned sufficiently well to avoid collisions with

the barriers or baffles. Experienced ants were then subjected to

one of three test conditions in which we recorded their heading

direction after 40 cm of travel.

Backward-Walking Ants Follow Their Path Integrator

Rather Than Their Visual Memories

We first tested how ants walking backward would negotiate a

sharp 90� turn along their familiar route. We captured experi-

enced ants after they had run 3 m along the first leg of the

outbound route (Figure 1A, CP1). They had thus accumulated a

path integrator (PI) homing vector of 3 m pointing southward.

Ants were transferred in the dark one by one, providedwith either

a small or a large food item, and released on a homebound leg of

the route in front of a funnel-shaped baffle (Figure 1A, RP1). At

the release point, the route pointed southward but, immediately

after the funnel, presented a 90� turn right. We recorded their

heading direction at 40 cm after exiting the funnel.

Upon release, the ants carrying a small cookie, and thus able to

walk forward, initially dashed southward but then displayed a

sharp right turn at the exit of the funnel, pursuing the familiar route

westward rather than following the direction indicated by their PI

(Figure 1B, Forward; see Movie S1). Ants provided with a large

cookie behaved differently. The large cookie was too heavy to

be lifted, and these ants struggled for several seconds before

eventually starting to drag it backward, as observed in other

species [3, 4, 7]. We only analyzed the paths where the ants

continuously dragged the cookie backward (i.e., antswith antero-

posterior orientationwithin±45� away from thedirectionof travel).

Their initial direction pointed southward, too; however, at the exit

of the baffle, these backward-walking ants continued southward,

as indicated by their PI, and apparently uninfluenced by their

memoryof visual terrestrial cues (Figure1B,Backward; seeMovie

S1). When looking at their bearings 40 cm after the baffle, the dif-

ferencebetween the forward andbackwardgroupwas striking. In

fact, backward-walking ants behaved similarly whether released

on their familiar route or in a completely unfamiliar location (Fig-

ure S1B). It is known that backward-walking ants can follow their

PI [5], but our results additionally suggest that they are uninflu-

enced by the learned scenery of the route.
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Backward-Walking Zero-Vector Ants Do Not Use the

Learned Visual Scenery on a Familiar Route

Our first experiment showed that backward-walking ants are

guided by PI and are not influenced by terrestrial cues, but might

they rely on the visual scenery in the absence of a PI home vec-

tor?We note, for example, that in Ardin et al. [3], displaced back-

ward-walking ants with a somewhat shorter PI vector did not

follow their PI, but homed to the nest. To test for this, we

captured ants trained to our route a few centimeters before

they reached their nest (Figure 1A, CP2)—that is, as zero-vector

ants (ZV). We removed the small cookie that these ants were

carrying and, as previously, provided them instead with either

a big or small piece of cookie to induce backward or forwardmo-

tion, respectively. This time, the ants were released further along

the route within a lampshade that blocked the view of the sur-

rounding scenery (Figure 1A, RP2). Ants were allowed to walk

for 10 cm in their chosen direction before the shade was lifted

to reveal the familiar scenery. Forward-running ants displayed

initially undirected headings but adjusted their course toward

the correct route direction as soon as the shade was lifted (Fig-

ure 1C). In contrast, the big-cookie backward-dragging ants did

not orient toward the route direction when the shade was lifted

(Figure 1C), despite the familiar visual scenery.

Although not the main focus of our study, it is interesting to

note that the direction taken by backward-walking ZV ants was

not random. We were surprised to find that they aimed, rather

consistently, southwest, a direction that corresponds to the

feeder-to-nest compass direction. This was clearly apparent

after 40 cm of travel, and even seemed to be the case at

10 cm, when they were within the lampshade (Figure 1C) from

which only the sky was visible, suggesting that this direction is

based on a celestial compass memory. Ants are known to store

such celestial compass-based vectors in long-term [8] or

medium/short-term memories [9], and it appears that in this

unfamiliar situation, the ZV backward ants recovered and used

such a vector to set their direction.

Backward-Walking Zero-Vector Ants Do Not Use the

Visual Scenery at a Novel Release Point

It has been suggested that ants may use different visual strate-

gies when on route, compared to novel locations off the route

[6, 10, 11]. Ants displaced off their route can use the surrounding

A B C D

Figure 1. Differences between Forward- and Backward-Walking Ants

(A) Schematic aerial view of the experimental setup. Ants were constrained within a one-way foraging route between the nest and feeder (F). Gray lines within the

route depict baffles, and gray goniometer sketches indicate test locations. Arrowheads indicate the theoretical directions tested in (B)–(D), as indicated by the

path integration vector (black) and the correct route direction (gray). Note that backward zero-vector (ZV) ants appeared to be oriented toward the feeder-to-nest

compass direction (open arrowhead). Dashed arrows indicate capture (CP) or release (RP) points, and the panoramic images illustrate the scenery, as perceived

from the RPs. Images were taken with a Sony Bloggie, unwrapped and processed as in [6]. RP1: lower image represents view before baffle and upper image view

after baffle. RP2,3: lower and upper images represent views with and without lampshade. Note that the sky was still visible even with the lampshade in place; only

terrestrial visual cues were covered.

(B) Circular distribution of heading directions (after 40 cm of travel) of full-vector (FV) ants tested at RP1. Forward ants were oriented and headed toward the route

direction (gray arrowhead). Backward ants were oriented and headed along their path integration vector (black arrowhead).

(C and D) Distributions of headings of ZV ants released on-route at RP2 (C) and off-route at RP3 (D). Forward ants showed random headings at 10 cm (lampshade)

but were oriented toward the route direction (RP2) or nest direction (RP3) (gray arrowhead) at 40 cm. Backward ants were oriented toward the feeder-nest

direction (open arrowhead) at 10 cm (only D) and 40 cm.

(B–D) Arrows indicate mean vector and black circles indicated by the 95% confidence intervals of group distributions. Numbers in circular sectors indicate the

number of observations for this direction. Filled stars within the histograms depict significantly oriented distributions (p < 0.01; Rayleigh test). Open stars near

theoretical directions (arrowheads) indicate p < 0.001 against this direction as mean of the group distribution (S test, a non-parametric sign test for circular data,

MATLAB). Filled stars outside the histograms depict significant differences (p < 0.001; WW test) between mean directions of two given distributions.

Details on p values are provided in Table S1; see also Supplemental Experimental Procedures, Figure S1, and Movie S1.
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scenery to guide their path directly toward the nest (or the

familiar route) across novel terrain [6, 12, 13], as in models of vi-

sual homing [6, 14, 15]. Perhaps backward-walking ants cannot

use on-route strategies because it requires forward body align-

ment [2, 16–19] but can nonetheless use off-route strategies.

To test this, we repeated the previous experiment with the lamp-

shade, but this time ZV ants were released off route, at a novel

location (relative to their normal return route) �2 m to the side

of their nest (Figure 1A, RP3). Again, small-cookie forward-

walking ants corrected their heading toward the nest when the

lampshade was lifted (Figure 1D), showing that they could use

their memory of visual terrestrial cues to home from this novel

location. Backward-walking ants, however—as before—did

not move in the correct home direction but instead walked in

the feeder-to-nest compass direction and maintained that direc-

tion when the visual scenery was revealed (Figure 1D). That is,

they failed to use the visual scenery to correct their heading

toward the nest.

Ants Can Peek Forward to Set a Direction, Which They

Then Maintain Backward

If backward-walking ants do not use their memory of the visual

terrestrial cues, how can we explain their ability to home suc-

cessfully after being displaced to novel locations [3]? Pfeffer

andWittlinger [5] noticed that ants walking backward on unfamil-

iar terrain occasionally dropped their food and searched around

before grabbing the food again. The authors noted that after

these searches some ants were more precisely oriented along

the feeder-to-nest direction. We were interested in investigating

whether ants might obtain information from the visual scenery

during such maneuvers. In our various experiments, roughly

one-third of our recorded ZV ants dropped their food items

and hence were not included in our previous analysis. These

ants (n = 13) displayed on our recording board what we will

call here a ‘‘peeking behavior’’: they stopped dragging, dropped

their cookie, turned around, took a few steps forward, turned

around, came back, grabbed the cookie again, and resumed

their backward motion—but this time along the route direction,

as taken by the forward ants (Figure 2; see Movie S2).

The peeking behavior is not stereotypical but varies across sit-

uations. Within the familiar surroundings of our setup, ants left

their cookie only for a short period of time (mean ± SD =

3.5 s ± 1.9 s) and displayed only a few steps forward (maximum

distance: mean ± SD = 4.2 cm ± 1.7 cm). In contrast, ants display

longer and tortuous searches in unfamiliar terrain, as observed in

Cataglyphis fortis [5]. Ants also sometimes attempted to face for-

ward with the food still in their mandibles, which, it appears, also

enables them to use their visual memories to adjust their walking

direction (Figure S1C). Such ‘‘glances back’’ could explain how

Myrmecia ants achieved ‘‘backward’’ homing [3] (Figure S2).

Note that none of the full vector (FV) ants we observed dropped

their cookie. This is different to Pfeffer and Wittlinger’s observa-

tion and might be due to our short period of observation. In gen-

eral, it seems clear that ants with shorter PI homing vectors are

more prone to display peeking behavior ([5] and Figure S2).

This could be because of the greater angular uncertainty of short

PI vectors [20] or because information from the visual scene (or

odors) is needed to pinpoint the exact nest location. Exactly

how many peeks would be required to recapitulate a route or

pinpoint the nest remains unknown.

Interestingly, the few steps forward displayed during the peek-

ing behaviors (in familiar surroundings) were oriented along the

correct route direction (Figure 2). Such a need to turn around

and face the route direction supports the idea that obtaining

directional information from terrestrial cues is an egocentric pro-

cess [2, 6, 10, 13, 17, 18, 21–25], where antsmust align their view

to match their egocentric memories of the visual landscape.

Crucially, however, the direction obtained by this egocentric pro-

cess while facing forward can subsequently be maintained while

going backward (Figure 2). Thus, ants must somehow be able to

transfer the directional information based on terrestrial cues into

a different frame of reference, which we investigate next.

Backward-Walking Ants Use Their Celestial Compass to

Maintain a Straight Course

It is notable in all the above experiments that ants walking back-

ward maintained a straight course, even after peeking. Moving

straight is not a trivial task [26–28], particularly given the chaotic

stepmovements involved in ant backward locomotion [4]. In the-

ory, maintaining a straight path can be achieved inmultiple ways:

by using proprioceptive information, rotational optic flow, or

celestial cues, or by memorizing the scene perceived (on adopt-

ing the backward course) to hold a good match while moving.

We decided to test whether ants maintain their backward

Figure 2. Peeking Behavior Enables Ants to Adjust Their Direction of

Travel

Angular error (angle away from the homing direction) of the direction of

backward travel 10 cm before and 10 cm after the peeking behavior. ‘‘Forward

during peek’’ corresponds to the direction of the furthest location away from

the dropped cookie reached by the ant during peeking behavior. Each line

corresponds to an individual ant (p values correspond to a paired sign tests).

Circular histograms show travel directions relative to the route direction

(arrowhead), with mean vector of the distribution (arrow) and 95% confidence

intervals (black circles). Numbers in circular sectors correspond to the number

of observations for this direction. Filled stars within the histograms depict

significantly oriented distributions (Rayleigh tests: before peek, p = 0.159;

peek, p < 0.001; after peek, p < 0.001). Lower sketches illustrate an example of

a peeking behavior sequence (dashed arrows depict direction of travel; see

also Movie S2).
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direction through celestial cues, as do dung beetles when push-

ing their dung ball backward with their hind legs [29–31]. We

used a century-old method: mirroring the sun so that it appeared

to be in the opposite half of the sky while hiding the direct sun

with an opaque board [32]. We waited for a rather overcast day

to limit the effect of blue sky polarization [33, 34] and performed

themanipulation when the sun was clearly visible. As soon as the

sun was mirrored, backward-walking ants displayed a turn and

moved in a different direction (Figure 3A). This was true for

both FV and ZV ants and whether before or after peeking, as

long as ants were not walking forward. As observed in previous

sun mirror manipulations [32, 34], the turns displayed here by

A B

D

C

Figure 3. Ants Can Maintain a Direction of Travel Independently of their Body Orientation

(A) Mirror experiment. Recorded paths were digitized and the ant’s location was extracted at two frames/s. Dashed lines represent path sections under direct

(natural) sun conditions, and solid lines represent path sections with the sunmirrored by 180� compared to the ant position. Small arrows indicate the direction of

the sun’s position in the sky, and black circles the start of the paths. The mirror manipulation was applied in backward-walking full-vector ants (vector direction

indicated by open arrowhead) and zero-vector ants before or after the ant had displayed a peeking behavior. The circular histograms show the relative distribution

of the travel direction of path segments sampled at two frames/s under direct natural sun (gray) andmirrored sun (white). The two associated vectors indicate the

mean vector of the circular distributions; the x and y axis length indicate a vector norm of 1.

(B) The angle turned by each individual (gray dots) is greater as a response to the manipulative change in sun direction than it is before or after the change,

indicating the use of a celestial compass. As depicted, individual paths were divided into four successive vectors of 8 cm each: two before the manipulation

(b2, b1) and two after (a1, a2). Angles turned correspond to the absolute angular difference between the vectors (before: jqb2 b1j; during: jqb1 a1j; after: jqa1 a2j).

*p < 0.015, nonparametric ‘‘sign test’’ test (MATLAB) for paired individual data.

(C) Example paths of single ants, traveling forward (with a small food item), backward, or in a combination of different body orientations (‘‘mixed,’’ with a big food

item). Head position (black dots) and head-to-tail orientation (black dashes) were extracted from the recorded paths (GoPro cameras) at five frames/s. Circular

histograms show distributions of the ants’ body orientations relative to their direction of travel (travel direction – body orientation), computed as the change in

location of the ants’ head from the current frame to the next (i.e., backward: BWD; forward: FWD; sideways: SWD; see also Movie S3). No correlation between

body orientation and direction of travel could be found for the mixed ants (circular-circular correlation, 0.13 < r < �0.11, p > 0.324).

(D) Distributions of directions of travel (path segments sampled at five frames/s of mixed ants shown in Figure 3C) for different categories of body orientations

show that ants canmaintain an overall path direction (aligned at zero) independently of their body orientation. Dashed lines indicate themean direction expected if

the ants were pulling backward. Filled and open dots indicate the means for the FV and ZV ants, respectively (see also Figure S2 for a similar analysis and result

with Myrmecia data).
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backward-walking ants were not exactly 180�. This may be due

to the conflicting influence of the remaining blue sky polarization,

which suggests that a variety of celestial cues are involved.

It seems clear that backward-walking ants use their celestial

compass to maintain a straight course. This does not refute

the possibility that self-motion or stabilization based on terres-

trial cues can be used too; however, celestial cues dominate.

AntsCanMaintain aDirection of Travel Independently of

their Body Orientation

Some of the ants dragging their large food item backward

managed nonetheless to rotate their body around while keeping

the food in their jaws (Figure 3C). These were removed from our

previous analysis because they did not travel solely backward.

Interestingly, these ants revealed their ability to decouple their

direction of travel from their current body orientation (see Fig-

ure S1C for the direction taken by these ants). That is, they could

maintain an absolute direction of travel whether moving back-

ward, forward, or sideways or rotating in any other intermediary

body orientation (Figure 3C; Movie S3). In other words, this

shows that ants’ directional memories can be stored and

retrieved within a holonomic frame of reference. In robotics,

‘‘holonomic’’ means that all degrees of freedom (x,y and the

body orientation q) are controllable, so the system can be

reduced to its position in space (the body orientation q is inte-

grable). For instance, holonomic wheels are wheels that, like

ants, can move in any direction independently of their orienta-

tion. In the vertebrate literature, this may be referred to as an

‘‘allocentric directional’’ reference frame [35]. We performed a

similar analysis using a dataset from previously published work

on the distantly related Myrmecia ants [3] and obtained compa-

rable results (Figure S2D). Similarly, flying hymenoptera can fly

sideways to maintain a compass direction despite cross-wind

[36], suggesting that this ability has evolved before the origin of

the ant taxa.

Such a holonomic system is ideal to integrate multiple sources

of directional information, as any directional input added to the

system can be taken into account independently of the insect’s

current body orientation. This not only explains how a direction

obtained when facing forward (e.g., during peeking) can subse-

quently be followed backward using celestial cues, but also how

ants can integrate egocentrically perceived wind directions [37]

or steer an intermediate course when the direction indicated

by terrestrial cues and path integration are set in conflict

[20, 38–41].

Neurobiological Implication

It is interesting to consider the implications for the neural cir-

cuitry underlying navigation [42]. The central complex has

been closely implicated in storing directional memories [43],

tracking body orientation from self-motion cues [44, 45], and us-

ing celestial cues as an external frame of reference [43, 46, 47].

The central complex thus possesses all the ingredients neces-

sary to integrate directional memories into a holonomic frame

of reference [42]. By contrast, a current hypothesis for visual

scene orientation is that it involves the comparison, by retino-

topic alignment, of the current egocentric view to egocentric

visual scene memories [2]: a function that can be plausibly map-

ped to the mushroom bodies [42, 48]. The ability of ants, as

shown here, to recover a direction using egocentric visual route

memories (when peeking forward) and subsequently follow that

direction using celestial cues independently of their body orien-

tation would then require a transfer of information, whether

direct or indirect, from the mushroom body to the central com-

plex. To date, surprisingly few connections between these

distinctive neuropils have been observed, but they could be

crucial to understanding navigation. Indeed, it may be more

appropriate to consider these brain areas as supporting

complementary computational processes, which can flexibly

interact to achieve complex navigational tasks, rather than

distinct behavioral competencies [42].

Conclusions

Ant navigation is often described as a tool kit of distinct

behavioral strategies, in which the use of celestial and terrestrial

cues (apart, perhaps, from wind [37, 49, 50]) are processed by

independent modules weighted by simple rules and gated by

simple motivational control [51–53]. The current results depict

a different story: ants walking backward must assess their accu-

mulating uncertainty and eventually drop their cookie to peek

forward for the time necessary to recover a direction; and this

direction, obtained by egocentric, rotationally dependent pro-

cesses based on memories of terrestrial visual cues, can be in-

tegrated (together with other directional information such as

the PI vector) in a holonomic frame of reference and followed

independently of the body orientation using the celestial com-

pass. Whether these two processes (i.e., peeking forward to

gather information using memories of the visual scene or moving

along the computed direction using the celestial compass) are

always achieved sequentially, or can be achieved simulta-

neously and continuously, remains to be seen. In any case, stra-

tegies of different kinds mingle, and navigational behavior

appears to be a product of remarkably flexible control.
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