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Energy Efficient and Fair Resource Allocation for
LTE-Unlicensed Uplink Networks: A Two-sided

Matching Approach with Partial Information
Yuan Gao1, Haonan Hu1,Yue Wu2*, Xiaoli Chu1 and Jie Zhang1

Abstract—LTE-Unlicensed (LTE-U) has recently attracted
worldwide interest to meet the explosion in cellular traffic data.
By using carrier aggregation (CA), licensed and unlicensed
bands are integrated to enhance transmission capacity while
maintaining reliable and predictable performance. As there may
exist other conventional unlicensed band users, such as Wi-Fi
users, LTE-U users have to share the same unlicensed bands with
them. Thus, an optimized resource allocation scheme to ensure
the fairness between LTE-U users and conventional unlicensed
band users is critical for the deployment of LTE-U networks. In
this paper, we investigate an energy efficient resource allocation
problem in LTE-U coexisting with other wireless networks, which
aims at guaranteeing fairness among the users of different radio
access networks (RANs). We formulate the problem as a multi-
objective optimization problem and propose a semi-distributed
matching framework with a partial information-based algor ithm
to solve it. We demonstrate our contributions with simulations
in which various network densities and traffic load levels are
considered.

Index Terms—LTE-Unlicensed, multi-objective optimization,
one-to-many matching, incomplete preference list, matching the-
ory.

I. I NTRODUCTION

The 1000x increase of data traffic is a major challenge
for cellular networks in 5G networks [1]. To overcome the
challenge, exploiting more spectrums for reliable communica-
tion is regarded as a promising solution. Industrial scientific
and medical (ISM) radio bands, in particular, 5.8 GHz have
attracted wide interest [2]. The overall available spectrum
bandwidth in the unlicensed bands in major markets (e.g. US,
Europe, China, Japan) is several hundred megahertz (MHz)
[2].

LTE-unlicensed (LTE-U) is deployed to allow cellular user
equipment (UE) to utilize ISM radio bands, in particular,
5.8 GHz. To enhance system capacity, unlicensed carriers
are integrated into a cellular network by using the carrier
aggregation (CA). The CA enables the aggregation of two
or more component carriers into a combined bandwidth with
one carrier serving as the Primary Component Carrier (PCC)
and others serving as Secondary Component Carriers (SCCs)
[3]–[5]. For LTE-U, licensed carrier serves as the PCC, while
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the unlicensed bands work as the SCCs in Time-Division-
Duplexed (TDD) or Supplemental DL (SDL) only [2]. Fur-
thermore, in [6], the authors proposed a mechanism that
allowed device-to-device (D2D) communications operatingin
unlicensed bands utilizing LTE-U technologies.

Wi-Fi networks, with low cost and high data rates, have
been the dominant players on all unlicensed bands in 2.4 and
5 GHz. However, spectrum efficiency in Wi-Fi systems is low,
especially given the overloaded conditions. In contrast, LTE
works more efficiently in terms of resource management and
error control. Therefore, the deployment of LTE-U not only
alleviates the spectrum scarcity of the cellular system, but also
improves the spectrum efficiency on the unlicensed bands.

A. Challenges of Deploying LTE-U

Despite the huge potential to meet cellular traffic surges,
LTE-U is still in its infancy; several deployment challenges
remain to be overcome. First, Wi-Fi systems would experience
significant performance degradation in the presence of LTE-U
systems without a proper coexistence scheme [7], [8]. Wi-Fi
systems employ carrier sense multiple access with collision
avoidance (CSMA/CA) to access the unlicensed bands, and
a Wi-Fi user will back off if the co-channel LTE-U signals
is above the energy detection threshold (e.g., -62dBm over
20MHz) [9]. Therefore, a suitable coexistence mechanism
is required in the LTE-U channel access scheme design.
Secondly, LTE-U users may fail to meet its quality of service
(QoS) requirement due to Wi-Fi transmission. What’s more,
the interference between LTE-U users of multiple operators
would also lead to performance degradation of LTE-U users.
Such unplanned and unmanaged deployment would result in
severe performance degradation for both Wi-Fi and LTE-
U networks and poor spectrum efficiency. LTE-U calls for
coexistence schemes to enable harmonious resource sharing
between Wi-Fi and LTE-U.

Thus, coexistence mechanisms have attracted substantial
interest. Fair spectrum sharing between Wi-Fi and LTE-U can
be ensured by using either non-coordinated or coordinated
network managements. Non-coordinated schemes, such as
LTE blank subframe allocation [10], listen-before talk (LBT)
scheme [11], the carrier sense adaptive transmission (CSAT)
by LTE-U forum [9], and 3 LBT schemes (Category (Cat)
2, 3, 4) by European Telecommunications Standards Institute
(ETSI) [12], require modifications on the LTE-U side only,
while coordinated schemes require information sharing about
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network operations and spectral resources using centralized
network interconnections, including cooperative controlfor
spectrum access and managing coexistence using an X2 in-
terface [13].

Research on the optimal resource allocation of the unli-
censed spectrum has also been undertaken. Geometric pro-
gramming [14] has been widely used in wireless communi-
cation to solve network resource allocation problems, which
has been often used in LTE-U scenarios. In [15], the opti-
mization performance of a hybrid method to perform both
traffic offloading and resource sharing based on a duty cycle
scheme is revealed. A fair-LBT (F-LBT) scheme is proposed
by considering both the throughput and fairness of an LTE-U
and a Wi-Fi system [16]. In [17], a matching-based student-
project model is developed to guarantee unlicensed users QoS,
together with the system-wide stability. Contention window
size for both Wi-Fi and LTE-U users are jointly adapted to
maximize LTE-U throughput while guaranteeing the Wi-Fi
throughput threshold [18]. In [19], power allocation problem
of the small base stations is formulated as a non-cooperative
game by using a multi-framework. Fair proportional allocation
is developed to optimize both Wi-Fi and LTE-U throughput
[20]. A centralized joint power optimization and joint time
division channel access optimization scheme is proposed to
achieve significant gains for both Wi-Fi and LTE-U throughput
[21]. A Nash bargaining game theoretic framework is also
employed to solve the joint channel and power allocation prob-
lem in [22]. In [23], the unlicensed spectrum is divided into
a contention period, for Wi-Fi users only, and a contention-
free period, for LTE-U users. The optimal contention period
is obtained by using the Nash bargaining solution. In [24],
a joint user association and power allocation for licensed
and unlicensed spectrum algorithm is proposed to maximize
maximize sum rate of LTE-U/Wi-Fi heterogeneous networks.

Fair coexistence has not been defined clearly, and one of
the definitions is that the deployment of an LTE-U system
should not affect one Wi-Fi system more than another Wi-
Fi system with respect to throughput and latency [2], [25].
Throughput fairness is explored by means of bothα-fairness
and max-min approach and time division access and channel
sharing between Wi-Fi and LTE-U are found to be effective
coexistence schemes. Moreover, a criterion for switching be-
tween these two schemes is also established in [26], subject
to different network scenarios. We hold that a fair coexistence
should consider both Wi-Fi and LTE-U users’ QoS, such
as throughput threshold and power consumption. Due to the
limitations of power in end-user devices, if a user’s throughput
requirement were fulfilled by consuming an excessive amount
of power, user’s satisfaction would be affected. The ratio of the
achievable user throughput to the consumed user energy, i.e.,
energy efficiency (EE), is an important indicator for wireless
communications especially from a user’s perspective, which
has been widely explored in a 5G ultra-dense networks [27],
cognitive radio [28], and OFDMA networks [29]. Therefore,
it is interesting and critical to study the EE minimization
problem in Wi-Fi and LTE-U coexistence scenarios while
meeting their QoS requirements.

B. Matching Theory Framework

Matching theory is a mathematical framework for forming
mutually beneficial relations, which was first applied in eco-
nomics. It can be easily adapted to study resource allocation
problems of a wireless communication system.

• Matching theory can model the interactions between two
distinct sets of players with different or even conflicting
interests [30]. For example, in an LTE uplink network, UE
aims to achieve its QoS (mainly throughput) with minimal
energy consumption while the objectives of small cell
base stations (SCBSs) are serving users with certain QoS
requirements and maximizing its capacity.

• Compared with game theory, a UE does not need other
UEs’ actions to make decisions. A preference list in terms
of performance matrix, such as throughput and EE, is
set up based on the local information including channel
conditions. UEs made proposals according to this list.
The only global information required from a centralized
agent is the rejection/acceptance decision of each UE’s
proposal and blocking pair.

Recently, matching theory has emerged as a promising tool
to cope with future wireless resource allocation problems.In
a full duplex OFDMA network, UL and DL user pairing and
sub-channel allocations are modelled as a one-to-one three-
sided matching to maximize the sum system rate [31]. In [32],
the decoupled uplink-downlink user association problem in
multi-tier full-duplex cellular networks is formulated astwo-
sided many-to-one matching. An algorithm, based on a stable
marriage algorithm is developed to find a near optimum with
much lower complexity compared to a conventional coupled
and decoupled user association scheme. A resource allocation
problem for device-to-device (D2D) communications under-
laying cellular networks is studied in [33]; a two-sided many-
to-many matching scheme with an externality is proposed
to find the sub-optimality. A matching based algorithm to
study the resource allocation problem in an LTE-U scenario is
proposed in [17]. The student-project model is used, in which
students (cellular users) propose projects (unlicensed bands),
and the decisions are made by lectures (base stations) to
achieve maximal system (both LTE-U and Wi-Fi) throughput.
Based on this paper, the same goal is studied by considering
user mobility in [34]. However, all of the above work considers
optimal system performance as a whole, instead of QoS (such
as throughput) for each user. In addition, another limitation
of the above works is that the matching is with complete
preference lists. This is not always the case in the real world,
for example, some bands may fail to achieve a user’s QoS
requirement, due to its availability and channel variation,
which means that some bands are not acceptable to certain
users, making the preference list incomplete.

C. Contributions

The major contributions of this paper are summarized as
follows:

• Different from existing works, which typically consider
only the fairness problem or overall EE (defined as
the ratio of the overall data rate and the total energy
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Fig. 1. System architecture of a LTE-U and Wi-Fi system

consumption), we propose an optimized shared scheme
for LTE-U networks coexisting with Wi-Fi in ISM bands,
which aims at maximizing the EE of independent LTE-U
users while guaranteeing fairness among different users.
That is, the proposed algorithm would guarantee the QoS
requirement for each user (including CUs and Wi-Fi
users).

• The optimization problem is formulated as amulti-
objective optimization problem, in which typically a set of
Pareto solutions can be achieved. We utilize the weighted
sum method to transform the multi-objective optimization
problem into asingle-objective optimization problemand
find the Pareto optimal solution.

• The single-objective optimization problem can be further
modelled as a one-to-many matching game with partial
information. Herepartial informationmeansincomplete
preference lists, which is due to the fact that some UBs
fail to fulfil a user’s minimal throughput requirement
and are not acceptable to that user. Such problem has
not yet been solved. We propose a semi-distributed
two-step stable algorithm to solve it. Numerical results
demonstrate that the proposed algorithm can achieve good
performance with fast convergence speed.

The rest of the paper is organized as follows. The system
model is described in Section III. The problem formulation
from a multi-objective optimization to a single-objectivefor-
mulation is developed in IV. To solve the optimization prob-
lem, a two-step matching-based resource allocation and user
association algorithm are proposed in Section V. In Section
VI, numerical results are presented and analysed. Section VII
concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a LTE-U network
coexisting with a Wi-Fi network in ISM bands (e.g. 2.4
and 5.8 GHz), composed ofM independently uniform-
ly distributed small-cell base stations (SCBSs),SCBS =
{SCBS1, ...SCBSm, ...SCBSM}, and N independently u-
niformly distributed Wi-Fi access points (APs),AP =
{AP1, ...APn, ...APN}. All the SCBSs are deployed by the
same cellular network operator.K cellular users (CUs),
CU = {CU1, ...CUk, ...CUK} and N ′ Wi-Fi users (WU),
WU = {WU1, ...WUn′ , ...WUN ′} are uniformly distributed
in the area of interest.

As shown in Fig. 2, the whole unlicensed spectrum is
divided into U orthogonal UBs. Then in the time domain,
each UB is divided into slots; the period of a slot isT . Each
slot consists of several sub-frames, the duration of a subframe
is t, which is smaller than the coherence time of the signal
channel. Thus, during the transmission period of a sub-frame,
the power attenuation caused by Rayleigh fading in each link
can be regarded as a fixed parameter. Moreover, each sub-
frame is considered strictly independent.

WUs communicate with Wi-Fi APs under a standard car-
rier sense multiple access protocol with collision avoidance
(CSMA/CA). CUs are served by SCBSs by using a licensed
band for both uplink and downlink transmission, while they
seek to aggregate unlicensed bands for a supplementary uplink
transmission.

A CU can access its local SCBS for uplink transmission
with one ofU UBs. We consider LTE-U using a duty cycle
scheme to manage the coexistence in the unlicensed spectrum
in the time domain. By using this duty cycle method, CUs
will use a almost blank subframe (ABS) pattern [10] to
guarantee Wi-Fi QoS by muting a fraction of time forUBu.
The fractionlu will be adaptively adjusted based on the Wi-
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Fig. 2. TDD sharing of unlicensed bands between Wi-Fi and LTE-U users

TABLE I
GENERAL NOTATION

SCBSm themth small cell base station

APn thenth access point

CUk the kth cellular user

UBu the uth unlicensed band

T slot time

t sub-frame time

lu the fraction of time LTE-U is muting onUBu

CC
k,m,u

the uplink capacityCUk associating withSCBSm

on unlicensed bandUBu

Ik,m,u

the number of sub-frames inUBU allocated toCUk

served bySCBSm

Ck,m,u,i the achievable data rate ofCUk served bySCBSm

χk,m,u equals 1 ifCUk is served bySCBSm usingUBu

PCU
k,m

transmission power fromCUk to SCBSm

gk,m,u

channel power gain betweenCUk andSCBSm

on UBu

Rk,m,u

the uplink throughput ofCUk served

by SCBSm on UBu

σ2

N the thermal noise

WUu Wi-Fi users onUBU

RW
u throughput requirement ofWUu

PECU
k energy efficiency ofCUk

RL
k

Throughput requirement ofCUk

Fi data requirement. Here, we consider the static synchronous
muting pattern.

The notations in this paper can be found in Table I.

A. LTE-U Throughput
During the transmission slot of LTE-U, we denote the uplink

capacityCC
k,m,u of k-th CUCUk associating withSCBSm on

unlicensed bandUBu. Thus, the uplink throughput onUBu

is given by:

R
CU
k,m,u =

Ik,m,u
∑

i=1

C
CU
k,m,u,i, (1)

whereIk,m,u is the number of sub-frames inUBU allocated
to CUk served bySCBSm. Ck,m,u,i is the achievable data
rate ofCUk served bySCBSm the u-th sub-frame ofUBu,
given as:

C
CU
k,m,u,i = tiBulog2(1 +

χk,m,uP
CU
k,mgk,m,u

σ2

N +
∑K

j 6=k

∑M

m ρj,m,uPCU
j,mgj,m,u

)

(2)
where,χk,m,u is an indicator function, defined as:

χk,m,u =

{

1, if CUk is served bySCBSm usingUBu,

0, otherwise.
(3)

PCU
k,m represents the transmission power fromCUk to

SCBSm. gk,m,u is the channel power gain betweenCUk and
SCBSm on UBu, and gj,m,u is the channel gain between
CUj andSCBSm on UBu. σ2

N is the thermal noise.

B. Wi-Fi Throughput

For each WUWUn′ , there is equal probability of accessing
one of the unlicensed bands. We regard the WUs sharing the
same UB as one WU, the interactions between co-channel
CUs and WUs can be simplified to the interactions between
co-channel CUs and a WU [17], [34]. The WU that occupies
UBu is denoted asWUu. Thus, the throughput ofThu can
be expressed by [35]:

Thu =
E(p)Pu

trP
u
s

(1− Pu
tr)δ + Pu

trP
u
s Ts + Pu

tr(1− Pu
s )Tc

, (4)

whereE(p) is the average packet size of Wi-Fi transmission,
Pu
tr is the probability thatUBu is occupied, andPu

s is the
successful transmission probability inUBu. δ is the slot time
defined in 802.11.Ts andTc are the average time consumed by
a successful transmission and a collision inUBu, respectively.

Based on the ABS scheme, the fraction of time slotslu of
UBu will be allocated to theWUu usingUBu. To guarantee
throughput requirementRW

u of WUu, lu is given as

ThuluT ≥ R
W
u . (5)

III. PROBLEM FORMULATION

We define the EE ofCUk, i.e., the throughput ofCUk

obtained per unit power consumption with the unit of ’bits−
perJoule’ [28] as follows:

PECU
k =

∑M

m

∑U

u χk,m,uRk,m,u∑M

m

∑U

u χk,m,uIk,m,uP
CU
k,m

(6)
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We formulate the following EE maximization problem for each
CU as a multi-objective optimization problem:

min(−PECU
1

, ...,−PECU
K ), (7)

s.t

K∑

k

U∑

u

χk,m,u ≤ 1, m ∈ {1, ...,M}, (7a)

M∑

m

U∑

u

χk,m,uIk,m,ut ≤ T lu, k ∈ {1, ...,K}, (7b)

χk,m,u ∈ {0, 1} , k ∈ {1, ...,K},m ∈ {1, ...,M},

u ∈ {1, ..., U}, (7c)

PCU
k,m ≤ Pmax, k ∈ {1, ...,K},m ∈ {1, ...,M}, (7d)

Thu(lu)T ≥ RW
u , u ∈ {1, ..., U}, (7e)

M∑

m

U∑

u

χk,m,uRk,m,u ≥ RL
k , k ∈ {1, ...,K}. (7f)

where, constraint (7a) indicates that a CU can be allocated
up to 1 UB at a time. (7b) is the limitation of the available
resource of each UB for LTE-U transmission. In (7c),χk,m,u

is a binary number, equal to 1 ifCUk served bySCBSm on
UBu, or 0 otherwise. The transmission power limit of each CU
is set in (7d). The throughput minimum requirement of each
Wi-Fi user and CU is shown in (7e) and (7f), respectively.

The general technique used to solve the multi-objective
optimization is a weighted-sum or scalarization method by
transforming a multi-objective function into a single-objective
function [36] as:

min(−

K∑

k=1

γkPECU
k ), (8)

s.t

K∑

k=1

γk = K, (8a)

K∑

k

U∑

u

χk,m,u ≤ 1, m ∈ {1, ...,M}, (8b)

M∑

m

U∑

u

χk,m,uIk,m,ut ≤ T lu, k ∈ {1, ...,K}, (8c)

χk,m,u ∈ {0, 1} , k ∈ {1, ...,K},m ∈ {1, ...,M},

u ∈ {1, ..., U}, (8d)

PCU
k,m ≤ Pmax, k ∈ {1, ...,K},m ∈ {1, ...,M}, (8e)

Thu(lu)T ≥ RW
u , u ∈ {1, ..., U}, (8f)

M∑

m

U∑

u

χk,m,uRk,m,u ≥ RL
k , k ∈ {1, ...,K}. (8g)

The effectiveness of the transformations is given inLemma

1 [36] as:

Lemma 1. The single-objective minimizer is an effective
solution for the original multi-objective problem. If theγk
weight vector is strictly greater than zero, then the single-
objective minimizer is a strict Pareto optimum.

where strict Pareto optimum is defined as follows:

Definition 1. Strict Pareto Optimum: A solution MatrixM
is said to be a strict Pareto optimum or a strict efficient
solution for the multi-objective problem (7) if and only if
there is nom ⊆ S such thatPECU

k (m) ≤ PECU
k (m′) for

all k ∈ 1, ...,K, with at least one strict inequality.S is the
constraints (7a-7f).

If all the CUs are of the same priority, i.e.,

γk = 1, k ∈ {1, ...,K}. (9)

The EE optimization is finally transformed into:

min(−

K∑

k=1

PECU
k ), (10)

s.t

K∑

k

U∑

u

χk,m,u ≤ 1, m ∈ {1, ...,M}, (10a)

M∑

m

U∑

u

χk,m,uIk,m,ut ≤ T lu, k ∈ {1, ...,K}, (10b)

χk,m,u ∈ {0, 1} , k ∈ {1, ...,K},m ∈ {1, ...,M},

u ∈ {1, ..., U}, (10c)

PCU
k,m ≤ Pmax, k ∈ {1, ...,K},m ∈ {1, ...,M}, (10d)

Thu(lu)T ≥ RW
u , u ∈ {1, ..., U}, (10e)

M∑

m

U∑

u

χk,m,uRk,m,u ≥ RL
k , k ∈ {1, ...,K}. (10f)

We denote the solution for optimization problem (10) as
Matrix M, which, according to Lemma. 1, is an strict Pareto
optimum for the multi-objective optimization problem (7).

In the expression ofPECU
k , which is nonlinear,Ik,m,u and

χk,m,u are integers, whileRk,m,u and PCU
k,m are continuous

variables. The objective function (10) is a summation of
PECU

k , k ∈ {1, ...,K}, thus, it is a mixed integer nonlinear
programming (MINLP) problem, which is typically NP-hard.
Thus, to reduce the computation complexities, we developed
a matching-based solution, which will be discussed in the
following section.

IV. M ATCHING WITH INCOMPLETEPREFERENCEL ISTS

A. Introduction to Matching Theory and Student-Project-
Allocation Problem

Student project allocation (SPA) is a one-to-many matching
game, where each student has a preference list of the projects
that they can choose from, while the lecturers have a prefer-
ence list of students for each project or a preference list of
student-project pairs. There is an upper bound, also known as
the quota, on the number of students that can be assigned to
each particular project [37].

Inspired by the SPA problem, we model the resource
allocation problem in (10) as an SPA game, where the CUs,
UBs and SCBSs are considered equivalent to students, projects
and lecturers, respectively. Similarly, SCBSs offer the set of
available UBs and maintain a preference list for each UB,
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and each CU has a preference list of UBs that they can use
for uplink transmission. SCBSs allocate UBs to CUs based on
the achievable EE on UBs. Meanwhile, our resource allocation
problem differs from the SPA game in the following aspects:

• Maximum throughput : The quota in the SPA problem is
replaced by the maximum achievable throughput of a UB.
The maximum achievable throughput of a UB determines
the maximum number of CUs that it can be allocated to
while meeting the minimum required Wi-Fi throughput
in the TDD mode.

• Incompleteness of preference lists: The SCBSs sense
the availabilities of and keep the CUs updated. Any UB
that is not able to fulfil a CU’s minimal throughput
requirement will be deleted from the preference list of
the CU and the CU will be removed from the preference
list of that UB. Only a subset of UBs (CUs) are in the
preference list of a CU (UB), i.e., the preference lists are
incomplete.

The kth CU preferring theuth UB over theu’th UB is
denoted bypri(CUk, UBu) > pri(CUk, UBu′). Similarly,
pri(UBu, CUk) > pri(UBu, CUk′) indicates that theuth UB
prefers thekth CU overk’th CU. The one-to-many matching
is defined as follows:

Definition 2. Letµ denote the one-to-many matching between
two disjoint setsCU and UB.
µ(CUk) = UBu indicates that the kth CU is matched to

the uth UB,
µ(UBu) = {CUk, ..., CUk′} indicates that the uth UB is

matched to{CUk, ..., CUk′},
µ(CUk) = CUk indicates that the kth CU is not really

matched to any UB.

The stability implies the robustness of the matching against
deviations caused by the individual rationality of players, i.e.,
the CUs in our resource allocation problem. In an unstable
matching, two CUs may swap their matched UBs to maximize
their own EE, leading to an undesirable and unstable resource
allocation. The definition of stability of the one-to-many
matching is given as follows:

Definition 3. Stability of One-to-Many Matching. The one-to-
many matchingµ between two disjoint setsCU and UB is
stable, only if it is not blocked by any blocking individual or
blocking pair, where the blocking individual and the blocking
pair are defined in the following.

Blocking individual in the EE optimization problem is
defined as:

Definition 4. Blocking Individual. A CU is a blocking individ-
ual if it prefers to stay unmatched rather than being matched
to any available UB.

The blocking pair in the EE optimization problem is defined
as:

Definition 5. Blocking Pair. A pair(CUk, UBu) is a blocking
pair if all the following 3 conditions are satisfied:

(1)µ(CUk)6=UBu andpri(CUk, UBu)>pri(CUk, µ(CUk));
(2)µ(UBu)6=CUk andpri(UBu, CUk)>pri(UBu, µ(UBu));

(3) There is enough spectrum inUBu to meet the minimum
throughput requirement ofCUk.

B. Preference Lists of CUs Over UBs

We assume that the preference ofCUk overUBu is based
on EEPECU

k,m,u achieved byCUk served bySCBSm using
UBu to guarantee its QoS threshold, which is written as
follows:

PECU
k,m,u =

∑M

m

∑U

u χk,m,uRk,m,u∑M

m

∑U

u χk,m,uP
CU
k,mIk,m,ut

(11)

CUk prefersUBu overUBu′ if CUk can achieve higher EE
usingUBu thanUBu′ , which is stated as follows:

pri(CUk, UBu) > pri(CUk, UBu′) ⇔ PECU
k,m,u > PECU

k,m,u′

(12)
None of the CUs have any knowledge about other co-channel
coexisting CUs, before the final band allocation is performed
at SCBSs. Thus, the preference lists are set up based on local
channel sensing information and unlicensed band availability
alone.

C. Preference Lists of SCBS Over (CUk, UBu) Pair

However the preference ofSCBSm over the user-band pair
(CUk, UBu) is based on the EE achieved by allocatingUBu

to CUk to fulfil the QoS threshold ofCUk. It is written as
SCBSm prefersCUk overCUk′ to occupyUBu if CUk can
achieve higher EE thanCUk′ by usingUBu, which is stated
as follows:

pri(UBu, CUk) > pri(UBu, CUk′) ⇔ PECU
k,m,u > PECU

k′,m,u

(13)

D. Two-Step Algorithm

1) Step 1: Modified GS Algorithm for One-to-Many Game:
To solve the above matching game, a 2-step algorithm is
proposed. The first step is an extension of the GS algorithm
applied for a one-to-many matching with incomplete pref-
erence lists. Each iteration begins with the unmatched CUs
proposing their favourite (i.e., the first UB) UB on their current
preference lists. The UBs which have been proposed to will
be removed from the CUs’ preference lists. For eachUBu,
SCBSs decide whether to accept or reject the CU’s proposal
UBu based on SCBSs’ preference lists over (CUk, UBu)
pairs. SCBSs choose to keep the most preferred CUs as long
as these CUs do not occupy more resources than the UB could
offer; the remaining CUs are rejected. Such a procedure runs
until every CU is either matched or its preference list is empty.
The implementation detail of Step 1 of the algorithm is stated
in A1 as follows:

Theorem 1. Stability ofµ1. In any instance of one-to-many
matching, stable matching is achieved by using A1.

Proof: We prove this theorem by contradiction and
assume that for an instance of one-to-many matching, A1
terminates with an instable matchingµ1, i.e., there exists at
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Algorithm A1 One-to-Many Matching

1: Input: CU , UB, PLCU , PLUB

2: Output: Matchingµ1

3: Step 1Proposing
4: All free CUk propose their favouriteUBu in their

preference lists, and removeUBu from the list.
5: Step 2Accepting/rejecting
6: UBu accept the most preferredn proposers based on

its preference list, the rest are rejected. The sum of the
slot time of the accepted proposers does not exceed its
available resource time.

7: None of the accepted proposers are free.
8: All the rejected proposers are free.
9: Criterion

10: If every CUs is either allocated with a UB or its
preference list is empty, this algorithm is terminated with
an outputM1.

11: Otherwise,Step 1andStep 2are performed again.

least one blocking pair (CUk, UBu) or one blocking individual
CUk.

If there exists one blocking pair (CUk, UBu) in µ1:

• Case 1: Inµ1, UBu is unmatched andCUk is matched
with UB′

u. If UBu is not on the preference list ofCUk,
then, CUk does not have an incentive to match with
UBu; If pri(CUk, UBu′) > pri(CUk, UBu), andCUk

is matched withUB′

u in µ, then CUk does not have
an incentive to match withUBu; If pri(CUk, UBu) >

pri(CUk, UBu′), then CUk proposes toUBu before
UBu′ . CUk is rejected during the proposal stage or is
accepted byUBu first, then is rejected. In conclusion,
in any situation in whichCUk is matched andUBu is
unmatched, a blocking pair does not exist.

• Case 2: Inµ1, UBu being unmatched andCUk un-
matched.UBu is unmatched means that it receives no
proposal from CU, includingCUk. This means thatUBu

is not on CU ′

ks preference list, thenCUk does not
have incentive to match withUBu. In conclusion, in any
situation in which bothCUk andUBu are unmatched,
blocking pair does not exist.

• Case 3: Inµ1, UBu being matched withCU ′

k andCUk

unmatched.CUk is unmatched means that either it has no
UBu in its preference list, or all its proposals have been
rejected. For the former,CUk does not have an incentive
to match withUBu. For the latter,UBu rejectsCUk

because it prefers other proposer(s). Thus,UBu does not
have an incentive to match withCUk. In conclusion, in
any situation in which bothCUk is unmatched andUBu

is matched, blocking pair does not exist.
• Case 4: Inµ1, UBu is matched withCU ′

k andCUk with
UB′

u. UBu must be onCU ′

ks preference list, and vice
versa, otherwise, there is no incentive to form the (CUk,
UBu) pair. If pri(CUk, UBu′) > pri(CUk, UBu), then,
CUk does not have an incentive to match withUBu

if it is matching with UBu′ . If pri(CUk, UBu) >

pri(CUk, UBu′), then,CUk proposes toUBu first and

is rejected, becauseUBu prefersCU ′

k to CUk, then
UBu does not have an incentive to match withCU ′

k.
In conclusion, in any situation in which bothCUk and
UBu are matched, a blocking pair does not exist.

Contradictions, as (CUk, UBu) is any pair, thus, it could be
said that there is no blocking pair in matchingµ1.

If one blocking individualCUk or UBu exists inµ1:
for blocking individualCUk:

• Case 1: Inµ1, CUk is matched withUBu, i.e., UBu

is onCUk ’s preference list, as suchCUk does not have
incentive be unmatched. In conclusion, in any situation
in which bothCUk andUBu are unmatched, blocking
individual CUk does not exist.

The proof that blocking individualUBu does not exist is
similar to that blocking individualCUk does not exist.

As the above blocking pair (CUk, UBu), blocking individu-
alsCUk or UBu can be any pair or individual, thus, we could
prove that there is no blocking pair or blocking individual in
matchingµ1.

Theorem 2. Praeto optimality ofµ1.
In any instance of one-to-many matching, stable matching

µ1 achieved by A1 is Praeto optimal, i.e., no player(s) can
better off, whilst no players are worse off.

Proof: In stable matchingµ1:

• Case 1: There exists an unmatchedCUk, which can
be matched toUBu to increase the achievable EE of
both CUk andUBu, meaning that (CUk, UBu) is the
blocking pair of matchingµ1, contractingTheorem 1.

• Case 2: There exists a (CUk, UBu) pair. Obviously,CUk

does not have an incentive to be unmatched;CUk has
the incentive to change partner fromUBu to UBu′ to
increase its achievable EE, meaning that (CUk, UBu′ )
is a blocking pair of matchingµ1, contractingTheorem
1.

It is impossible to increase the EE of some CUs’ without
decreasing that of the remaining of the CUs. The state stands
for UB, which can be proven similarly as above.

We define the computational complexity of A1 as the num-
ber of accepting/rejecting decisions required to output a stable
matchingµ1. The complexity of A1, i.e., the convergence of
A1 is given inTheorem 3.

Theorem 3. Complexity of A1 (Convergence of A1). In any
instance of many-to-one matching, a matchingµ1 can be
obtained by using A1 withinO(KU) iterations.

Proof: In each iteration, a CU proposes to its most
favourite UB in its current preference list, and SCBS accept-
s/rejects the proposal. The maximum number of elements in
the preference list ofCUk equals the number of UBs, i.e.,U .
Thus, stable matchingµ1 can be obtained inO(KU) overall
time, whereK is the number of CUs andU is the number of
UBs.

2) Step 2: EE Optimization:As proven above, stability and
Pareto optimality have been guaranteed by using algorithm A1,
meaning that there are no incentives for any CUs and UBs
to form new matching. However, the preference lists of CUs
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could to be incomplete, some CUs may be unmatched [38],
[39].

To further maximize system’s EE by increasing the number
of CUs matched by algorithm A2, an iteration of algorithm A2
begins with an unmatchedCUk proposing to its most favourite
UBu, andUBu would be deleted from the preference list of
CUk. An SCBS would consider this proposal acceptable if the
following criteria are fulfilled:

• After deleting several non-favourites or all CUs matched
with UBu in µ1 obtained via algorithm A1, the minimal
throughput ofCUk can be achieved by usingUBu

• All the deleted CUs could be served by other UBs to
fulfil their minimal throughput requirement.

• The EE of the new matchingµk is greater than that of
the previous matchingµ1.

Such matchingµk would be considered as a profitable reallo-
cation, and would be updated as the new matching, if only
one profitable reallocation exists. Should there be multiple
profitable reallocations, the one that enhances the overallEE
the most would be the new matching. The iterations would
run several times, until every CU is either allocated with a
UB or its preference list is empty. The detail of algorithm A2
is described as follows:

Algorithm A2 System EE Maximization

1: Input: CU , UB, PLCU , PLUB, µ1

2: Output: Matchingµ2

3: Step 1Proposing
4: Every freeCUk proposes to their favouriteUBu in their

preference lists, and removesUBu from the list.
5: Step 2Reallocation
6: Each CUk is accommodated inUBu by deleting its

non-favorite partners inµ2, to ensure that the occupying
slot time does not exceed the available slot time

7: All the deleted CUs can be accommodated by other
UBs. A matchingµk is formed.

8: EE increases from matchingµ1 to µk.
9: µk is stored if all the above three criteria are fulfilled.

Step 2 is performed until all free CUs have gone through
Step 2.

10: Step 3Accepting/rejecting
11: Theµk that increases the system’s EE most is updated;

CUk is set to be served. The restµk′ are rejected, and
CUk′ are rejected and set to be free.

12: Criterion
13: Each CUs is either allocated with a UB or its preference

list is empty, this algorithm is terminated with an output
µ2.

14: Otherwise,step 1, step 2 and step 3 are performed
again.

Theorem 4. Stability ofµ2. In any instance of one-to-many
matching, stability is achieved by using A2 inµ2.

Proof: We prove this theorem by contradiction and
assume that for an instance of one-to-many matching, A2
terminates with an instable matchingµ2, i.e., there exists at

least one blocking pair (CUk, UBu) or one blocking individual
CUk or UBu.

If there exists one blocking pair (CUk, UBu) in µ2:

• Case 1: Inµ2, UBu is unmatched andCUk is matched
with UB′

u. If UBu is not on the preference list ofCUk,
then, CUk does not have an incentive to match with
UBu; If pri(CUk, UBu′) > pri(CUk, UBu), andCUk

is matched withUB′

u in µ2, thenCUk does not have
an incentive to match withUBu; If pri(CUk, UBu) >

pri(CUk, UBu′), thenCUk proposesUBu beforeUBu′

in A1, or re-matches toUBu beforeUBu′ in A2. The
result is thatCUk matches toUBu′ , meaning thatCUk

is rejected at some stage in A1 or A2. In conclusion,
in any situation in whichCUk is matched andUBu is
unmatched, a blocking pair does not exist.

• Case 2: Inµ1, UBu being unmatched andCUk un-
matched.UBu is unmatched means that it receives no
proposal from CU, includingCUk in both A1 and A2. As
both A1 and A2 terminate when every CU is matched or
its preference list is empty.UBu being unmatched means
that either its preference list is empty or does not contain
UBu. ThenCUk does not have an incentive to match
with UBu. In conclusion, in any situation in which both
CUk andUBu are unmatched, a blocking pair does not
exist.

• Case 3: Inµ1, UBu being matched withCU ′

k andCUk

unmatched.CUk is unmatched means that either it has no
UBu in its preference list, or all its proposal have been
rejected in both A1, andCUk can not be matched to any
UBs in the reallocation stage inA2. For the former case,
CUk does not have an incentive to match withUBu.
For the latter case,UBu rejectsCUk because it prefers
other proposer(s), and there are not enough spectrum
resources inUBu to serveCUk. Thus,UBu does not
have incentive to match withCUk. In conclusion, in any
situation in which bothCUk is unmatched andUBu is
matched, a blocking pair does not exist.

• Case 4: Inµ1, UBu is matched withCU ′

k andCUk with
UB′

u. UBu must be onCU ′

ks preference list, and vice
versa, otherwise, there is no incentive to form the (CUk,
UBu) pair. If pri(CUk, UBu′) > pri(CUk, UBu), then,
CUk does not have an incentive to match withUBu

if it is matched with UBu′ . If pri(CUk, UBu) >

pri(CUk, UBu′), then,CUk proposes toUBu first and
is rejected, either becauseUBu prefersCU ′

k to CUk, or
(UBu, CU ′

k) is formed in the re-allocation stage. For the
former,UBu does not have an incentive to match with
CU ′

k. For the latter,UBu does not have sufficient spec-
trum resource to serveCUk, otherwise, the(CUk, UBu)
pair has been formed inµ2. In conclusion, in any situation
in which bothCUk andUBu are matched, a blocking
pair does not exist.

Contradictions, as (CUk, UBu) is any pair, thus, we could
say that there is no blocking pair in matchingµ1.

If there exists one blocking individualCUk or UBu in µ1:
for blocking individualCUk:

• Case 1: Inµ1, CUk is matched withUBu, i.e., UBu
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is onCUk’s preference list, thenCUk does not have an
incentive to be unmatched. In conclusion, in any situation
in which bothCUk is matched and blocking individual
CUk does not exist.

the proof that blocking individualUBu does not exist is
similar to that blocking individualCUk does not exist.

In the above proof, blocking pair (CUk, UBu), blocking
individual CUk or UBu can be any pair or individual, thus,
we could prove that there is no blocking pair or blocking
individual in matchingµ1.

Theorem 5. Praeto optimality ofµ2. In any instance of one-
to-many matching, Praeto optimality is achieved by using A2
in µ2.

Proof: In stable matchingµ1:
• Case 1: An unmatchedCUk exists, which can be matched

to UBu to increase the achievable EE of bothCUk and
UBu, meaning that (CUk, UBu) is the blocking pair of
matchingµ1, contractingTheorem 4.

• Case 2: An existing a (CUk exists,UBu) pair. Obviously,
CUk does not have an incentive to be unmatched;CUk

has the incentive to change partner fromUBu to UBu′

to increase its achievable EE, meaning that (UBu, UBu′ )
is a blocking pair of matchingµ1, contractingTheorem
4.

It is impossible to increase the EE of a CU without decreasing
that of the remaining CUs. The statement stands for UB, which
can be proven similarly as above.

Theorem 6. Complexity of A2 (Convergence of A2). In
any instance of many-to-one matching, a matchingµ2 can
be obtained by using A2 based on matchingµ1 within
O(mU(K − m)(U − 1)) iterations, wherem is the number
of unmatched CUs inµ1.

Proof: At every step in A2, each one ofm unmatched
proposes to favourite UB, such asUBu, in its current pref-
erence list. The maximum number of CUs being matched to
UBu in mu1 is (K−m). Then, the matched CUs ofUBu will
be deleted frommu1 and re-matched to the rest of UBs in their
preference lists. The maximum number of CUs that are deleted
is (K −m). For each deleted CU, the maximum number of
UBs in its preference list is(U−1). Thus the maximum num-
ber of accepting/rejecting decisions made is(K −m)(U − 1)
for each proposal of an unmatched CU. As therem unmatched
CUs, the total number of accepting/rejecting decisions made
is (K −m)(U − 1) ∗mU .

V. NUMERICAL RESULTS AND ANALYSIS

A. Simulation Setting

We perform a Monte Carlo simulation in a circle with a
radius of 100m, with CUs randomly and uniformly distributed
being served by a SCBS. The throughput requirements of Wi-
Fi users and CUs are both random values between the range
of [0, TRW ] and [0, TRC], respectively. We evaluate the
performance of the proposed algorithm in the network with the
number of CUs. We assume the total number of UB to be 9.
We set the slot timeT to be 10µs, and the sub-frame durationt

TABLE II
PARAMETERS FORLTE-U UPLINK EE OPTIMIZATION SIMULATION

Number of CUs 6, 9, 12, 15, 18 and 21

Network Radius 100 m

CU Traffic Level (TRC ) 10, 15, 20, 25, 30, 35 and 40 Mbps

WU Traffic Level (TRW ) 20 Mbps

Unlicensed Spectrum 5 GHz

UB Bandwidth 20 MHz

CU Transmission Power 20 mw

T 10 µ s

t 1 µ s

Packet Size 12800 bits

MAC header 272 bits

PHY header 128 bits

ACK 112 bits + PHY header

Wi-Fi & LAA Bit Rate 50 Mbit/s

CW initial 8

Slot Time 9 µs

SIFS 16 µs

DIFS 34 µs

to be 1µs, which is much smaller than the channel coherence
time. For each scenario with a certain network density and
traffic load level, simulation is run 10,000 times. CUs are
randomly located in the area of interest 100 times, and in
each time channel fading is performed 100 times. All other
parameters can be referred to in Table. II.
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Fig. 3. System Energy Efficiency for Scenarios with Different Number of
CUs

B. Numerical Results

1) EE and Fairness Between CUs:We first analyse the
system EE obtained by the proposed matching-based scheme
in scenarios with a different number of CUs and traffic load
level in Fig. 3. Our proposed algorithm outperforms the greedy
algorithm and random allocation under both low-density (6
CUs) and high-density networks (18 CUs) with a light traffic
load from 10 Mbps per CU and heavy traffic load at 40 Mbps
per CU. The system EE improves 30% and 50% obtained by
our proposed method as compared with that obtained by the
greedy algorithm, under the light and the heavy traffic load
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scenarios respectively. For the same number of CUs, with the
increasing of traffic load per CU, the system EE decreases
because more CUs remain unserved in the heavy traffic load
scenario, as shown in Fig. 4. This is because more resources
are occupied to serve a CU with a high traffic demand, leading
to a drop in the number of CUs that can served in the network,
i.e., more CUs fail to achieve their throughput requirement.
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On the contrary, with the same traffic load level, more
CUs tend to be served in the dense scenarios, leading to
an increase of system EE as shown in Fig. 5. In dense
scenario, more CUs have the chance to meet their throughput
requirement, due to many factors, such as the distance between
CU and SCBS and channel condition between CU and SCBS.
Although the number of CUs served increases with the number
of CUs in the network, except for the low traffic demand
scenario, the percentage of CUs that have their throughput
requirement fulfilled drops, as shown in Fig. 6. In a low traffic
demand scenario, where the spectrum resource is sufficient
to serve every CU with their required throughput demand,
almost 100% of CUs’ being served rate is achieved by the
proposed algorithm, compared with less than 90% achieved
by the greedy algorithm and the even lower served rate when
using a random algorithm. In medium and high traffic demand
scenario, the percentage of CUs served decreases with the
increase of CUs in the network by using any one of the three
algorithms. However, the proposed algorithm still outperforms

the greedy algorithm and random algorithm by around 35%
and 50% 120%, respectively. Thus, we could say that the
proposed algorithm works more effectively in CUs’ fairness
compared with the greedy algorithm or the random allocation
scheme.
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2) Throughput Analysis:Throughput is another perfor-
mance matrix for both the system and an individual CU. As
shown in Fig. 7, in the 6 CUs scenarios with low traffic de-
mand, three algorithms achieve similar results. This is because
the unlicensed spectrum resource is sufficient to serve every
CU with their relatively low traffic demands. In low traffic
demand, system throughput increases with the number of CUs
almost linearly as shown by using the proposed algorithm
and the greedy algorithm, because the spectrum resource is
still sufficient. The proposed algorithm outperforms the greedy
algorithm. However, there is another aspect in heavy traffic
load. In the network with 6 CUs, the proposed algorithm
achieves 66% more than the greedy algorithm, and more than
100% more than the random scheme. With the increase of
the number of CUs in the network, the overall throughput
achieved by using the proposed algorithm tends to saturate in
heavy traffic load scenarios. This is because the capacity is
limited by the available unlicensed spectrum resources.
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3) Computational Complexity:The theoretical upper bound
of the computation complexity of A1 and A2 have been given
in Theorem 3, and Theorem 6. Here we show the actual
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computation complexity of the proposed algorithm in typical
traffic load scenarios in Fig. 8.

There are positive correlations between the complexity and
network density at the same traffic load level. Specifically,
at the lowest traffic load (10 Mbps), complexity is slightly
more than the number of CUs in the network. This means
that almost all the CUs’ first proposal are accepted, due to the
low traffic demand of each CU. In a low traffic case, most
CUs are matched by usingA1; A2 is seldom performed. The
complexity increases with the traffic load level from 10 to 30
Mbps. This is because with the increase of traffic load level,
increasing CUs are unmatched inµ1 by usingA1; the number
of iterations thatA2 performs is increasing. The complexity
of an iteration inA2 (O((K − m)(U − 1))) is much larger
than that inA1 (O(U)), leading to an increase of complexity.
At an even higher traffic load level, the complexity begins to
drop. At this stage, the number of UBs in a CU’s preference
lists is much smaller than that in a medium traffic load level.
The complexity of obtaining matchingµ1 is much smaller.
Although the number of unmatched CUs rises in the scenario
with the same network density, elements in their preference
lists are much smaller, the complexity in an iteration drops
significantly, leading to the decrease of computational com-
plexity at a high traffic load level.

10 15 20 25 30 35 40
Traffic Load Level (Mbps)

0

20

40

60

80

100

120

C
om

pl
ex

ity
 (

N
um

be
r 

of
 It

ea
ra

tio
ns

)

6 CUs
9 CUs
15 CUs
18 CUs
21 CUs

Fig. 8. Computational Complexity in Different Scenario

VI. CONCLUSION

In this work, we have studied the uplink resource alloca-
tion problem in a LTE-U and Wi-Fi coexistence scenario to
maximize each CU’s EE. We formulated the problem as a
multi-objective optimization, and transformed it into a single-
objective optimization by using the weighted-sum method.
We proposed a semi-distributed 2-step matching with partial
information based algorithm to solve the problem. Compared
with the greedy algorithm based resource allocation scheme,
our proposed scheme achieves improvements of up to50%
in terms of EE and up to66% in terms of throughput.
Furthermore, we have analysed the computational complexity
of the proposed algorithm theoretically and by simulations,
thereby showing the complexity is reasonable for real-world
deployment.

In the future, work will be extended into the heterogeneous
LTE-U networks, where hyper-dense deployment of LTE-

U cells may exist. We will also consider a comprehensive
optimized resource allocation scheme for LTE-U taking into
account that CU can choose between licensed and unlicensed
bands. In such scenarios, a multi-side matching model should
be considered, which poses new challenges in achieving the
solutions.
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