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I. Abstract 

Purpose: 
This work proposes a new reliable Computer Aided Diagnostic (CAD) system for the diagnosis of breast cancer from Breast 
Ultrasound (BUS) images. The system can be useful to reduce the number of biopsies and pathological tests, which are 
invasive, costly, and often unnecessary. 
Methods: 
The proposed CAD system classifies breast tumors into benign and malignant classes using morphological and textural 
features extracted from Breast Ultrasound (BUS) images. The images are first pre-processed to enhance the edges and filter 
the speckles. The tumor is then segmented semi-automatically using the watershed method. Having the tumor contour, a set 
of 855 features including: 21 shape-based, 810 contour-based, and 24 textural features are extracted from each tumor. Then, 
a Bayesian Automatic Relevance Detection (ARD) mechanism is used for computing the discrimination power of different 
features and dimensionality reduction. Finally, a logistic regression classifier computed the posterior probabilities of 
malignant versus benign tumors using the reduced set of features. 
Results: 
A dataset of 104 BUS images of breast tumors, including 72 benign and 32 malignant tumors, was used for evaluation using 
8-fold cross-validation. The algorithm outperformed six state-of-the-art methods for BUS image classification with large 
margins by achieving 97.12% accuracy, 93.75% sensitivity, and 98.61% specificity rates. 
Conclusions: 
Using ARD, the proposed CAD system selects 5 new features for breast tumor classification and outperforms state-of-the-
art, making a reliable and complementary tool to help clinicians diagnose breast cancer. 

 

Keywords: Classification, computer-aided diagnosis, logistic regression, segmentation, ultrasound images. 

II. Introduction 

Breast cancer is the second fatal disease in women 1, and its early diagnosis is important for longer patient survival 2,3. Breast 
cancer diagnostic techniques include clinical examination, medical imaging, and biopsy. Among the imaging methods, 
ultrasonography is usually utilized due to its advantages such as being real-time and cost-effective, not using ionizing 
radiation, and showing high sensitivity in dense tissues. Despite its advantages, the noisy nature of ultrasound images and 
the overlapping features of benign and malignant masses lead to difficulties in diagnosis. Therefore, usually, performing a 
biopsy is the most accurate diagnostic method. However, since only 10 to 30 percent of the biopsies are malignant, reducing 
unnecessary biopsies is highly desirable  2–8. Computer-aided diagnosis systems are a candidate for this purpose. 
Using CAD systems for breast cancer has five stages: pre-processing, segmentation, feature extraction, feature selection, 
and classification. In Breast Ultrasound )BUS( image pre-processing, the contrast between the lesion region and the 
background should be increased (image enhancement). Some specific pre-processing methods are capable of reducing 
speckle without destroying the important features of BUS images (speckle reduction) 1,3,9–11. Lesion region is separated from 
the background and other tissue structures through segmentation 1,2. In the literature, tumor segmentation has been done 
automatically 6,12,13, semi-automatically 11,14,15 or manually by the radiologist 16,17. Two main types of features are extracted 
for BUS image analysis; morphological and textural features. Morphological features represent local characteristics of the 
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tumor lesion and are used to quantify malignancy using shape, contour or boundary characteristics 1–3,5,11,18. Textural features 
explain internal echo patterns and the composition of the encompassing tissues and are selected from the original or pre-
processed images 1–3,5,6,11. For feature extraction, Genetic algorithm 19, mutual information 11, statistical tests 20, Relief and 
FOCUS techniques 21 have been utilized for breast ultrasound images. Breast tumor classification in ultrasound images has 
been done using linear classifiers (linear discriminant analysis, logistic regression), artificial neural networks, Bayesian 
neural networks, decision tree, support vector machine and template matching 1–3. Table (1) summarizes some of the 
characteristics of the techniques used in the literature in a chronological order.

Table (1): Survey of recent CAD systems 
Reference BUS dataset Segmentation Best feature set Feature selection Classifier 

Yousef-2016 18 99 53 B, 46 M Manual 6 Morph Wrapper method NN, KNN, NC, LDA 

Abdelwahed-2015 22 80 44 B, 36 M Semi-automatic 9 Text NA KNN, SVM, CART 

Gomez_2015 11 641 413 B, 228 M Semi-automatic 
26 Morph & 1465 

Text 
Mutual information & Statistical 

tests 
LDA 

Lokesh-2014 23 50 38 B, 12 M Semi-automatic 8 Text NA SVM 

Moon-2013 24 69 48 B, 21 M Semi-automatic 5 Morph & 1 Text Student’s t test LR 

Alvarenga-2012 25 246 69 B, 177 M Semi-automatic 2 Morph & 3 Text Statistical approaches LDA 

Wu-2012 19 210 120 B, 90 M Automatic 2 Morph & 3 Text Genetic Algorithms SVM 

Zakeri-2012 26 80 47 B, 33 M Automatic 4 Morph & 2 Text NA SVM 

Su-2011 6 132 67 B, 65 M Automatic 5 Morph & 3 Text Principle Component  Analysis NN 

Behnam-2010 27 81 47 B, 34 M Automatic 7 Morph NA NN 

Alvarenga-2010 28 246 69 B, 177 M Semi-automatic 3 Morph Statistical approaches LDA 

Wu-2008 29 210 120 B, 90 M Automatic 1 Morph & 8 Text Forward feature selection SVM 

Shen-2007 20 265 180 B, 85 M Manual 4 Morph & 4 Text Student’s t test LR 

Chang-2005 12 210 120 B, 90 M Automatic 6 Morph NA SVM 

Sehgal-2004 17 58 38 B, 20 M Manual 3 Morph NA LR 

Chen-2003 16 271 131 B,140 M Manual 6 Morph Statistical approaches NN 

Horsch-2002 30 400 306 B, 94 M Automatic 2 Morph & 1 Text NA LDA 

B: Benign; M: Malignant; Morph: Morphology; Text: Texture; NA: Not Applied; NN: Neural Network; KNN: K-Nearest Neighbor; NC: Nearest 
Centroid; SVM: Support Vector Machine; CART: Classification & Regression Trees; LR: Logistic Regression; LDA: Linear Discriminant Analysis. 

Morphological and textural features and their combination have been compared based on their discrimination power in 
classification, without a clear conclusion. For instance, Alvarenga et al. 25 studied 7 morphological and 20 textural features 
and concluded that the combination can be useful. Using 26 morphological and 1465 textural features, Gomez et al. 11 
concluded that using morphological features alone results in a better classification. A wide range of morphological 
12,14,17,26,27,31,32, textural features 5,33–35 or their combinations 6,19,26,36 have been used. Despite the broad range of existing 
methods, each implementing a distinctive form of feature sets, an amalgamation of information of these feature groups has 
not been studied. In this study, we elaborate different morphological/textural features and their derivations to evaluate their 
differentiation ability in a single framework. We also introduce a new combined category of features using information of 
shape and gray-level values of the boundary. Finally, we apply an automatic approach for finding an effective feature set 
that successfully classifies tumors into malignant and benign classes. Our method identifies the most clinically relevant 
features for diagnosis, which is in contrary to methods that use convolutional networks 37–39 to learn highly discriminative 
features that can be extracted from the entire image area and can be hard to interpret. These methods require large data sets 
to avoid overfitting. 
We propose a reliable CAD system to identify breast tumor types. After a pre-processing and semi-automatic segmentation, 
the ROI is determined automatically. A pool of features containing both morphological and textural features is calculated. 
Automatic Relevance Determination (ARD) 40 is used for feature selection that removes subjective interpretations and 
provides a sound data-driven approach to study the effect of feature combination. Finally, we introduce a new set of textural 
features based on morphology with a high discrimination power in tumor classification. Using the new set of features, the 
tumors are diagnosed in each image in a dataset of 104 breast tumor BUS images. We follow the naming provided by a 
subcommittee of the Japan Association of Breast and Thyroid Sonology 41. As shown in Fig. 1, the area including contour, 
margin, and the periphery of the tumor is called the boundary zone, where, the contour is the plane between the tumor and 
the tissue around it, the margin is the peripheral part of the tumor adjacent to the contour and periphery is the surrounding 
area of the tumor. 
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Fig. 1. The margin, contour, periphery, and the boundary zones. 

The rest of paper is organized as follows. Sections 3 and 4 present the details of the dataset and the proposed method. In 
Section 4, experimental results are explained. The discussion and conclusion are drawn in Sections 5 and 6, respectively. 

III. Materials and methods 

The dataset used in the study includes 104 BUS images from breast tumors with 72 benign and 32 malignant tumors, which 
belonged to three grades (I, II, III) and were divided into these invasive types: ductal, mucinous, and tubular, lobular 
carcinomas. Most cases were invasive ductal carcinoma in grade II. To create the Confusion matrix, types of tumors in 
images are determined based on pathological examinations or following a two-year examination schedule. The images were 
taken from patients that referred to The Radiology Department of Imam Khomeini Hospital, Tehran, Iran. All subjects gave 
their written informed consent to participate in the following studies that were acquired using various sonography machines 
across different periods: 
• 19 February 2006 to 22 August 2008, Antares (Siemens, Germany), VFX 13–5 (Multi-D) linear array transducer, DICOM 

format, 56 ultrasonography images (34 benign and 22 malignant), 
• 28 May 2013 to 15 November 2013, Zonare (General Electric, US), SP6–12 linear array transducer, tiff format, 35 

ultrasonography images (27 benign and 8 malignant), and 
• 23 June 2015 to 9 November 2015, Sonix OP (Ultrasonic, Germany), 5–14 MHz linear array transducer, jpg format, 13 

ultrasonography images (11 benign and 2 malignant). 
The rest of this section explains the proposed CAD system consisting of pre-processing, segmentation, and extraction of the 
region of interest, feature extraction and classification of the breast US images. 

1. Pre-processing 

Speckles resulting from the interaction of ultrasonic waves with tissue degrade the quality of Ultrasound (US) images. Pre-
processing US images should enhance edge information and suppress speckle efficiently whilst preserving lesion boundaries 
and structure details. Hence, it includes two steps of contrast enhancement and speckle filtering. We used Contrast Limited 
Adaptive Histogram Equalization (CLAHE) technique 42 for contrast enhancement and removed the speckles with 
anisotropic diffusion filtering 9. The parameters used for CLAHE technique and speckle filtering were the default MATLAB 
values and those used in Gomez et al. 9, respectively. 

2. Segmentation 

Tumor contours can be delineated manually or automatically. However, the details of the contour may be eliminated in 
manual delineation, particularly in malignant tumors. This information is important when morphological features are 
extracted. Existing computerized segmentation algorithms cannot always provide the required accuracy, especially in 
complex lesion boundaries 9,13,43. To address these limitations, we propose a combination of manual and computerized 
approaches to improve segmentation. 
We first use watershed to extract the contour of each tumor by using MATLAB software. Initially, three contours are 
generated corresponding to three values of the hyper-parameter of constraint Gaussian function, which scales the contour 
by 2, 2.2 and 2ʌ and generates the most visually accurate contours using the method presented in Gomez et al. 9. Next, an 
expert radiologist verifies the most accurate segmentation from the set of generated contours for each tumor and manually 
corrects them with Didger5 software 44 (see Fig. 2). 

  
(b) (a) 

Fig. 2. (a) A BUS image of a malignant tumor and its most appropriate computerized contour (yellow line), (b) The edited tumor contours 
with Didger5 software (green), showing elimination of parts wrongly considered as a tumor. 

Tumor
margin

contour

periphery

boundary zone



 

4 
 

3. ROI extraction 

In the literature, the area around the tumor is removed manually before pre-processing to reduce the computational burden. 
However, we propose to remove these areas after determination of the tumor contour. Doing this has two benefits: first, the 
information in the surrounding area can help in drawing the tumor contour. Second, all tumor ROIs are extracted 
automatically and are therefore more consistent. 
To eliminate non-tumor associated areas in the image, an external tumor contour is specified using a morphological dilation 
operator by a disk structuring element with 30 pixels’ radius (Fig. 3b). Then a circumscribed rectangle (the smallest rectangle 
containing the external contour) is obtained (Fig. 3c), and the image is cropped according to the rectangle. 

  
(b) (a) 

 

 
(d) (c) 

Fig. 3. Extraction of ROI; a BUS image containing a tumor (a), the contour of the tumor (green) and the associated external contour 
(yellow) (b), the circumscribed rectangle (c), and the extracted ROI from the primary image (d). 

4. Feature extraction 

Benign tumors have more regular shapes compared to malignant ones. Most of the benign tumors have round or ellipsoid 
shapes with smooth and well-defined contours and homogeneous internal echoes. Malignant tumors have heterogeneous 
internal echoes, branch patterns, irregular and blurred boundaries, and ill-defined contours. To use the mentioned 
characteristics for classification of tumors, usually shapes, tumor surroundings, and internal echo patterns are modeled, 
which are expressed as morphological and textural features 2,3,7,8,12,14,45. In this section, we investigate these two categories 
of features and extend contour-based features by introducing signatures. We also apply a novel boundary extraction method 
and use morphology-based textural features to discriminate malignant breast tumors. Morphology-based textural features, 
called textural features in this paper for simplicity, employ a combination of morphology and texture to extract 
comprehensive information from the tumor boundary. Fig. 4 depicts the categorization of features used for classification in 
this study. 

 
Fig. 4. Categorization of the investigated and presented features. 

In the sequel, we discuss details of the implemented features. 
a) Morphological features 

By morphological features in this paper, we refer to two categories: shape-based features extracted from 2D masks, and 
contour-based features extracted from one dimensional signatures. For extraction of shape-based features, a binary image 
of the tumor shape in two dimensions is used (Fig. 5b). For contour-based features, we use the tumor contour (Fig. 5c) and 
represent it as a one-dimensional signal. 

Features

(F1-F855)

Morphological

(F1-F831)

Shape

(F1-F21)

Contour

(F22-F831)

Textural

(F832-F855)
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(c) (b) (a) 

Fig. 5. The BUS image of a malignant tumor (a), the binary image of tumor shape (b), and the contour of the tumor (c). 
(1) Shape Features 

Twenty-one shape-based features that are most frequently used for breast tumor diagnosis are implemented (for details see 
Appendix A).

(2) Contour Features 

Contour-based features are derived from a one-dimensional representation of the tumor contour, called a signature. 
Signatures based on radial distance and complex coordinates 46–54 are already implemented in the literature for tumor type 
classification 1,2,9,11,36,55–58. We extend the use of signatures by generating seven new transformations describing the contour 
in different parametric spaces, namely: polar coordinates 53, farthest point distances 49,53,54, farthest point angle 54, angular 
function 51–53,59, angular radial coordinate 53, contour curvature 47,49,52,54,59–61, and triangle area function 49,51–53. We use nine 
signatures in total. Spatial and frequency information (i.e. Fourier descriptors and their statistics) is then extracted from 
these signatures (see Fig. 6). The explanation of these signatures is provided in Appendix B. 

 
Fig. 6. Categorization of contour features. 

To extract spatial information from signatures, the values of mean, standard deviation, smoothness index, roughness index 
and zero crossings 14,55 are calculated for four real signatures consisting of radial distance, farthest point distance, farthest 
point angle, and triangle area function. For radial distance signature, area ratio 11,14 is also calculated. In this step, 21 spatial 
information based contour features are extracted. 
Next, to study the frequency information of the contour, Discrete Fourier Transform (DFT) is used. For this purpose, the 
number of points representing each signature, i.e. signature vector size, is normalized and its DFT coefficients are used as 
features. Since for a better performance of DFT, the signature vector size should be a power of two, the contour points have 
to be sampled before contour signature generation 52. Let ܰ denote the signature vector size achieved by 8-connectivity 
contour tracing procedures 62 and ܮ ൌ ʹ ൌ ͳʹͺ denote the number of desirable points after sampling. Also, let ܲ be the 
perimeter of the tumor contour. The sampled points are equidistant on the contour, so each two successive points are in ܲ Ȁܮ 
distance from each other (on the contour) 54.  
The coefficients of DFT, called Fourier descriptors, represent the contour in the frequency domain. It can be proven that 
these Fourier descriptors are invariant to translation, rotation, and scale. Proofs are included in Appendix C. 
We collectively computed 762 Fourier descriptors from the nine mentioned signatures. Additionally, for each of them, 
mean, variance and entropy are computed, leaving 27 statistical features (810 contour-based features in total). Overall, 831 
morphological features consisting of 21 shape-based and 810 contour-based features were extracted from each image (see 
Fig. 4). 

b) Textural Features 

Features based on the mean grey level differences between inside and outside of the contour have been used for studying 
tumor boundaries in tumor type classification 1,2,17,31,32,63–67. However, more comprehensive textural features extracted from 
the vicinity of the contour can increase the accuracy of tumor classification. For this propose, for each BUS image such as 
Fig. 7a, we construct a boundary band around the contour of the tumor in Fig. 7b. The band is then unrolled into a new 
image. The directional and textural information of this image is extracted by a Gabor filter bank. The entropies of filtered 
images are then calculated and used as the textural features. Steps of calculations involved here are presented in a more 
detail in the following. 

Contour Features
(F22-F831)

Spatial 
information

(F23-F42)

Frequency 
information

(F43-F831)

Fourier descriptors

(F43-F804)

Statistics of 
Fourier descriptors
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(b) (a) 

Fig. 7. (a) The BUS image of a malignant tumor and its contour (green), (b) the 20-pixel boundary around the tumor contour. 
To investigate the tumor boundary area, Sahiner et al. 68–70 introduced the Rubber Band Straightening Transform (RBST) 
that maps a band of pixels surrounding the mass onto the Cartesian plane (a rectangular region), according to the directions 
of lines normal to the tumor contour. Their algorithm comprises of three main steps: 1) edge enumeration, 2) normal 
computation, and 3) computation of RBST pixel values (see Fig. 8). 

  
(b) (a) 

 
(c) 

Fig. 8. (a) A close up view of indicator points (green), tangent lines (yellow), and normal lines (magenta) for a part of a malignant tumor 
contour, (b) all the tumor contour points (green) and the normal lines of contour indicator (magenta), and (c) the resulting RBST image. 
Despite its proven effectiveness, Sahiner’s algorithm fails to provide a uniform sampling of the boundary information for 
irregular contours. This happens due to the simplistic way of finding normals to the contour, which is prone to error at 
irregular parts of the boundary like tumor edges (see Fig. 9a). 

 

 

(a) 

  

(b) 

Fig. 9. Contours (green) and the corresponding normals (magenta) are shown for a benign tumor using Sahiner's algorithm (a) and the 
proposed method (b). The close up views on the right show non-uniform samplings throughout the boundary for Sahiner’s algorithm, 
which are significantly more uniform for the proposed method. 
To overcome the limitation of Sahiner’s algorithm, we propose Morphology-Based RBST (MBRBST) method that 
generates the internal and external contours of the tumor (Fig. 9b), using a 10-pixel radius disk structure element for 
morphological erosion and dilation, respectively (Fig. 10a). After determining the contours, an equal number of points are 
sampled on each (we used the number of external contour points, N, as the number of sampling points), which are then 
correspondingly connected by N connecting lines (Fig. 10b). Next, the image intensity is sampled at 15 equidistant locations 
selected on each of the connecting lines (Fig. 10c). Since the selected locations are not exactly at the center of the pixels, 
they are approximated by centers of pixel they are on, (see Fig. 10d). The sampled intensity levels are sorted from the 
innermost point (on the internal contour) to the outermost point (on the external contour) in a vector for each connecting 
line. The resulting N vectors are then stored in a 15×N matrix that represents the corresponding rectangular MBRBST image 
for the tumor (Fig. 10e). 

  
(b) (a) 
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(d) (c) 

 
(e) 

Fig. 10. (a) The tumor contour (green), internal (red) and external (blue) contours 10-pixel away from the main contour, (b) A close up 
view of the main, internal and external contours and the connecting lines (magenta lines) on a part of the contour, (c) A close up view 
of the 15 sampled points on the connecting lines, (d) A close up view of an original connecting line, its sampled points (magenta) and 
their approximated locations (cyan), (e) The resulting MBRBST from the gray level values of the approximated points. 
The extracted rubber band consists of shape and texture information that help in classification of tumors. Four sample BUS 
images, including two malignant and two benign tumors, with parts of their MBRBST images, are shown in Fig. 11. It is 
seen that MBRBST images well delineate the irregularities of tumors and can, therefore, discriminate their malignancy. 

  

 
(a) 

 
(a) (b) (b) 

  

 
(c) 

 
(c) (d) (d) 

Fig. 11. BUS images of two malignant (a), (b), and two benign (c), (d) tumors and their corresponding MBRBST images. 
Gabor filters are used for the detection of directional elements 71–76 in image processing, such as classification and edge 
detection. In BUS images, these filters are frequently used for prepossessing and speckle reduction 1,2,10,11,77. In this study, 
we use 24 Gabor filters with different scales and directions (see Appendix D for details). The Gabor filter bank is applied 
to each MBRBST image and the entropy of each filtered image is calculated, generating 24 features. With the 831 
morphologic features from the previous steps, the total number of 855 features are generated for each image (see Fig. 4). 

5. Feature selection and classification 

To improve the classification performance and avoid overfitting, features with irrelevant information must be removed. In 
the literature of breast tumor classification, features are selected prior to classification. Therefore, not all features are used 
in the classification. In the present study, however, we rely on a joint feature selection and classification mechanism. 
Specifically, we use Sparse Logistic Regression (SLR)78, which is a Bayesian logistic regression method, implementing 
Automatic Relevance Determination (ARD).  Using ARD, the SLR classifier prunes a large set of input features to a sparse 
set of most discriminative features deriving the classification. The details of the sparse classifier are explained in Appendix 
E. 

IV. Results 

1. Experimental design 

We used MATLAB for pre-processing, feature extraction, classification and segmentation, and Didger5 for correcting 
manual delineations. A dataset of 104 real BUS images was used and overall 855 features were extracted from each image. 
To evaluate the proposed algorithm, we performed an 8-fold cross validation protocol, where 91 images were used for both 
feature selection and training, and the remaining 13 images were used for testing and validation. In each fold, leave-one-out 
experiments were applied on the training set to select the most relevant (discriminant) features. In each experiment, an 855-
dimensional weight vector indicating the discrimination powers of all feature is generated by the SLR. This process is 
repeated until all images in the training set are tested 26,  generating 91 weight vectors. Next, we find the most discriminant 
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features, whose corresponding weights are non-zero for at least 80% of the leave-one-out experiments.  We then use these 
selected features for classification of the test set. To ensure that the selected features are not coincidental, we altered the 
order of features randomly for 10 times. We observed that the SLR selected the same features exactly, indicating that they 
are genuinely relevant to the classification. 
A confusion matrix 79 was generated by comparing the results of the proposed classification algorithm with the Confusion 
matrix. Confusion matrix comprised: True Positives (TP), i.e. number of malignant tumors correctly recognized as 
malignant; True Negatives (TN), i.e. number of benign tumors that correctly recognized as benign, False Positives (FP), i.e. 
number of benign tumors that incorrectly recognized as malignant; and False Negatives (FN), i.e. number of malignant 
tumors that incorrectly recognized as benign. 

Accuracy (ܿܿܣ ൌ ܶܲܶܰሺܶܲܶܰܲܨܰܨሻ), sensitivity (ܵ ݁݊ ൌ ்ሺிேା்ሻ), specificity (ܵ ݁ ൌ  ܶܰሺܲܨܶܰሻ), positive predictive value (ܲܲ ܸ ൌܶܲሺܲܨܶܲሻ ), negative predictive value (ܰ ܸܲ ൌ ܶܰሺܰܨܶܰሻ ), and Matthew's correlation coefficient (ܥܥܯ ൌሺܶܲൈܶܰሻെሺܲܨൈܰܨሻඥሺܶܲܲܨሻሺܶܲܰܨሻሺܶܰܲܨሻሺܶܰܰܨሻ) criteria were used for evaluating the classification performance 14,26,27. 

2. Evaluation of the proposed method  

Based on the corresponding weights, features F138, F180, F441 (from Fourier descriptors features) and F833, F837 features 
(from Textural features) were selected in every eight experiments of cross-validation and were therefore used for measuring 
classification performance. The descriptions of these features are as follows: 

 F138: The 98th normalized Fourier descriptor ቀȁிవఴȁȁிభȁ ቁ of the complex coordinates signature. 

 F180: The 14th normalized Fourier descriptor ቀȁிభరȁȁிభȁ ቁ of the polar coordinates signature. 

 F441: The 20th normalized Fourier descriptor ቀȁிమబȁȁிబȁ ቁ of the farthest point angle signature. 

 F834: Entropy of the output of the 3rd Gabor filter (with scale ݏ ൌ ͳ and direction ݀ ൌ ͵) for MBRBST image. 
 F838: Entropy of the output of the 7th Gabor filter (with scale ݏ ൌ ʹ and direction ݀ ൌ ͵) for MBRBST image. 
The classification performance using the SLR algorithm applied on various categories of features are presented in Table 
(2). Each row in this table shows a different subset of input features and the classification performance using the features 
selected by ARD. The feature definitions are given in Appendix F. 

Table (2): The performance of the proposed tumor classification method using the selected features from each input subset (mean ± 
standard deviation). 

Feature category Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

PPV 
(%) 

NPV 
(%) 

MCC 
(%) Selected Features 

All features (F1-F855) 
97.12±
3.98 

93.75±
11.57 

98.61±
3.93 

97.50±
7.07 

97.50±
4.63 

93.58±
8.88 

F138, F180, F441, F833, F837 

 Morphological  (F1-F831) 
89.42±
5.72 

78.13±
20.86 

94.44±
5.94 

88.75±
12.17 

91.43±
7.75 

75.81±
13.81 

F10, F12, F760 

o Shape-Based 
(F1-F21) 

89.42±
5.72 

71.88±
16.02 

97.22±
5.14 

93.33±
12.85 

88.98±
6.08 

75.21±
14.71 

F12, F15, F16, F19 

o Contour-Based 
(F22-F831) 

89.42±
5.72 

71.88±
16.02 

97.22±
5.14 

93.75±
11.57 

88.93±
5.70 

75.27±
13.46 

F33, F62, F166, F513, F800 

 Spatial information 
(F22-F42) 

81.73±
8.16 

62.50±
23.15 

90.28±
11.01 

81.25±
21.67 

85.18±
7.88 

58.20±
19.28 

F24, F26, F33, F41, F42 

 Frequency information 
(F43-F831) 

85.58±
6.42 

75.00±
18.90 

90.28±
7.12 

78.75±
13.99 

89.72±
7.58 

66.70±
16.88 

F66, F166, F333, F676, F677, F706, 
F773 

 Fourier descriptors 
(F43-F804) 

89.42±
5.72 

81.25±
11.57 

93.06±
5.75 

85.00±
12.54 

91.94±
5.00 

75.52±
13.66 

F62, F66, F291, F294, F308, F333, 
F443, F676, F677, F706, F773 

 Statistical features of 
Fourier descriptors 
(F805-F831) 

82.69±
9.86 

68.75±
17.68 

88.89±
11.88 

77.71±
21.25 

86.77±
7.10 

60.68±
22.04 

F806, F808, F809, F814, F817, F831 

 Textural (F832-F855) 
93.27±
4.93 

87.50±
13.36 

95.83±
5.75 

91.87±
11.32 

94.86±
5.51 

84.88±
11.47 F832, F833, F834, F836, F838 

According to Table (2): 
 Combining textural and morphological features and using the whole 855 features gives the best performance. 
 The performance of textural features is better than morphological features, when only one category is used. 
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 Morphological shape-based and contour-based features have similar performances. 
 When using only contour-based features, the performance of frequency information is better than spatial information. 
 Fourier descriptors result in a more accurate classification compared to statistical features. Also, using a combination of 

these features results in a lower performance compared to using Fourier descriptors only.  
The proposed boundary extraction algorithm (MBRBST) was also compared to Sahiner’s (RBST) and conventional ROI 
extraction algorithms in terms of their impact on the classification results. For each region extracted by these methods, 24 
filtered images were generated by Gabor bank and their entropies were used for classification. The evaluation metrics are 
defined in the Experimental design subsection.  As shown in Table (3), morphology-based textural features created by 
MBRBST outperform the two other methods.  This indicates that the textural and morphological information embedded in 
the MBRBST features makes them more effective than pure textural features that are derived from conventional ROIs. 

Table (3): The performances of features obtained using MBRBST, RBST, and conventional ROI extraction methods. 
Filter 
bank 
input 

Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

PPV 
(%) 

NPV 
(%) 

MCC 
(%) 

MBR
BST 

93.27±
4.93 

87.50±
13.36 

95.83±
5.75 

91.87±
11.32 

94.86±
5.51 

84.88±
11.47 

RBST 
92.31±
7.12 

87.50±
13.36 

94.44±
8.40 

89.58±
14.60 

94.72±
5.66 

83.01±
15.67 

ROI 
84.62±
7.12 

65.63±
18.60 

93.06±
8.27 

83.33±
17.82 

85.48±
7.25 

63.78±
18.62 

We now compare the performance of the proposed algorithm with the six most related algorithms in the literature. Brief 
summaries of the selected classification methods and the features employed for each of them are included in Table (4). 

Table (4): A summary of the specifications and presented results of the implemented methods of the literature. 

Reference BUS dataset The proposed feature set Classifier Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

PPV 
(%) 

NPV 
(%) 

Alvarenga-2012 25 246 
69 B 

177 M 

Normalized residual value, Contour roughness, 
contrast standard deviation, and angular second 

moment 
LDA 85.37 83.62 89.86 95.48 68.13 

Alvarenga-2010 14 246 
69 B 

177 M 
Normalized residual value, Circularity, and Contour 

roughness 
LDA 83.74 83.05 85.51 93.63 66.29 

Behnam-2010 27 81 
47 B 
34 M 

Difference area, mean, variance, skewness, kurtosis, 
and entropy of variation function 

NN 
(MLP) 

93.83 91.18 95.74 93.94 93.75 

Shen_2007 20 256 
180 B 
85 M 

Shape, Orientation, Margin, Lesion boundary, Echo 
pattern, and Posterior shadowing 

LR  91.70 90.59 92.22 84.62 95.40 

Chang-2005 12 210 
120 B 
90 M 

Form-factor, aspect-ratio, roundness, extent, 
convexity, and solidity 

SVM 
(RBF) 

90.95 88.89 92.50 89.89 91.74 

Chen-2003 16 271 
131 B 
140 M 

Elliptic-normalized circumference, Elliptic-normalized 
skeleton, Long axis to short axis ratio, Depth-to-width 

ratio, Number of substantial protuberances and 
depressions, and Lobulation index 

NN 94.40 97.80 89.90 92.70 96.90 

B: Benign; M: Malignant; NN: Neural Network; LDA: Linear Discriminant Analysis; LR: Logistic Regression; SVM: Support Vector Machine. 

Since the imaging dataset used for evaluating the selected methods were not publicly available, we evaluated them using 
our own dataset in this paper. Table (5) represents the results of leave-one-out cross-validations for all methods. We also 
calculated the area under the receiver operating characteristics (ROC) curve, AUC, as a common measure in the context of 
CAD systems 80. 

Table (5): Classification results of the proposed algorithm and selected methods applied on our dataset. 

Method Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

PPV 
(%) 

NPV 
(%) AUC 

Proposed algorithm 97.12 93.75 98.61 97.50 97.50 0.9904 
Alvarenga-2012 90.00 83.33 92.86 83.33 92.86 0.9753 
Alvarenga-2010 84.62 68.75 91.67 78.57 86.84 0.9042 
Behnam-2010 87.50 75.00 93.06 82.76 89.32 0.8983 
Shen-2007 83.65 68.75 90.28 75.86 86.67 0.9140 
Chang-2005 81.73 68.75 87.50 70.97 86.30 0.8572 
Chen-2003 85.00 66.67 92.86 80.00 86.67 0.7942 
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As seen in Table (5), the proposed method outperforms all the selected methods of the literature. However, we remind that 
the differences between the performances of the methods from the literature on their original and our dataset can be due to 
the differences in the levels of difficulty of image databases and/or segmentation methods used.  

V. Discussion 

In this study, a dataset of 104 BUS images (72 benign and 32 malignant tumors) was first collected. The images were then 
segmented through a computerized method followed by a manual delineation carried out by a radiologist. For each tumor, 
21 (2D) shape-based, 810 contour-based, and 24 textural features were extracted. Contour-based features are derived from 
9 (7 new and 2 existing) signatures that are one dimensional contour representations. The textural features in this work are 
derived by: unfolding the narrow band that surrounds the tumor boundary, applying the Gabor filter bank to the unfolded 
image, and computing the entropies. The latter depend on the morphology of the tumor as unfolding more irregular tumor 
boundaries often results in more directional and complex textures. Hence, the computed entropies are referred to as 
morphology-based textural features in this work. An SLR classifier, incorporating ARD, was used to automatically select 
the five most discriminative features for classification. Removing the irrelevant features using ARD prevents the overfitting 
issue often seen in supervised learning 78,81. Based on Table (2), the selected features include: 3 Fourier descriptors from 
complex, polar and farthest point angle signatures, as well as 2 entropies from the Gabor filters.   
The textual features obtained from the proposed MBRBST method had a better classification performance than those 
obtained from the conventional ROI extraction and RBST methods. This indicates that the proposed amalgamation of 
morphological information in the textural features results in a more discriminative power. The consistent classification of 
the images obtained from three different sonography machines suggests that the performance of the proposed textural 
features can be independent from machine settings. An additional analysis to confirm this claim would involve a comparison 
of the results from each of the devices separately. This was, however, not possible at the time of writing this paper due to 
the small number of images. Moreover, it is noticeable that the proposed method is at an advantage to the other methods 
because this dataset was used in its development; even though cross-validation was used, this still biases performance in 
favor of the proposed method. 
The proposed method is limited in using a fixed diameter for tumor boundary band extraction, impeding applications of 
MBRBST to tumors with a minimal size. A line of future work is to consider an adaptive method for tumor boundary 
extraction. Experimental results in Table (2) show that a combination of Fourier descriptors and their statistical features 
results in lower accuracies compared to using Fourier descriptors only. This is due to SLR’s limited ability to select all 
relevant features when a large combination of features is being used. To alleviate this issue, incorporation of other classifiers 
alongside ARD can be considered. In addition, larger and more balanced datasets, and employing neural networks for feature 
extraction may increase the classification accuracy.  
Three of the most frequently misclassified images were investigated and discussed with an expert radiologist. Accordingly, 
our false negatives have high malignancy risks and the false positive turned out to have low malignancy risks. To obviate 
these faults and to improve our algorithm, we propose combining imaging signs with the patient meta-data (i.e., age, 
ethnicity, genomics, smoking habits, etc.), which can be important for diagnosis. The proposed CAD systems is a 
complementary tool that can only aid the radiologists to conclude their diagnosis. 

VI. Conclusion 

We proposed a CAD system for classification of benign and malignant tumors in 104 BUS images and compared the 
effectiveness of different features for classification. Tumors were delineated using a semi-supervised method to ensure a 
good quality in segmentation results. To classify each image, various forms of morphological and textural information were 
collected. From the segmented tumor 2D masks, 21 shape-based features were constructed. Next, 810 contour based features 
were generated from seven new and two existing tumor signatures (1D contour representations). A novel technique was 
proposed to unfold tumor boundary bands into images from which, by applying Gabor filters and computing entropies, 24 
textural features were extracted (making a total of 855 features). We used a Bayesian extension of Logistic Regression with 
ARD mechanism for joint feature selection and classification. The selected features comprise of: 3 Fourier descriptors from 
complex, polar, and farthest point angle signatures, as well as 2 textural features. The proposed method achieved 97.12% 
accuracy, 93.75% sensitivity, and 98.61% specificity, outperforming the state-of-the-art methods applied on our images. 
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VII. Appendices  

Appendix A: Morphological Shape Based Features 

Table (6): The definition of implemented Morphological-Shape-Based Features used for breast tumor diagnosis. 
Feature name Definition Description References 

Form-factor 
ͶɎǤ AreaPerimeter Area and Perimeter are the area and perimeter of the tumor. 

 

11,12 

Compactness 
(Circularity) 

PerimeterଶArea  14,2,31,55 

Aspect-ratio 
Max̴diameterMin̴diameter Max̴diameter and Min̴diameter are the maximal and minimal diameters of 

a tumor at different projection angles. 

11,12,2,36 

Roundness 
ͶǤ AreaɎǤ Max̴diameterଶ 11,12,36 

Long axis to short 
axis ratio (Lǣ S) 

Major̴axisMinor̴axis 
Major̴axis and Minor̴axis are the major (long) axis and minor (short) axis of 
the equivalent ellipse that has the same normalized second central moments as 
the tumor.  

2,36,16 

Convexity 
Convex̴perimeterPerimeter  

Convex̴perimeter  and Convex̴area  are the perimeter and the area of the 
convex hull of a tumor (See Fig. A1b). 

11,12,36,15,51 

Solidity (Overlap-
ratio) 

AreaConvex̴area 11,12,14,36,15,51,26 

Difference area Convex̴area Ȃ  Area 27 

Normalized 
Residual Value 
(NRV) 

Convex̴area Ȃ  AreaConvex̴perimeter  11,14 

Elongation 
Length̴bounding̴rectangleWidth̴bounding̴rectangle  Length̴bounding̴rectangle , Width̴bounding̴rectangle  and Area̴bounding̴rectangle  are the length, width and area of the minimal 

rectangle that including the tumor, respectively. 

55,36 

Extent 
AreaArea̴bounding̴rectangle 11,12,36,51 

Morphological-
closing ratio 
(Mshape) 

AreaMorphological̴closing̴area Morphological̴closing̴area is shown in Fig. A1c 14 

Orientation The angle between the x-axis and the major axis of the ellipse with the same second-moments as the tumor. 11,20 

Eccentricity 
The ratio of the distance between the foci of the ellipse with the same second moment as the tumor, to its major axis 
length. 

26 

Elliptic-normalized 
skeleton 

the number of skeleton points 
normalized by the circumference of 
the 
equivalent ellipse of the lesion. 

Let R and Bୖ denote a region and the set of its boundary points. The skeleton 
of R, is a set of points X where for each point xԖX, there exist at least two 
boundary points, p୧  and p୨ , in Bୖ  so dሺxǡ p୧ሻ ൌ d൫xǡ p୨൯ ൌmin ሼdሺxǡ p୩ሻȁp୩Ԗ Bୖሽ, where dሺǤ ሻ can be any preferred distance metric (See 
Fig. A1d). 
 

11,2,16 

Number of skeleton end-points 11 

Mean-variation mean value of variation function 

Variation function is the projection of the distance between the farthest pixels 
of a tumor region at all angles. 

 

27 

Variance-variation variance value of variation function 

Skewness-variation skewness value of variation function 

Kurtosis-variation kurtosis value of variation function 

Entropy-variation entropy value of variation function 
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(b) (a) 

  
(d) (c) 

Fig. A1. A BUS image of a malignant tumor and its contour (green color) (a), difference of area (in grey) between the convex hull area 

and the tumor area (b), difference of area (in dark grey) between the morphological closing area and the tumor area (c), and the skeleton 

of the tumor (white) and the skeleton end-points (blue stars) (d), see Table 6. 

Appendix B: Signatures of tumor contour 

Shape signatures can be real or complex 51–53,47. In the following, the signatures implemented in this paper are explained. 
The coordinates of contour points are denoted by ൫xሺtሻǡ yሺtሻ൯ǡ t ൌ ͳǡ ʹǡ ǥ ǡ N, in which N is the number of these points, and 
coordinates of tumor center are denoted by ሺxୡǡ yୡሻ. 

1. Complex Coordinates (Z) 

Complex coordinates function is a complex representation of the coordinates of boundary points in Eq. 1. Shifted 
coordinates functions is used to remove bias effects 51–53,47,46,48–50.  

(1) Zሺtሻ ൌ ሺxሺtሻǦxୡሻ  jሺyሺtሻǦyୡሻ 
2. Radial distance (R) 

The value of this signature as expressed in Eq. 2, is obtained as the distance between the contour points and the tumor center 
(Fig. A2a) 51–53,47,46,48,50,54. 

(2) Rሺtሻ = ඥሺxሺtሻǦxୡሻଶ  ሺyሺtሻǦyୡሻଶ 

3. Polar coordinates (PC) 

The combination of the radial distance Rሺtሻ and the polar angle Ʌሺtሻ defines the polar coordinates signature as expressed in 
Eq. 3 (Fig. A2b) 53. 

(3) PCሺtሻ ൌ Rሺtሻ  jɅሺtሻ 

4. Farthest point distance (FPD) 
For a point ൫xሺtሻǡ yሺtሻ൯, FPD is the sum of radial distance of this point and that of the farthest point to it on the contour, 

denoted by ቀx୮ሺtሻǡ y୮ሺtሻቁ (Eq. 4, Fig. A2c) 53,49,54. 

(4) FPDሺtሻ ൌ ඥሺxሺtሻǦxୡሻଶ  iሺyሺtሻǦyୡሻଶ  ට൫x୮ሺtሻǦxୡ൯ଶ  i൫y୮ሺtሻǦyୡ൯ଶ
 

5. Farthest Point Angle (FPA) 
According to Eq. 5 the angle between the radial distance of a contour point ሺmଵሻ and the radial distance of the corresponding 
farthest point ሺmଶሻ results in the value of this function (Fig. A2d) 54. 
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(5) FPAሺtሻ ൌ TanǦଵ ൬ mଶǦmଵͳ  mଵ ൈ mଶ൰ 

6. Angular function (ɔ) 

The angular function ɔሺtሻ demonstrates the changes of angular contour directions. This signature, shown in Eq. 6, is 
obtained by the tangent angle for a window w. However, since the values of tangent angle are assumed to lie in a range of 
length, ɔሺtሻ contains discontinuities with ʹɎ size. Fig. A2e shows the tangent angle of a contour point for a window size w ൌ ͷ 51–53,59. 

(6) ɔሺtሻ ൌ TanǦଵ ൬yሺtሻǦyሺtǦwሻxሺtሻǦxሺtǦwሻ൰ 

7. Angular radial coordinates 
(ARC) 

This signature, expressed in Eq. 7, is the combination of the radial distance Rሺtሻ and the angular function ɔሺtሻ (similar to 
the polar coordinates signature) 53. 

(7) ARCሺtሻ ൌ Rሺtሻ  jɔሺtሻ 
8. Contour curvature (K) 

Contour curvature is defined as the differentiation of successive tangent angles calculated in a window w, expressed in Eq. 
8. Fig. A2f shows the successive contour angles calculated in a window of size w ൌ ͷ 52,47,49,54,59–61. 

(8) Kሺtሻ ൌ ɔሺtሻǦɔሺtǦͳሻ 
9. Triangle area function (TAF) 

The value of this function is obtained according to the area of the triangle made by two successive contour points and the 
tumor center in Fig. A2g 51–53,49. 

    
(d) (c) (b) (a) 

 

   
 (g) (f) (e) 

Fig. A2. (a) The contour of the tumor (in green), the center of the tumor (*) , and several representative radial distances (Magenta lines) 
that are equal to the distance between the contour points and the tumor center. (b) A display of the polar coordinates system at a contour 
point, the radial distance Rሺtሻ (Magenta line) and polar angle Ʌሺtሻ. (c) The point ൫xሺtሻǡ yሺtሻ൯ and the corresponding farthest point ቀx୮ሺtሻǡ y୮ሺtሻቁ, adding the radial distances of these points (magenta lines) indicates FPD for given point ൫xሺtሻǡ yሺtሻ൯. (d) The angle 

between the radial distance of the point ൫xሺtሻǡ yሺtሻ൯ ሺmଵሻ (blue color) and the radial distance of the corresponding farthest point ቀx୮ሺtሻǡ y୮ሺtሻቁ ሺmଶሻ (magenta color) gives us FPA signature for point ൫xሺtሻǡ yሺtሻ൯. (e) The angular function is calculated for a window 

size w ൌ ͷ. (f) Two successive tangent angles ɔሺtሻ and ɔሺtǦͳሻ that are calculated for a window with w ൌ ͷ. Contour curvature is 
defined as ɔሺtሻǦɔሺtǦͳሻ. (g) The contour of tumor (in green) and the area of the triangle formed by the tumor center (*) and two successive 
contour points (points on the contour are in cyan and yellow). 

Appendix C: Fourier descriptors; invariance to translation, rotation and scale 

For a sample signature sሺtሻǡ t ൌ Ͳǡ ͳǡ ǥ ǡ LǦͳ  after an L-point normalization, the Fourier descriptors are given in 

Eq. 9 51,47,46,50,54. 
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(9) FD୬ ൌ ͳL  sሺtሻ exp ൬ǦjʹɎtL ൰ ǡ n ൌ Ͳǡ ͳǡ ǥ ǡ LǦͳǦଵ
୲ୀ  

1. Translation invariance 

The FDs are translation invariant, because all the nine explained signatures are invariant under translation 51,47,46. 
2. Rotation invariance 

Since phase information is ignored in our application, and only the magnitude values of the FDs are used, FDs are rotation 
invariant 47,46.       

3. Scale invariance 

For complex signatures such as complex coordinates, polar coordinates, and angular radial coordinates, all the L descriptors 
except the first one (DC component) are necessary to index the shape. Scale normalization is achieved by dividing the 
magnitude values of all the other descriptors by the magnitude value of the second descriptor (Eq. 10). 53,47,50 

(10) f ൌ ሾ ȁୈమȁȁୈభȁ ǡ ȁୈయȁȁୈభȁ ǡ ǥ ǡ ȁୈైǦభȁȁୈభȁ  ሿ  
Since the functions of centroid distance, farthest point distance, farthest point angle, angular function, contour curvature, 
and triangle area signatures are real, only LȀʹ frequencies in the Fourier transform are different, therefore just half of the 
FDs are used. Scale invariance, according to Eq. 11 is obtained by dividing the magnitude values of the first half of FDs by 
the DC component. 53,47,49 

(11) f ൌ ሾ ȁୈమȁȁୈబȁ ǡ ȁୈయȁȁୈబȁ ǡ ǥ ǡ หୈైȀమหȁୈబȁ  ሿ  
 

Appendix D: Gabor filter formulation 

The direction feature of Gabor wavelet makes it appropriate for several applications, including image texture analysis and 
image retrieval. Gabor filters used in image processing are two-dimensional and have specific scales and directions. A 
complex Gabor wavelet is obtained as the production of a Gaussian kernel with a complex sinusoid 72. 
Assuming the mother wavelet ɔሺxǡ yሻ given in Eq. 12, the set of wavelets are made by Eq. 13 in which hୱǡୢሺxǡ yሻ  is the 
impulse response of Gabor filter in scale s and direction d. Also, x and y are the row and column of the impulse response, 
and ɐ୶ and ɐ୷ are their standard deviations, respectively. The entire image is the filter bank input. Definitions of X and Y are 
given in Eq. 14 and 15, respectively. 

(12) ɔሺxǡ yሻ ൌ ͳʹɎɐ୶ɐ୷ exp ቊǦ ͳʹ ቆ xଶɐ୶ଶ  yଶɐ୷ଶቇ  ʹɎjU୦xቋ 

(13) hୱǡୢሺxǡ yሻ ൌ ൬U୦U୪ ൰ ǦୱୱǦଵ Ǥ ɔሺXǡ Yሻ 

(14) X ൌ ൬U୦U୪ ൰ ǦୱୱǦଵ ሺxǦxሻ cos ൬dɎNୢ൰  ሺyǦyሻ sin ൬dɎNୢ൰൨ 
(15) Y ൌ ൬U୦U୪ ൰ ǦୱୱǦଵ ǦሺxǦxሻ sin ൬dɎNୢ൰  ሺyǦyሻ cos ൬dɎNୢ൰൨ 

The filter's output is complex; therefore, magnitudes of these values are used. In the overhead equations, s ൌ ͳǡ ǥ ǡ Nୱ and d ൌ ͳǡ ǥ ǡ Nୢ are the scale and direction of wavelet parameters, ሺxǡ yሻ is the filter origin in space, and U୪ and U୦ are the 
minimum and the maximum central frequencies of the filters, respectively 76. 
In this study, we set Nୱ ൌ , Nୢ ൌ Ͷ, U୦ ൌ ͲǤͶͻ, and U୪ ൌ ͲǤͲͳ. 

Appendix E: Sparse logistic regression 

Logistic regression, used for solving binary classification, is a probabilistic model, parameters of which are estimated using 
the Maximum Likelihood method. The weighted feature values represents the linear discriminant function in Eq. 16 that 
splits two classes, namely Sଵ and Sଶ. 
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(16) fሺxǢ wሻ ൌ  wୢxୢ  wୈ
୧ୀଵ  

In Eq. 16, x = (xଵ, ..., xୈ)t א Rୈ is the input feature vector in D-dimensional space and w = (wǡ wଵ,..., wୈ)t is the weight 
vector including a bias term, where we set w ൌ Ͳ. Using a logistic sigmoid function (Eq. 17), LR calculates the probability 
that x belongs to classes Sଵ and Sଶ (Eq. 18). 

(17)  ɐሺxሻ ൌ ͳͳ  exp ሺǦxሻ 

(18)  p  PሺSଶȁxሻ ൌ ɐሺw୲ xሻ ֜ PሺSଵሃxሻ ൌ ͳǦp 
We define a binary random variable y that is Ͳ for x א Sଵ  and ͳ for x א Sଶ . Having N iid1 input–output data samples ሼሺxଵǡ yଵሻǡ ǥ ǡ ሺ xǡ yሻሽ, the likelihood function is given as Eq. 19. 

(19) PሺyȁXǡ wሻ ൌ Pሺyଵǡ ǥ ǡ yȁxଵǡ ǥ ǡ xǡ wሻ ൌ ෑ Pሺy୬ȁx୬ǡ wሻ
୬ୀଵ  ൌ ෑ p୬୷ሺͳǦp୬ሻଵǦ୷

୬ୀଵ  

where p୬ ൌ Pሺy୬ ൌ ͳȁx୬ǡ wሻ ൌ ɐሺw୲x୬ሻ. Therefore, the log-likelihood function becomes as Eq. 20. 

(20) lሺwሻ ൌ  σ ሾy୬logp୬  ሺͳǦy୬ሻ logሺͳǦp୬ሻሿ୧ୀଵ    
The optimal value of w is achieved by maximizing lሺwሻ. It can be proven that since the Hessian of this function is positive 
definite for all w, a unique global maximum always exists. In this classifier, the contour between two classes is determined 
by the hyper-plane fሺxǢ wሻ ൌ Ͳ. So, a test sample x୲ୣୱ୲ is assigned to class Sଶ, if fሺx୲ୣୱ୲Ǣ wሻ  Ͳ, , and assigned to class Sଵ, 
if fሺx୲ୣୱ୲Ǣ wሻ ൏ Ͳ. 
Automatic Relevance Detection (ARD) is an efficient algorithm for eliminating irrelevant features. It moves the weights 
corresponding to less relevant features towards zero; making the weight vector sparse. ARD uses a Gaussian prior with a 
zero mean and a diagonal covariance matrix (the diagonal elements are tunable hyper-parameters) to define the possible 
range of weight parameters. 
Sparse Logistic Regression (SLR) is made by combining LR and ARD. SLR, a Bayesian extension of LR, performs feature 
selection and training of the model parameters for classification, simultaneously. It employs ARD to determine the relevance 
of each feature by estimating its corresponding weight. This procedure involves three tasks: feature selection, training of 
the classifier, and evaluation of generalization performance. With ARD algorithm, SLR assumes a prior for weight vector 
as expressed in Eq. 21. 

(21) PሺwୢȁȽୢሻ ൌ NሺͲǡ ȽǦୢଵሻǡ      d ൌ ͳǡ ǥ ǡ D 
where wୢ is the d୲୦ element in w and Ƚୢ is its corresponding relevance parameter. The prior distribution for each wୢ is 
assumed to be a normal distribution with a zero mean. Also, the prior distribution for Ƚୢ's is given in Eq. 22. 

(22) P୭ሺȽୢሻ ൌ ȽǦୢଵǡ     d ൌ ͳǡ ǥ ǡ D 
The hyper-parameter Ƚୢ, the relevance parameter, controls the possible range of its corresponding weight parameter, wୢ. A 
small relevance parameter results in a broadly distributed probability, leading to large values for the weight parameter (Fig. 
A3a). When the relevance parameter is large, the probability distribution of the prior knowledge has a high peak at zero. 
This biases the estimated parameter towards zero (Fig. A3b). 

Using ARD 78, an iterative algorithm estimates relevance parameters and the posterior distributions of the model. The 
estimated relevance parameters for irrelevant features diverge to infinity resulting their corresponding weight parameters to 
converge to zero. This way, the irrelevant features are eliminated and not used in classification. 

  

(b) (a) 
Fig. A3. Small values of the relevance parameter result in broad probability distributions and large values of estimated weight parameter 
(a) and large values of the relevance parameter result in narrow probability distributions and zero values of estimated weight parameter 
(b) 78. 

                                                 
1 independent and identically distributed 
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Appendix F: Categories of used features 

Table (7): The explanation of features used based on their numbers.  
Feature ID Feature Name Feature category 
F1 Form-factor 
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F2 Aspect-ratio 
F3 Long axis to short axis ratio 
F4 Roundness 
F5 Convexity 
F6 Extent 
F7 Solidity 
F8 Orientation 
F9 Eccentricity 
F10 Elongation 
F11 Difference area 
F12 Normalized Residual Value 
F13 Circularity 
F14 Mshape 
F15 Mean_Variation 
F16 Variance_Variation 
F17 Skewness_Variation 
F18 Kurtosis_Variation 
F19 Entropy_Variation 
F20 Elliptic-normalized skeleton 
F21 Number of skeleton end-points 
F22-F27 Mean, Standard deviation, Roughness index, Smoothness index, Zero crossing, and Area ratio of 'R' signature 
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F28-F32 Mean, Standard deviation, Roughness index, Smoothness index, and Zero crossing of 'FPD' signature 
F33-F37 Mean, Standard deviation, Roughness index, Smoothness index, and Zero crossing of 'FPA' signature 
F38-F42 Mean, Standard deviation, Roughness index, Smoothness index, and Zero crossing of 'TAF' signature  
F43-F168 Fourier descriptors of 'Z' signature 
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 F169-F294 Fourier descriptors of 'PC' signature  

F295-F358 Fourier descriptors of 'R' signature  
F359-F422 Fourier descriptors of 'FPD' signature  
F423-F486 Fourier descriptors of 'FPA' signature  
F487-F550 Fourier descriptors of 'ɔ' signature  
F551-F676 Fourier descriptors of 'ARC' signature  
F677-F740 Fourier descriptors of 'K' signature  
F741-F804 Fourier descriptors of 'TAF' signature  
F805-F807 Mean, Variance, and Entropy of 'Z' signature 
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 F808-F810 Mean, Variance, and Entropy of 'PC' signature 
F811-F813 Mean, Variance, and Entropy of 'R' signature 
F814-F816 Mean, Variance, and Entropy of 'FPD' signature 
F817-F819 Mean, Variance, and Entropy of 'FPA' signature 
F820-F822 Mean, Variance, and Entropy of 'ɔ' signature 
F823-F825 Mean, Variance, and Entropy of 'ARC' signature 
F826-F828 Mean, Variance, and Entropy of 'K' signature 
F829-F831 Mean, Variance, and Entropy of 'TAF' signature 
F832-F855 the entropy of filtered MBRBST images  Textural Features 

 
 

 


