This is a repository copy of *AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/133393/

Version: Accepted Version

Proceedings Paper:
Papadopoulos, Alessandro, Bini, Enrico, Baruah, Sanjoy et al. (1 more author) (2018)

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems

Alessandro Vittorio Papadopoulos
Mälardalen University
[Västerås, Sweden]
alessandro.papadopoulos@mdh.se

Enrico Bini
University of Turin
[Turin, Italy]
bini@di.unito.it

Sanjoy Baruah
Washington University
[St. Louis (MO), USA]
baruah@wustl.edu

Alan Burns
University of York
[York, UK]
alan.burns@york.ac.uk

Abstract
A system is said to be resilient if slight deviations from expected behavior during run-time does not lead to catastrophic degradation of performance: minor deviations should result in no more than minor performance degradation. In mixed-criticality systems, such degradation should additionally be criticality-cognizant. The applicability of control theory is explored for the design of resilient run-time scheduling algorithms for mixed-criticality systems. Recent results in control theory have shown how appropriately designed controllers can provide guaranteed service to hard-real-time servers; this prior work is extended to allow for such guarantees to be made concurrently to multiple criticality-cognizant servers. The applicability of this approach is explored via several experimental simulations in a dual-criticality setting. These experiments demonstrate that our control-based run-time schedulers can be synthesized in such a manner that bounded deviations from expected behavior result in the high-criticality server suffering no performance degradation and the lower-criticality one, bounded performance degradation.

2012 ACM Subject Classification Computing methodologies → Control methods, Computer systems organization → Real-time systems

Keywords and phrases mixed criticality, control theory, run-time resilience, bounded overloads

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.14

1 Introduction
There is an increasing trend in embedded systems towards implementing multiple functionalities upon a shared platform. It may be the case that all these functionalities are not
equally important to the overall correctness of the embedded system; one widely-studied model for representing timing requirements in such systems was proposed by Vestal in a seminal paper [33]. Vestal observed that “In many applications, the consequences of missing a deadline vary in severity from task to task. In RTCA DO 178B, for example, system safety analysis assigns to each task a criticality level (ranging from A to D), where erroneous behavior by a level A task might cause loss of aircraft but erroneous behavior by a level D task might at worst cause inconvenient or suboptimal behavior.” Vestal went on to conjecture that “the higher the degree of assurance required that actual task execution times will never exceed the WCET parameters used for analysis, the larger and more conservative the latter values become in practice.” (This conjecture appears reasonable. Very conservative WCET-estimation tools have been developed, typically based upon static analysis of code, that yield WCET bounds that may be very large, but that we can trust to a very high level of assurance. Less conservative WCET-estimation tools, which are typically measurement based, tend to obtain smaller estimates, but these estimates may be trust-worthy to lower levels of assurance since the worst-case behaviors of the system may not have become revealed during the measurements.) The “Vestal model” for representing, and validating the correctness of, mixed-criticality systems is based upon this conjecture. In this model,

A fixed number of distinct criticality levels are defined throughout the system. In this paper, we will assume that there are two such criticality levels, designated LO and HI, with the interpretation that functionalities designated as being of the LO criticality level need to have their correctness validated to a lower level of assurance than functionalities designated as being of the HI criticality level.

Each piece of code in the system is characterized as being of one of the criticality levels LO or HI, and by two WCET parameter estimates. One WCET estimate is determined using tools and techniques consistent with the lower criticality level LO, while the other estimate is determined using tools and techniques consistent with the higher criticality level HI.

Prior to run-time, the correct timing behavior (e.g., meeting deadlines) of all the functionalities are validated under the assumption that each piece of code will execute for a duration not exceeding its LO-criticality WCET estimate; in addition, the correct timing behavior of the HI-criticality functionalities (but not the LO-criticality ones) are validated under the assumption that each piece of code may execute for a duration up to its HI-criticality WCET estimate.

1.1 Verification versus resilience

The Vestal approach to modeling and analysis of mixed-criticality systems, as originally proposed [33], is concerned solely with verification — determining, prior to run-time, whether a system will behave correctly during run-time if its run-time behavior is compliant with the models used to represent it. Clearly, such pre-runtime verification is desirable in safety-critical systems. There is an additional aspect of correctness that is also desirable: the system’s run-time behavior should be resilient or robust in the event that run-time behavior does not

1. RTCA DO 178B is a guideline dealing with the safety of safety-critical software used in certain avionics systems. Although the term “criticality” typically has a precise technical meaning in most safety standards documents, its use in [33], and subsequent use in much of the mixed-criticality scheduling theory literature, appears to be in a rather general sense as a designation of the level of assurance against failure that is desired. In this paper we are using the term in this more general sense, in keeping with prior literature in mixed-criticality scheduling.
conform to the models that were assumed during verification; if this happens, a robust system design ensures that performance degrades gracefully, if at all. It is this run-time resilience aspect of system behavior that is the primary focus of this paper. (While the precise semantics of graceful degradation should be for a particular system may depend upon the characteristics of the system, some general principles are applicable; for example, less important aspects of system functionalities should be compromised before more important ones.)

The Vestal model of [33] and its derivatives and generalizations have formed the basis of a large body of research: schedulability tests, scheduling algorithms, etc. — see, e.g., [5, 6] for a survey. Much of this research is focused upon the pre-runtime verification aspect of correctness rather than the run-time resilience. For instance, many mixed-criticality scheduling algorithms allow for Lo-criticality pieces of code to be aborted if any piece of code executes beyond its Lo-criticality WCET estimate. Such a scheduling algorithm may still pass the pre-runtime verification test (since such tests are only concerned with the correctness of the Hi-criticality functionalities under such circumstances), but would not be considered resilient. Some recent research has attempted to provide some resilience to Lo-criticality pieces of code in the event of some piece of code executing beyond its Lo-criticality WCET estimate; these approaches are reviewed in Section 7.

1.2 This research

In this paper, we explore the use of control-theoretic principles to achieve resilience in mixed-criticality systems. We consider over-runs of Hi-criticality pieces of code (in the sense of them executing for more than their Lo-criticality WCET estimates) to be rare events that are best coped with by run-time adaptability. Some over-runs can be masked by under-runs by other Hi-criticality pieces of code; others will require system-wide adaptation. These adaptations should be commensurate with the scale of the over-run — dropping all Lo-criticality pieces of code because a single Hi-criticality piece of code has executed for slightly more than its Lo-criticality WCET is clearly an over-reaction. A resilient system should cope with uncertainty in a measured way.

Some recent advances in real-time control (see, e.g., [22] and the references therein) have motivated us to explore whether the desired resilience can be achieved using a control-theoretic approach. The scheduling strategy we propose has the Hi-criticality workload executing within an execution-time server that is provisioned with a budget sufficient to satisfy the Lo-criticality WCET requirements of this Hi-criticality workload; another, similar, server is used to encapsulate the execution requirements of the Lo-criticality workload. At run-time if the Hi-criticality server’s budget proves inadequate for meeting the execution requirements of the Hi-criticality workload (due to some Hi-criticality pieces of code executing for more than their Lo-criticality WCET estimates) then the system is deemed to have suffered a disturbance or perturbation. We employ a control feedback mechanism to govern budget allocations going forward from the disturbance. This control-theoretic feedback approach allows a number of questions to be answered concerning the run-time behavior of the scheduling strategy, such as

- How long following a disturbance will it take the system to return to a non-perturbed state?
- What guaranteed level of service can be obtained for the Lo-criticality workload?
- What is the maximum magnitude of disturbance that can be accommodated allowing for stable control and for the Hi-criticality workload to remain schedulable?
1.3 Organization

The remainder of this paper is organized as follows. Section 2 presents the background for this work, while Section 3 presents AdaptMC, the proposed approach, in detail. Section 4 discusses how AdaptMC is designed and tuned, while Section 5 presents how hard real-time guarantees can be provided, by means of the calculation of the supply bound function. Section 6 presents a numerical evaluation of AdaptMC. Section 7 reviews the related work, while Section 8 concludes the paper.

2 Background

The use of feedback control to allocate resources has traditionally been applied to time-varying workloads [28, 7, 1], and the kinds of offered guarantees have been probabilistic or soft real-time. Recently, however, a control scheme called the Self-Adaptive Server (SAS) has been proposed [22], that provides both good average behavior and hard real-time guarantees. Such a guarantee is given by computing the supply bound function [21, 18, 27, 2] of a periodic resource supply controlled by feedback [17].

The main idea behind SAS is as follows. Each server in the system is assigned a budget of time to execute. The server is allowed execute more or less than the budget, but at the next round it will be assigned a budget that is corrected with a term that is proportional to the over- or under-run of the server. In [22] this simple, yet effective, control structure is analyzed under the assumption that the maximum over- or under-run are bounded. The designed controller is proven to effectively adapt the budget at run-time, while the supply bound function associated with the controller can be computed offline.

3 The Proposed Approach

We are concerned with mixed-criticality systems in which the LO-criticality WCET values represent typical or common-case behavior: executions rarely exceed these WCET values and when they do, it is typically by small amounts. We seek to devise resilient scheduling strategies for such mixed-criticality systems. As briefly stated in Section 1, our proposed scheduling strategy uses two servers, one each for servicing the HI-criticality and LO-criticality workloads. In dimensioning these servers’ budgets, our objective will be to modestly over-allocate the HI-criticality server in the sense that “most of the time” we would expect the entire provisioned budget to not be needed. If an occasional modest over-run occurs in the amount of execution required by the HI-criticality server (say, by an amount x over the budgeted amount), our run-time scheduling strategy is to allow the HI-criticality server to over-execute by this entire amount x, and then reduce the budget for the LO-criticality server by an amount somewhat smaller than x. Informally speaking, the hope is that after dealing with this one-time over-run, the HI-criticality server will not need to use its entire budgeted amount for some duration, and hence can compensate the LO-criticality server over

2 For the kinds of application systems that we are interested in, work (in the form of “jobs”) is typically generated by recurrent – periodic and sporadic – tasks; determining appropriate budget and period parameters for servers capable of accommodating the computational requirements of such recurrent tasks is an important issue that has been widely studied in the real-time scheduling community [18, 27, 2]. However, the issue of dimensioning such servers is orthogonal to the focus of this paper and we will not discuss it further, instead assuming that some appropriate scheme is used to determine appropriate server parameters such that if all jobs execute at their LO-criticality WCET estimates, then each server is able to correctly execute those jobs for which it is responsible.
this duration. However, (as we will see) our control-based scheduling strategy is robust to
scenarios in which the Hi-criticality server over-runs for an extended duration as well; if this
happens, the Lo-criticality server ends up getting under-served over an extended duration.
In order to develop a control-based strategy capable of achieving these goals, we needed
to extend and adapt SAS (Self-Adaptive Server) \[22\] in several directions. The feedback
mechanism derived in this paper is an extension of SAS to the mixed-criticality context that
enables:
1. the adjustment of server budgets based on disturbances at both Hi-criticality and Lo-
criticality servers (achieved by cross gains of the controller), and
2. the exploitation of the asymmetric nature of disturbances that are permitted for the
Lo-criticality server (which may occasionally be under-served but never receives more
than its budgeted amount) to provide less conservative supply bound functions.
The presence of these two characteristics, needed in the mixed-criticality context, renders
the results in \[22\] inapplicable directly; hence the extensions reported here. Section 3.1
below describes the adaptive scheduling strategy we have developed; the control algorithm
underpinning this strategy is described in Section 3.2

3.1 Run-Time Scheduling Strategy
We propose a 2-levels hierarchical scheduler with two schedulers at the top level, one for
servicing Lo-criticality work and the other, for servicing Hi-criticality work (see Figure 1).
Let Q_H and Q_L denote the target budgets for the two servers, and $P = Q_H + Q_L$ the target
period. We will describe later the manner in which values are assigned to these target
budget parameters; intuitively speaking, we would assign them values such that under
normal circumstances (i.e., all jobs completing within their Lo-criticality WCET estimates)
a periodic schedule with period P in which the Hi-criticality server executing for a duration
Q_H is followed by the Lo-criticality server executing for a duration Q_L, would meet all timing
requirements for all the Hi-criticality and the Lo-criticality workload.

During run-time these two servers are repeatedly scheduled alternately. Let us refer to
the k’th time that both servers are scheduled as the k’th round. Let $Q_H(k)$ and $Q_L(k)$ denote
the tentative budgets that the control algorithm computes at the end of the k’th round, for
allocating to the two servers for the $(k+1)$’th round. Initially, we have $Q_H(0) = Q_H$ and
$Q_L(0) = Q_L$; i.e., for the first round the tentative budgets are set to be equal to the target
budgets.

Now suppose that during the $(k+1)$’th round for some k, the Hi-criticality server needs to
execute for a duration greater than this tentative budget $Q_H(k)$ in order to ensure the correct
execution of all Hi-criticality jobs (budget overrun). We allow it to do so, and let $S_H(k+1)$
denote the duration for which it executes — $S_H(k+1)$ is called the actual budget assigned
to the Hi-criticality server during the $(k+1)$’th round, and $\varepsilon_H(k) = (S_H(k+1) - Q_H(k))$ is
called the disturbance experienced by the Hi-criticality server, i.e., the discrepancy between
the target and actual budget. In response to such a disturbance, our control algorithm
modifies the tentative budgets $Q_{n}(k+1)$ and $Q_{l}(k+1)$ computed for both servers for the next round, to compensate for the budget overrun and preserve the bandwidth.

3.2 The Control Algorithm

As stated earlier, our control-based scheduler is designed under the assumption that jobs executing beyond their LO-criticality WCET estimates will be rare events. The target budget \bar{Q}_{n} for the HI-criticality server should be chosen to somewhat exceed the minimum needed in order to accommodate the LO-criticality WCET requirements for all the HI-criticality jobs; hence, if only one or a few jobs over-run their LO-criticality WCETs during a round, such over-runs are often masked by the excess budget and by under-runs of other HI-criticality jobs. It should only rarely be the case that such over-runs during any round get expressed as disturbances (i.e., as an $\varepsilon_{n}(k)$ value for some k); in the rare events when this does happen, our control algorithm requires that it be of magnitude that is bounded by an a priori known constant $\bar{\varepsilon}_{n}$: $|\varepsilon_{n}(k)| \leq \bar{\varepsilon}_{n}$.

In order to accommodate these disturbances in the HI-criticality servers, our control algorithm will occasionally under-schedule the LO-criticality server, providing it a supply $S_{l}(k+1)$ that is strictly less than the tentative budget $Q_{l}(k)$ that had been computed for it — when this happens, the LO-criticality server is said to experience a disturbance $\varepsilon_{l}(k) = (S_{l}(k+1) - Q_{l}(k))$. We assume that such a disturbance will also be of magnitude that is bounded by another a priori known constant $\bar{\varepsilon}_{l}$, i.e., maximum budget over-run of the LO-criticality server.

Analogously, our run-time scheduler also bounds the “negative” disturbance to the HI-criticality server: the amount by which the actual amount of execution supplied during a round is less than the tentative budget, to have a magnitude no greater than $\bar{\varepsilon}_{n}$. Summarizing the above discussion on disturbances, we obtain the following bounds on the magnitudes of the disturbances that could be experienced by both servers:

$$-\bar{\varepsilon}_{n} \leq \varepsilon_{n}(k) \leq \bar{\varepsilon}_{n}, \quad -\bar{\varepsilon}_{l} \leq \varepsilon_{l}(k) \leq 0. \quad (1)$$

As we had stated earlier, the actual budgets $S_{n}(k+1)$ and $S_{l}(k+1)$ assigned to the servers may be expressed as being equal to the computed tentative budgets $Q_{n}(k)$ and $Q_{l}(k)$, plus the disturbances $\varepsilon_{n}(k)$ and $\varepsilon_{l}(k)$.

$$S_{n}(k+1) = Q_{n}(k) + \varepsilon_{n}(k)$$
$$S_{l}(k+1) = Q_{l}(k) + \varepsilon_{l}(k)$$

The tentative budgets $Q_{n}(k+1)$ and $Q_{l}(k+1)$ that are computed by the control algorithm may similarly be expressed as the sum of tentative budgets computed for the previous round and a corrective term (called the “control signal”) denoted $u_{n}(k)$ and $u_{l}(k)$, that is computed by the control algorithm at the end of each round:

$$Q_{n}(k+1) = Q_{n}(k) + u_{n}(k)$$
$$Q_{l}(k+1) = Q_{l}(k) + u_{l}(k)$$

Letting

$$x(k) = \begin{bmatrix} S_{n}(k) \\ S_{l}(k) \\ Q_{n}(k) \\ Q_{l}(k) \end{bmatrix}, \quad u(k) = \begin{bmatrix} u_{n}(k) \\ u_{l}(k) \end{bmatrix}, \quad \varepsilon(k) = \begin{bmatrix} \varepsilon_{n}(k) \\ \varepsilon_{l}(k) \end{bmatrix},$$
one can express the control system dynamics — the change in values of the actual and tentative budgets across rounds that we have discussed above — in a more compact form, as follows:

$$x(k + 1) = A x(k) + B_u u(k) + B_e e(k). \quad (2)$$

We now discuss how the control signals are computed by the control algorithm (this computation is commonly referred to as the control strategy). In designing the controller, we assign values to four real-valued gain parameters $K_{HH}, K_{HL}, K_{LL},$ and $K_{LL}.$ The parameter design is discussed in Section 4 — and compute the control signals as follows:

$$u_u(k) = K_{HH}(\bar{Q}_H - S_u(k)) + K_{HL}/\gamma(\bar{Q}_L - S_u(k)),$$
$$u_e(k) = \gamma K_{LL}(\bar{Q}_H - S_u(k + 1)) + K_{LL}(\bar{Q}_L - S_u(k)). \quad (3)$$

The parameters $K_{HH}, K_{HL}, K_{LL},$ and K_{LL} weigh the discrepancy between the target and actual budgets; the values assigned to these parameters reflect the effect each discrepancy has on the control signal. (Observe that in computing the control signal $u_u(k)$ that will be applied to the LO-criticality server, we are able to exploit the fact that the value of $S_u(k + 1)$ is already known when the LO-criticality server is scheduled during the $(k + 1)$th round; we therefore choose to exploit this fact to compute a “better” values for $u_u(k).$)

By substituting the control strategy as represented by Eqn (3) into Eqn (2), rearranging terms, and letting γ denote the ratio of the target budgets, i.e., $\gamma = \bar{Q}_L/\bar{Q}_H,$ the closed-loop system dynamics may be represented as follows:

$$S_u(k + 1) = Q_u(k) + \varepsilon_u(k) \quad (4)$$
$$S_u(k + 1) = Q_u(k) + \varepsilon_u(k) \quad (5)$$
$$Q_u(k + 1) = Q_u(k) + K_{HH}(\bar{Q}_H - S_u(k)) + K_{HL}/\gamma(\bar{Q}_L - S_u(k)) \quad (6)$$
$$Q_u(k + 1) = Q_u(k) + K_{LL}(\bar{Q}_H - S_u(k)) + K_{LL}(\bar{Q}_L - S_u(k + 1)) \quad (7)$$

or, in a more compact way:

$$x(k + 1) = A_{CL} x(k) + B_Q \bar{Q} + B_{e,CL} e(k) \quad (8)$$

with

$$A_{CL} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -K_{HH} & -K_{HH} & 1 & 0 \\ 0 & -K_{LL} & -\gamma K_{LL} & 1 \end{bmatrix}, \quad B_Q = \begin{bmatrix} 0 \\ 0 \\ K_{HH} \\ K_{HH} \gamma K_{LL} \\ K_{LL} \end{bmatrix},$$
$$\bar{Q} = \begin{bmatrix} \bar{Q}_H \\ \bar{Q}_L \end{bmatrix}, \quad B_{e,CL} = \begin{bmatrix} 1 \\ 0 \\ \gamma K_{LL} \end{bmatrix}.$$

The eigenvalues of A_{CL} determine the convergence time towards the value \bar{x} for the system state. These can be obtained from the characteristic polynomial of $A_{CL}:$

$$p(z) = z^4 - 2z^3 + (K_{HH} + K_{LL} + 1)z^2 - (K_{HH} + K_{LL} + K_{HH}K_{LL})z + K_{HH}K_{LL}. \quad (9)$$
Since the considered system is linear, we can use the superposition principle\(^3\), and consider separately the effect of \(\bar{Q} \) and \(\varepsilon\) on the evolution of \(x\). The \(z\)-transform of (8) is:

\[
X(z) = (zI - A_{CL})^{-1} (x(0) + B_{Q}\bar{Q} + B_{\varepsilon,CL}E(z))
\]

(10)

Evaluating the transfer function from the error \(\varepsilon\) to the state \(x\) for \(z = 1\) computes, in control theoretical terms, the asymptotic effect of the unitary constant disturbance \(\varepsilon\) on the state \(x\); in the considered case, evaluating \((zI - A_{CL})^{-1}B_{\varepsilon,CL}\) for \(z = 1\) yields:

\[
(I - A_{CL})^{-1}B_{\varepsilon,CL} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}
\]

that proves that the effect of \(\varepsilon\) on \(S\) (the first two rows) vanishes asymptotically to zero independently of the values assigned to the gain parameters. The effect of a unitary constant disturbance on the budgets \(Q\), on the other hand, is to compensate \(\varepsilon\) by reducing the budget of exactly a unity so that value of \(S\) will compensate perfectly the disturbance \(\varepsilon\).

4 Designing the Control Algorithm

In Section 3 we described how the control logic can be used to adjust the resource budgets allocated to \(H\) and \(L\)-criticality servers. In this section, we are going to explore the assignment of values to the control gain parameters \(K_{HH}, K_{HL}, K_{LH}, \) and \(K_{LL}\) such that the resulting budget dynamics are guaranteed to possess the desirable control-theoretic properties of compensation and stability.

Definition 1 (Compensation property). A single disturbance \(\varepsilon(k)\) on the \(H/L\)-criticality server results in an opposite or null effect on the value of \(S(k+1)\) (i.e., the actual budget) of the \(L/H\)-criticality server, i.e.,

\[\exists n > 0 : \varepsilon_i(k) = -\alpha(k+n)u_j(k+n), \quad \alpha(k+n) \geq 0, i, j \in \{H, L\}, \text{ and } i \neq j. \]

The intuition of the compensation property is that whenever the \(H\)-criticality server exceeds its budget \((S_H(k+1) > Q_H(k))\), the \(L\)-criticality server compensates for this disturbance by temporarily reducing its budget. On the other hand, when the \(L\)-criticality server requires less time for its execution \((S_L(k+1) < Q_L(k))\), then the \(H\)-criticality server will be allowed to temporarily increase its budget. Finally, when the \(H\)-criticality server executes for less time \((S_H(k+1) < Q_H(k))\), then the \(L\)-criticality server can temporally increase its budget.

The overall objective is to both preserve the bandwidth of the two servers, and to reach the target period \(\bar{P} = \bar{Q}_H + \bar{Q}_L\).

Theorem 2. If

\[
K_{HH} > 0, \quad K_{HL} \geq 0, \quad K_{LH} \geq 0, \quad K_{LL} > 0
\]

(11)

then the system (8) exhibits the compensation property.

\(^3\) The superposition principle for linear systems states that the net response caused by multiple stimuli upon such a system is equal to the sum of the responses that would have been caused by each individual stimulus.
Proof. First, let us consider the case when $K_{ij} > 0$, $K_{iH} = K_{LH} = 0$, $i \in \{H, L\}$ makes the High- and Low-criticality systems completely decoupled. It is trivial to show that the compensation property holds, since ε_{h} has no effect on the Low-criticality server, and ε_{l} has no effect on the High-criticality server.

Therefore, we focus on the case $K_{ij} > 0$, $i, j \in \{H, L\}$. Since we are dealing with a linear system, we can consider the effect of the disturbances separately, and then use the superposition principle. Without loss of generality, let us consider a positive disturbance $\varepsilon_{H} > 0$, and an initial condition $S_{i}(0) = Q_{i}(0) = \bar{Q}_{i}$, $i \in \{H, L\}$. First, consider the case when $K_{ij} > 0$, $i, j \in \{H, L\}$. ε_{H} has the effect of increasing the value of S_{H}, according to (4), without affecting immediately the value of S_{L}, according to (5). If $K_{ij} > 0$, $i, j \in \{H, L\}$, an increasing value of S_{H} will make decrease both the tentative budgets, as per (6), and (7). Therefore, in the next step, the tentative budget allocated to the two servers is decreased, with the effect that S_{H} is above the desired budget \bar{Q}_{H}, while S_{L} is below the desired budget \bar{Q}_{L}.

Analogous considerations can be done for the respective negative case. This concludes the proof. \(\blacksquare\)

Notice that the compensation property of the control scheme of (8) relates to the transient behavior caused by the occurrence of a disturbance — it does not guarantee that the effect of a disturbance will eventually vanish. Hence a second essential property of the control scheme of (8) is stability. If stability is not guaranteed, then it is not possible to preserve the bandwidth, and not even to preserve the target period \bar{P}. We want the effect of transient perturbations to be transient, and desire that the actual server budgets tend towards the specified target budget values. Theorem 2 guarantees some properties on the initial transient, but it does not guarantee the convergence of the system behavior towards the desired budget; guaranteeing such convergence is equivalent, in control theory terminology, to requiring stability of the controlled system.

Stability of discrete-time systems, such as the one specified by Expression (8), is guaranteed if and only if the roots of the characteristic polynomial $p(z)$ of (9) are within the unit circle over the complex plane \mathbb{C}. That is

$$p(z) = 0 \Rightarrow |z| < 1.$$

Such a condition on the polynomial $p(z)$ can be translated into a condition over the coefficients of the polynomial and, in turn, into a condition over the control gains K_{ii}, K_{IL}, K_{LI}, and K_{LL}. Jury’s stability criterion (see, for example, [23, Sec 3.15.2]) offers a necessary and sufficient condition for the stability of a discrete-time system in the form of a set of inequalities which are functions of the coefficients of the characteristic polynomial. By applying Jury’s criterion to the polynomial $p(z)$ of (9), one can obtain four analytic conditions on the values of the parameters K_{ii}, $i, j \in \{H, L\}$ that guarantee stability. We do not present these conditions here since they are quite lengthy and complex, but point out that they can be computed through a symbolic manipulation tool\(^4\) from the expression of $p(z)$.

The intersection of the inequalities (11) with the stability conditions that are obtained with the Jury criterion describes the region of the feasible controller gains that guarantee both the compensation property and the stability of the controller. Figure 2 shows the contour plot of the stability regions for the parameters K_{ii}, K_{IL}, for different values of $K_{i} = K_{iI}K_{IL}$.

\(^{4}\) We used the Matlab function available at https://se.mathworks.com/matlabcentral/fileexchange/13904-jury in combination with the Matlab symbolic toolbox.
AdaptMC: Control Theory for Mixed-Criticality Systems

(identified in the figure with different colors). Notice that the region is symmetric with respect to the plane \(K_{HH} = K_{LL} \), and that for increasing \(K_i \) the stability region shrinks. Moreover, for \(K_i = 0 \), the stability region is \(0 < K_{HH} < 1 \), and \(0 < K_{LL} < 1 \).

Figure 2 Region of feasible control gains. The illustrated regions correspond to the values of \(K_i \in \{0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.35\} \), respectively from the larger region to the smaller one. Black dots represent the gains of the controllers selected for the examples illustrated in Section 6.

5 Bounding the Resource Supply

Feedback control for real-time resource allocation was initially used for tracking time-varying workloads [28, 7, 1]. Because of the unpredictable nature of variations, the type of offered guarantees are probabilistic or soft real-time. Recently, however, it was shown that a control scheme can provide both a good average behavior and hard-real-time guarantees [22]. Such a guarantee was given by computing the “supply bound function” of a periodic resource supply controlled by a feedback loop such as the one described by Expression (8).

Bounds to supply functions are a commonly used abstraction for modeling the minimum amount of a computing resource that is available over time [21, 18, 27, 2]. They have demonstrated their applicability to realistic use cases (e.g., avionics [12]) and there exist measurement-based tools to determine them from actual system execution traces [20]. Let us briefly recall the main concepts. Let \(s(t) \) be the indicator function of the availability of a resource:

\[
 s(t) = \begin{cases}
 1 & \text{the resource is available at time } t \\
 0 & \text{the resource is not available at time } t,
 \end{cases}
\]

(12)

Then the supply bound function \(\text{sbf}(t) \) is such that it is

\[
 \forall t_0, t, \quad \text{sbf}(t) \leq \int_{t_0}^{t_0+t} s(\tau) \, d\tau.
\]

(13)

Clearly, from (13), the bound \(\text{sbf}(t) \) may not be unique. The aim of much of the research in this area is to find valid bounds \(\text{sbf}(t) \) fulfilling (13), which are as high as possible.
In [22], the resource availability schedule is modeled as a sequence of active intervals of duration $S(k)$ in which the resource is provided, alternating with intervals of idle time of duration $Z(k)$. An example of such a schedule and the corresponding representation by means of the sequences $S(k)$ and $Z(k)$ is illustrated in Figure 3. Such a model offers some advantages over the traditional model by the indicator function of a schedule (as in Eq. 12). In fact, it was proved (Lemma 1 in [22]) that the supply function lower bound $sbf(t)$ can be written as a function of the sequences of active and idle intervals. Specifically, it was shown that if the resource offered by a schedule is modeled by a sequence of supply intervals of length $\{S(k)\}_{k=1,2,...}$ interleaved by a sequence of idle intervals of length $\{Z(k)\}_{k=1,2,...}$, then the following constitutes a valid supply bound function for this resource availability:

$$sbft = \min \{t - \sigma_{z}(n), \sigma_{s}(n)\}, \ t \in \mathbb{I}_{n}, n \in \mathbb{N}$$ \hspace{1cm} (14)$$

with the sequence of intervals $\{\mathbb{I}_{n}\}_{n \in \mathbb{N}}$ defined as

$$\mathbb{I}_{n} = \begin{cases} [0, \sigma(s(1))] & \text{if } n = 0 \\ [\sigma(s(n)) + \sigma(s(n - 1)), \sigma(s(n + 1)) + \sigma(s(n))] & \text{if } n \geq 1 \end{cases}$$ \hspace{1cm} (15)$$

and with

$$\sigma_{s}(n) = \inf_{n_{0}} \sum_{k=n_{0}}^{n} S(k), \ \sigma_{z}(n) = \sup_{n_{0}} \sum_{k=n_{0}}^{n} Z(k),$$ \hspace{1cm} (16)$$

properly extended at $n = 0$ with $\sigma_{s}(0) = \sigma_{z}(0) = 0$. The worst-case nature of the bound is condensed in $\sigma_{s}(n)$ that is the smallest sum of the lengths of n consecutive active intervals (respectively, $\sigma_{z}(n)$ is the largest sum of the length of n consecutive idle intervals). Figure 4 illustrates an example of supply function $sbft$. In the figure, we also draw on top the extent of the intervals \mathbb{I}_{n}.

Figure 3 Active intervals interleaved with idle intervals.

Figure 4 An example of supply bound function $sbft$ for a resource supply described by sequences $S(k)$ and $Z(k)$ of active and idle intervals.
5.1 Characterizing the Server Supply Functions

One criticism of many mixed-criticality scheduling algorithms that have been proposed is that the LO-criticality workload is severely penalized (e.g., dropped entirely) in the event of the mixed-criticality system behavior exceeding its LO-criticality specifications. As stated earlier, this violates the principle of resilience or robustness, which requires that slight deviations from LO-criticality specifications should result in slight degradation of performance (in mixed-criticality settings, to only the LO-criticality workload). In this section, we discuss how an appropriate assignment of values to the gains of the controller \(K_{\text{HL}}, K_{\text{LL}}, K_{\text{LH}} \), and \(K_{\text{LL}} \) enables such resilience by guaranteeing some resource supply to the LO-criticality server.

Our overall approach is inspired by, and based upon, the analysis proposed by Papadopoulos et al. [22]. However, there are several differences in the server requirements/assumptions between our model and the model in [22], that renders the main result (Theorem 1 of [22, page 231]) inapplicable for our purposes.

First, while disturbances were assumed in [22] to have symmetric bounds, in this paper the LO-criticality server may only experience a negative disturbance, as in (1); equivalently, the LO-criticality server is never allowed to execute beyond the tentative budget that is computed for it by the control strategy.

Second, in our mixed-criticality run-time algorithm, the servers assigning the computing resource are coupled by cross gains \(K_{\text{HL}} \) and \(K_{\text{LH}} \): letting \(i, j \in \{\text{H, L}\} \), it is possible to correct the server budget \(S_i(k+1) \) based on any disturbance \(\varepsilon_j(k) \). This enables a more prompt compensation.

The following theorem characterizes the relationship between the run-time behavior of the two servers, and enables us to determine the supply function of both the HI-criticality and LO-criticality servers. In the theorem we use the notation \(h_{ij}(k), g_{ij}(k), \) and \(r_{ij}(k) \) to denote the impulse, step, and ramp responses, respectively, of the system with input \(\varepsilon_j(k) \) and output \(S_i(k) \), with \(i, j \in \{\text{H, L}\} \) (see Appendix A for the definitions of the considered input signals).

\[\textbf{Theorem 3.} \] Consider a pair of HI-criticality and LO-criticality servers, whose budgets \(S_{\text{H}}(k) \) and \(S_{\text{L}}(k) \) are subject to disturbances \(\varepsilon_{\text{H}}(k) \) and \(\varepsilon_{\text{L}}(k) \) respectively, with closed-loop system dynamics as specified by Equation (8). If the disturbances are bounded as specified by (1), then the supply function \(\text{sbf}_{\text{H}}(t) \) of the HI-criticality server is as specified in Equation (14) with

\[
\sigma_{\text{H}}(n) = n\hat{Q}_{\text{H}} - \varepsilon_{\text{H}}N_{\text{HH}}(n) - \frac{\varepsilon_{\text{L}}}{2}(I_{\text{HL}}(n) + N_{\text{HL}}(n)),
\]

\[
\sigma_{\text{L}}(n) = n\hat{Q}_{\text{L}} + \varepsilon_{\text{L}}N_{\text{LL}}(n) + \frac{\varepsilon_{\text{L}}}{2}(I_{\text{LL}}(n) + N_{\text{LL}}(n)),
\]

and the supply function \(\text{sbf}_{\text{L}}(t) \) of the LO-criticality server is as specified in Equation (14) with

\[
\sigma_{\text{H}}(n) = n\hat{Q}_{\text{L}} - \varepsilon_{\text{L}}N_{\text{HH}}(n) - \frac{\varepsilon_{\text{L}}}{2}(I_{\text{LL}}(n) + N_{\text{LL}}(n)),
\]

\[
\sigma_{\text{L}}(n) = n\hat{Q}_{\text{H}} + \varepsilon_{\text{H}}N_{\text{LL}}(n) + \frac{\varepsilon_{\text{H}}}{2}(I_{\text{HL}}(n) + N_{\text{HL}}(n)).
\]
The coefficients $N_{ij}(n)$, $I_{il}(n)$, and $J_{il}(n)$ used in the equations above are set as

$$N_{ij}(n) = \sum_{k=0}^{\infty} \left| g_{ij}(k) - g_{ij}(k-n) \right|$$

$$I_{il}(n) = \sup_k \left\{ r_{il}(k) - r_{il}(k-n) \right\}$$

$$J_{il}(n) = \sup_k \left\{ r_{il}(k-n) - r_{il}(k) \right\}$$

with $i, j \in \{H, L\}$ corresponding to the LO-criticality and HI-criticality servers, respectively.

Proof. In the appendix (Appendix A).

Theorem 3 enables us to determine the supply function of both the HI-criticality and LO-criticality servers. In the next section, several design choices for the control gain parameters are illustrated and discussed; it is shown how different desired behaviors can be achieved by an appropriate choice of gain parameters.

6 Evaluation via Simulation

By characterizing the run-time dynamics of both the HI-criticality and the LO-criticality server, Equation (8) and Theorem 3 allow us to estimate the system response to different kinds of transient deviations from the expected “common-case” behavior, as characterized by the LO-criticality WCET estimates. We now explore, via some simulation experiments, (i) the manner in which the choice of gain parameter values influences the precise nature of resilience exhibited by the run-time scheduler, and (ii) how our proposed scheme compares with a simpler alternative strategy that is not based on the application of control-theoretic principles.

6.1 The Influence of Parameter Values

A closed-form solution of the dynamics of the system (8) may be obtained with the Lagrange formula for the solution of a set of linear difference equations (see, e.g., [23, Section 12.3.5, Eq. (12.3-34a)] for a text-book discussion). We consider the following set of parameters that are expressed as $\mathcal{K} = \{K_{\text{HL}}, K_{\text{HI}}, K_{\text{LL}}, K_{\text{HH}}\}$:

$$\mathcal{K}_1 = \{0.4, 0.1, 0.1, 0.35\}, \quad \mathcal{K}_2 = \{0.15, 0.1, 0.1, 0.15\}, \quad \mathcal{K}_3 = \{0.25, 0.1, 0.1, 0.25\}, \quad \mathcal{K}_4 = \{0.5, 0.1, 0.1, 0.5\}, \quad \mathcal{K}_5 = \{0.75, 0.1, 0.1, 0.75\}$$

Notice that all the selected sets of parameters satisfy the stability conditions, and the compensation property conditions, and therefore lie in the region as depicted in Figure 2.

We considered the case of the following target budgets: $\bar{Q}_u = 10$, $\bar{Q}_L = 8$, i.e., $\gamma = 0.8$, and $\varepsilon_H = 1$, $\varepsilon_L = 1$. The resulting supply functions are presented in Figure 5. One can see that the supply function associated with \mathcal{K}_1 is higher than the others.

If keeping with common practice in control theory, we also analyzed the controller response to a constant disturbance. Figure 6 shows the effect of the disturbance while varying the values of \mathcal{K}_1, $i, j \in \{H, L\}$. From Figure 6 we conclude that the best value for the parameters is \mathcal{K}_1, since it provides a faster convergence to the target budget, and with negligible oscillations.
Figure 5: Supply functions for the considered set of control parameters.

Figure 6: Effect of constant disturbances with various selection of K_{ij}, $i, j \in \{H, L\}$.
We now compare the presented approach with a Period-Preserving Approach (PPA), described next. Based upon the findings described in Section 6.1 above, in these experiments we have selected the parameter values K_1 for AdaptMC.

In the PPA the hi-criticality and lo-criticality servers execute in sequence and periodically, with a fixed period P (equal to the target period for AdaptMC). Within each period, the hi-criticality server executes as much as it needs, allowing for any overrun, and the remaining budget of the period is allocated to the lo-criticality server. Formally, with the introduced notation:

$$S_{hi}(k+1) = Q_{hi}(k) + \varepsilon_{hi}(k)$$

$$S_{lo}(k) = P - S_{hi}(k+1)$$

where P now is a fixed value. PPA represents the simplest and most intuitive way to compensate for non-ideal executions of the hi-criticality server.

In order to present the main differences between AdaptMC and PPA, we consider a scenario in which three types of disturbances occur in the system: impulse, constant, and linearly increasing. (In a well-designed mixed-criticality system, the most common form of deviation from expected behavior should be of the kind best modeled as an impulse disturbance – an overload that lasts for just one round and occurs rarely enough that the effect of one such overload will have completely dissipated by the time the next one occurs.)

The system is initialized as $S_{hi}(0) = Q_{hi}(0) = Q_{lo} = 10$, and $S_{lo}(0) = Q_{lo}(0) = Q_{hi} = 8$, $P = 18$ and no disturbance ε is present. An impulse overrun occurs at round 10, a constant overrun occurs between rounds 30 and 50, and a linearly increasing disturbance begins at round 65, and increases until it becomes of magnitude $\bar{\varepsilon}_{hi}$. Figure 7 summarizes the obtained numerical results. The graphs in the first row show the time evolution of the hi-criticality server overruns: this is the disturbance, and is the same for the AdaptMC and PPA.
graphs in the second row compares the actual time executed by the two servers with the
two methods. AdaptMC reacts to the disturbances by trying to preserve the target budgets,
and making minor adjustments to the tentative budgets. PPA, on the other hand, favors
the overruns of the HI-criticality server, while the execution of the LO-criticality server is
severely affected. Finally, the last row of Figure 7 shows the ratio between the bandwidth
allocated for the LO-criticality server, i.e., S_L/P, and the actual bandwidth allocated for the
HI-criticality server, i.e., S_H/P. We call this, the bandwidth ratio, and it is defined as: S_L/S_H.
The target bandwidth is $\bar{Q}_L/P = 8/18$, and $\bar{Q}_H/P = 10/18$, i.e., the target bandwidth ratio
is $\bar{Q}_L/\bar{Q}_H = 8/10$. The average bandwidth ratio allocated with AdaptMC is much closer
to the target bandwidth ratio than with PPA, and even the maximum deviation from the
target bandwidth is minimized by AdaptMC thanks to the feedback scheme.

7 Related Work

The key property of the control-theoretic approach to budget control described in this paper
is the dynamic manner in which it modifies budgets to deal with different sizes and types of
task overruns; this stands in sharp contrast to the approach adopted in most other scheduling
schemes for mixed-criticality systems. In these schemes during run-time the system is defined
to be in one of two modes of behaviors. In the LO-criticality or “normal” mode all tasks
are executing within their LO-criticality WCET estimates and all deadlines (of both HI- and
LO-criticality tasks) are being met. As soon as any HI-criticality task executes for more
than its LO-criticality WCET estimate then there is a system-wide mode change to the
HI-criticality mode. In this new mode the behavior of the system is quite different. The
change to the HI-criticality mode occurs even if a single HI-criticality task executes for a
miniscule amount more than its LO-criticality WCET estimate or, at the other extreme, if
all HI-criticality tasks execute at their HI-criticality WCET estimate. The system responds
in the same way: there is no attempt to define behaviors that are commensurate with the
magnitude of the overrun (the disturbance or perturbation as defined in this paper).

Following a criticality mode change there are a number of approaches that have been
developed to define the degraded behavior of the system in the HI-criticality mode. The most
extreme is to just implement the assumptions made during the verification of the system.
Here, in the HI-criticality mode, only the HI-criticality tasks are guaranteed; hence all the
LO-criticality tasks can be abandoned (aborted). This is clearly an unacceptable approach as
no attempt is made to survive the overrun; there is no resilience in the run-time behavior of
the system. Forms of resilience that have been developed include:

1. Reduce priorities of the LO-criticality tasks [3], or similar with EDF scheduling [13].
2. Increase the periods and deadlines of LO-criticality jobs [32, 31, 15, 30, 29, 25], called
task stretching, the elastic task model or multi-rate.
3. Impose only a weakly-hard constraint on the LO-criticality jobs [9].
4. Decrease the computation times of some or all of the LO-criticality tasks [4], perhaps by
utilizing an imprecise mixed-criticality (IMC) model [19, 24] or budget control [10].
5. Abandon LO-criticality work in a disciplined sequence [8, 14, 11, 26, 16].

A flexible scheme utilizing hierarchical scheduling is proposed by Gu et al. [10]. They
differentiate between minor violations of LO-criticality execution time which can be dealt
with within a component (an internal mode change) and more extensive violations that
requires a system-wide external mode change.

By removing entirely the notion of a mode change (and hence a single perhaps quite
severe change in system behavior), the approach proposed in this paper results in more
gradual and measured responses to rare temporal glitches, such responses being automatically
delivered by the developed feedback scheme.

8 Conclusions and Future Work

In this paper we have shown how a control-theoretic approach based upon servers can be
used to manage the budgets allocated to dual-criticality workloads. The control strategy
developed automatically responds to minor perturbations in the needs of the hi-criticality
server with minimum and bounded degradation in the service provided to the lo-criticality
server. The controller is defined by four “gain” parameters whose values must be constrained
in order to ensure stable and appropriate (compensated) control; nevertheless there remains
considerable freedom for the designer to tune the behavior of the controller. This has been
demonstrated by some simple examples.

This initial study has been limited to just two criticality levels and two servers (one
per level). Future work will first look to increase the number of levels supported, and to
investigate if there is any benefit to be gained from having more than one hi-criticality server
(and more than one lo-criticality server).

References

1 Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole. Analysis of a
2 Luis Almeida and Paulo Pedreiras. Scheduling within temporal partitions: response-time
analysis and server design. In Proceedings of the 4th ACM International Conference on
3 Sanjoy K. Baruah and Alan Burns. Implementing mixed criticality systems in Ada. In A.
Romanovsky, editor, Proc. of Reliable Software Technologies - Ada-Europe 2011, pages
4 Alan Burns and Sanjoy K. Baruah. Towards a more practical model for mixed criticality
systems. In Proc. 1st Workshop on Mixed Criticality Systems (WMC), RTSS, pages 1–6,
2013.
5 Alan Burns and Robert I. Davis. A survey of research into mixed criticality systems. ACM
7 Anton Cervin and Johan Eker. Feedback scheduling of control tasks. In Proceedings of
the 39th IEEE Conference on Decision and Control, pages 4871–4876, 2000. doi:10.1109/
8 Tom Fleming and Alan Burns. Incorporating the notion of importance into mixed criticality
systems. In Liliana Cuc-Grojean and Robert I. Davis, editors, Proc. 2nd Workshop on
9 Oliver Gettings, Sophie Quinton, and Robert I. Davis. Mixed criticality systems with
10 Xiaozhe Gu and Arvind Easwaran. Dynamic budget management with service guarantees
IEEE, 2016.
AdaptMC: Control Theory for Mixed-Criticality Systems

A Proof of Theorem 3

Before entering the details of the proofs, we remind that a linear time-invariant (LTI) system can be uniquely characterized by its impulse response \(h(k) \) that is the output \(y(k) \) when the system is stimulated with an impulsive input \(u(k) \)

\[
u(k) = \begin{cases} 1 & k = 0 \\ 0 & \text{otherwise.} \end{cases}
\]

In next lemmas, we are also using the step response

\[
g(k) = \sum_{i=0}^{k} h(i), \quad (20)
\]

and the ramp response

\[
r(k) = \sum_{i=0}^{k} g(i) \quad (21)
\]

of a LTI system.

Thanks to the linear and time-invariance of the system, the output \(y(k) \) to any input \(u(k) \) is given by the convolution of the impulse response \(h(k) \) and the input \(u(k) \), that is

\[
y(k) = h(k) \otimes u(k) = \sum_{i=0}^{k} u(i)h(k-i).
\]

With these basic notions recalled, next we state a technical lemma that bounds the output \(y(k) \) of a LTI system when the input \(u(k) \) belongs to a bounded interval \([\bar{u} - \bar{\varepsilon}, \bar{u} + \bar{\varepsilon}] \).

\[\text{Lemma 1.} \quad \text{Given an asymptotically stable discrete-time LTI system with impulse response} \quad h(k), \text{ step response} \quad g(k), \text{ input} \quad u(k), \text{ and output} \quad y(k) = h(k) \otimes u(k).
\]

\[\text{If the input} \quad u(k) \quad \text{is bounded as follows} \]

\[
u(k) = \bar{u} + \varepsilon(k), \quad \bar{u} \in \mathbb{R}, \quad -\bar{\varepsilon} \leq \varepsilon(k) \leq \bar{\varepsilon},
\]
then, the output $y(k)$ is bounded by

$$|\tilde{u}| \inf_k \{\text{sign}(\tilde{u})g(k)\} - \bar{\varepsilon} \|h\|_1 \leq y(k) \leq |\tilde{u}| \sup_k \{\text{sign}(\tilde{u})g(k)\} + \bar{\varepsilon} \|h\|_1,$$

with the ℓ_1-norm of a signal defined as

$$\|h\|_1 = \sum_{k=0}^{\infty} |h(k)|.$$

Proof. By definition of $y(k)$ as convolution of the impulse response $h(k)$ with the input signal $u(k)$, it follows

$$y(k) = \sum_{i=0}^{k} u(i)h(k-i) = \sum_{i=0}^{k} (\tilde{u} + \varepsilon(i))h(k-i)$$

$$= \tilde{u} \sum_{i=0}^{k} h(k-i) + \sum_{i=0}^{k} \varepsilon(i)h(k-i)$$

$$= \tilde{u} g(k) + \sum_{i=0}^{k} \varepsilon(i)h(k-i)$$

$$\leq |\tilde{u}| \sup_k \{\text{sign}(\tilde{u})g(k)\} + \bar{\varepsilon} \|h(k)\|_1$$

with

$$\|h(k)\|_1 = \sum_{k=0}^{\infty} |h(k)|.$$

Analogously

$$y(k) \geq |\tilde{u}| \inf_k \{\text{sign}(\tilde{u})g(k)\} - \bar{\varepsilon} \|h(k)\|_1,$$

which concludes the proof. \hfill \blacksquare

The next Corollary determines the upper and lower bounds to the sum of n consecutive outputs, by exploiting Lemma 1.

Corollary 1. Given an asymptotically stable discrete-time LTI system, if the input $u(k)$ bounded as follows

$$u(k) = \tilde{u} + \varepsilon(k), \quad \tilde{u} \in \mathbb{R}, \quad -\bar{\varepsilon} \leq \varepsilon(k) \leq \bar{\varepsilon}.$$

Then, the sum of n consecutive outputs is bounded by

$$-(|\tilde{u}| I(n) + \bar{\varepsilon} N(n)) \leq \sum_{k=n_0}^{n+n-1} y(k) \leq |\tilde{u}| J(n) + \bar{\varepsilon} N(n),$$

with

$$N(n) = \sum_{k=0}^{\infty} |g(k) - g(k-n)|,$$

$$I(n) = \sup_k \{ -\text{sign}(\tilde{u})(r(k) - r(k-n)) \},$$

$$J(n) = \sup_k \{ \text{sign}(\tilde{u})(r(k) - r(k-n)) \},$$

and $g(k)$ and $r(k)$ being the step and ramp response, respectively.
Proof. The output \(y(k) \) of a LTI system is the convolution of the impulse response \(h(g) \) and the input \(u(k) \).

\[
y(k) = h(k) \otimes u(k).
\]

Because of the linearity of the convolution, the sum of \(n \) consecutive output is

\[
\sum_{i=k}^{k+n-1} y(i) = \left(\sum_{i=k}^{k+n-1} h(i) \right) \otimes u(k) = (g(k) - g(k-n)) \otimes u(k).
\]

Finally, by applying Equation (22) of Lemma 1, Equation (23) of the Corollary follows. □

Proof of Theorem 3. Let us first determine the supply function \(\text{sbf}_{H}(t) \) of the HI-criticality server. We aim at modeling the resource supplied to the HI-criticality server as a sequence of active intervals of lengths \(S(k) \), interleaved by a sequence of idle intervals of lengths \(Z(k) \) that corresponds to the schedule of the LO-criticality server. Formally,

\[
S(k) = S_n(k), \quad Z(k) = S_L(k).
\]

In fact, by doing so, Lemma 1 of [22] can give us the supply function of (14) through the proper value of \(\sigma_n(n) \) and \(\sigma_L(n) \), as defined in (16).

First of all, the system of (8) that determines the dynamics of \(S_n(k) \) is linear. Hence, by the superposition principle the output \(S_n(k) \) is equal to the sum of three components:

1. the output \(\bar{Q}_n \) when \(\varepsilon_n(k) = 0 \) and \(\varepsilon_L(k) = 0 \),
2. the output \(y_{nn}(k) \) when \(\bar{Q}_n = 0 \) and \(\varepsilon_L(k) = 0 \), and
3. the output \(y_{nm}(k) \) when \(\bar{Q}_n = 0 \) and \(\varepsilon_n(k) = 0 \),

that is

\[
S_n(k) = \bar{Q}_n + h_{nn}(k) \mathcal{O}_{n}(k) + h_{nm}(k) \mathcal{O}_{L}(k)
\]

and \(h_{Hi}(k) \) is the response of \(S_n(k) \) to an impulse on the input \(\varepsilon_i(k) \), with \(i \in \{L, H\} \).

Let us now compute \(\sigma_n(n) \) that is, from (16), a lower bound to the sum of the length of \(n \) consecutive budgets \(S_n(k) \)

\[
\sigma_n(n) = \inf_{n_0} \sum_{k=n_0}^{n_0+n-1} S(k) = \inf_{n_0} \sum_{k=n_0}^{n_0+n-1} S_n(k) = n\bar{Q}_n + \inf_{n_0} \sum_{k=n_0}^{n_0+n-1} (y_{nn}(k) + y_{nm}(k)).
\]

To bound the sum of \(n \) consecutive values of \(y_{nn}(k) \) and \(y_{nm}(k) \), we can invoke Corollary 1. Let us start with

\[
y_{nn}(k) = h_{nn}(k) \mathcal{O}_{n}(k).
\]

From the hypothesis of (1), \(\varepsilon_n(k) \) is bounded by

\[
-\bar{\varepsilon}_n \leq \varepsilon_n(k) \leq \bar{\varepsilon}_n
\]

and then Eq. (23) of Corollary (1) states that

\[
-\bar{\varepsilon}_n N_{nn}(n) \leq \sum_{k=n_0}^{n_0+n-1} y_{nn}(k),
\]
with $N_{\text{in}}(n)$ as in (19). Similarly, from the asymmetric bound to $\varepsilon_L(k)$ of (1), from (23) it follows that

$$-\frac{\varepsilon_L}{2}(I_{\text{in}}(n) + N_{\text{in}}(n)) \leq \sum_{k=n_0}^{n_0+n-1} y_{\text{in}}(k),$$

from which the expression of $\sigma_0(n)$ of (17) follows.

The expression of $\sigma_z(n)$ of (17) can be found by following similar steps:

1. by setting the sequence of idle intervals $Z(k)$ equal to the sequence of the LO-criticality budgets $S_L(k)$, as in (27);
2. by writing the sequence $S_L(k)$ as the sum of Q_L and the sequences $y_{\text{in}}(k)$ and $y_{\text{lo}}(k)$ that corresponds to the responses to the disturbances $\varepsilon_L(k)$ and $\varepsilon_L(k)$ on $S_L(k)$ (similarly as in (28)); and
3. by exploiting Corollary 1 to bound $y_{\text{in}}(k)$ and $y_{\text{lo}}(k)$.

The expressions of $\sigma_0(n)$ and $\sigma_z(n)$ give the expression of the $sbf_{\text{in}}(t)$.

Analogously, by setting

$$S(k) = S_L(k), \quad Z(k) = S_{\text{in}}(k),$$

and following the same steps illustrated above, it is possible to determine the proper values of $\sigma_0(n)$ and $\sigma_z(n)$ of (18) and then the supply function $sbf_L(t)$ of the LO-criticality server.

This concludes the proof. ▫