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A B S T R A C T

Bridge bearings are a critical component of a bridge and require regular visual inspection to ensure the safe
operation of the bridge throughout its life. However, the bearings are often located in spaces that are difficult or
hazardous to reach, which can impact how often the bearings are inspected. In addition, these spaces are small
and offer significant challenges for tele-operation due to line-of-sight restrictions; hence, some level of autonomy
is required to make robotic inspection possible. In this work, a robotic solution to bridge bearing inspection is
presented, and localisation methods are assessed as the first, and most, important step towards automation.
Robot localisation is performed in both a lab environment and a real bridge bearing environment. In this paper,
Adaptive Monte-Carlo Localisation is considered for localisation in a known map and gave comparable results to
Hector-SLAM, with all results less than a defined error threshold of 10 cm. A combination of both of these
methods are proposed to give a more robust approach that gives errors lower than the defined threshold in the
real bridge. The experiments also show the need to provide an accurate starting point for each inspection within
the bearing, for which we notionally suggest the use of a docking station that could also be used for improved
autonomy, such as charging. In addition, proof-of-concept approaches for visual inspection tasks, such as geo-
metry changes and foreign object detection are presented to show some of the proposed benefits of the system
presented in this work.

1. Introduction

Bridge bearings transfer the loads from the superstructure of bridges
(e.g., the deck) to the abutments or intermediate supports, which then
transfer these loads to the bridge foundations. Bearings are therefore an
integral part of bridge structures and their failure can have considerable
impact on the bridge life [1, 2], leading to the overall failure of the
entire bridge [3]. It is not uncommon for bridge bearings to be replaced
at high costs and disruption (e.g., [4]). Some authors (e.g., [5] and [6])
have shown, through a life-cycle cost analysis, that replacement of
bearings due to poor maintenance is significant and can be partially
prevented, through appropriate inspection methods. The inspection
requirements for structural bridge bearings are detailed in the relevant
European Standard [7] as: “close visual inspection without measure-
ments, spaced at equal, reasonably frequent, intervals ”, with inspec-
tions occurring at least as often as the bridge structure is assessed.
Specifically, the standard requires that the bearings are assessed for
visible defects including: cracks, incorrect position of the bearing, un-
foreseen movements and deformations of the bearing and visible de-
fects on the bearing or surrounding structure.

Most of the main problems affecting bridge bearings are reflected by

changes to geometry, regardless of the source of the problem or the type
of bearing [8, 9]. These problems include: out-of-position translation,
rotation or deformation of the bearing. Current methods to measure
changes in the bearing geometry are somewhat rudimentary and in-
volve inaccurate and non-repeatable measurements [9] such as: metric
tapes, gap gauges, air bubble levels, quadrant rulers, compasses and
verniers, levelling and topographic surveys or direct visual observa-
tions. Other, more sophisticated, systems include displacement trans-
ducers [10], tell-tales [11] and other instruments that do not measure
geometry but measure the actual effect of changes on the bearing or
structure directly (e.g., cells and strain gauges [3, 9], fibre optics [12],
radar interferometries [13], magnetorheological elastomers [14]), but
these are typically outside the norm, with most bridges being inspected
via operative-led visual inspection [15].

Other main anomalies in bridge bearings are related to deterioration
and degradation of the material itself. Similar to other civil engineering
structures, these anomalies typically manifest as cracks, corrosion [16]
or crushing [8] that are also visible during visual inspections; such
information also has the potential to be extracted from vision sensors
[17, 18]. In addition, a visual inspection will also record additional
anomalies, such as build up of debris and vegetation growth [9].
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The examples above present inspection solutions for bridge bearings
using different types of sensors that reduce the human labour involved
and expertise required for visual inspection of the bearings. However,
the bridge bearing space is often limited in size and not accessible or
hazardous for human access. To this end, robotic platforms mounted
with sensors have been deployed for bridge inspection, usually with a
focus on structural condition or material degradation [19-21] of the
bridge. However, there has been no development of a robotic platform
specifically for bridge bearing inspection, where close access to the
bearings is required to obtain sufficient detail. In addition, the robotic
platforms presented in these examples are manually controlled and are
therefore difficult to manipulate if the robot moves out of line-of-sight
of the operator. In order to achieve autonomy when performing robotic
inspections, a robust localisation approach is essential, especially since
errors in the limited bearing space could lead to catastrophic failures
such as the robot falling from height.

In this paper, localisation is performed on a robotic platform using a
2D LiDAR as the primary sensor. This proof-of-concept platform is
tested in a controlled lab environment and on the cable-stayed
Millennium Bridge in Leeds, United Kingdom. This paper focuses on the
problem of localisation and mapping since it is critical for any further
development of autonomous technology for bridge bearing inspection.
The work presented here is not platform dependent and could be in-
corporated into different configurations with different control systems:
a suggested work-flow is given in Fig. 1. In summary, the main novel
contributions of this paper are:

• The novel combination of two localisation techniques, namely
ACML and Hector-SLAM, to provide a robust localisation of the
robot that meets the performance requirements, i.e. less than 10 cm
accuracy, see Section 5.5.

• A demonstration of an in situ robotic platform for visual inspections
in bridge bearings with two applications: geometry changes of the
bearing and detection of foreign objects.

Methods to assess material degradation of bridge structures are not
considered in this paper, but visual methods for the detection of cracks
(e.g., [22]) and corrosion (e.g., [23, 24]) exist for a range of applica-
tions.

This paper is structured as follows: first, the related works on bridge
bearing using mobile robots and robot localisation are reviewed and a

solution for localising the robot in the bridge bearing environment is
proposed (Section 2 and continued in Section 3). A description of the
robotic platform and on-board sensors is provided in Section 4, fol-
lowed by an introduction to the experimental set-up and testing en-
vironment. The comparison of the different maps used for localisation is
then provided, with validation taking the form of a comparison against
a ground-truth in Sections 5.1 and 5.5, for the lab environment and
Section 6 for the real bridge site. The experimental results are discussed
in Section 6.4, and preliminary inspection results and conclusions are
given in Sections 7 and 8.

2. Literature review

2.1. Robotic inspection of bridges

It is common to use photographs for monitoring the corrosion and
structural properties of a bridge [17, 18, 25]. Small cameras can be
mounted on robotic platforms, allowing inspection of hard to reach and
risky environments. For example, Jahanshahi and Masri [26] obtain
depth information from Structure from Motion (SfM) to assist crack
detection from photographs of concrete pillars. Torok et al. [27] per-
form crack detection directly from SfM 3D reconstructions of concrete
structures by comparing the normal values of meshes created from SfM
point clouds of damaged and undamaged surfaces, with the aim of
performing robotic or remote structural assessment in disaster sce-
narios. The authors of [28] use both SfM and image mosaicing as a
method for photo-realistic structural inspection of bridge elements,
performed by robotic means. Such vision sensors have been mounted on
wheeled robots [20] and legged walking robots [29]. However, the
presented systems are bulky and would not fit into a bridge bearing
enclosure. In contrast, the authors of [19] present a solution that is
small enough to enable passage through narrow spaces. The platform
can move on both concrete and steel surface types (including surfaces
that had peeled due to corrosion) using six air pads, with air provided
by an air supply connected to an air pump and compressor on the
ground. The authors also perform testing in a real bridge environment
using a CCD camera to inspect the surface of truss members on the
bridge as the robot moves along.

Most recently, unmanned aerial vehicles (UAVs) equipped with
sensors, such as GPS, gyroscopes and cameras, have allowed large scale
inspection of bridges with relative ease. For example, the authors
of [21] use a UAV with a top-mounted camera to take images of the
under-side of a bridge to be later reviewed by an expert. Similarly, a
small UAV for photographic data collection is presented by the authors
of [30] in order to perform crack detection of steel bridge members. In
both cases, the UAV is unable to get very close to the underside of the
bridge, which makes the UAV unsuitable for the inspection of the
bearings. In addition, the authors highlight current restrictions sur-
rounding requirements for pilot certification for UAV use and the pro-
blems of using GPS for navigation under bridge structures [30].

Overall, technology is developing to allow inspection of structures
to be performed remotely, mainly using visual sensors. In addition, the
use of robotic platforms and UAVs is allowing the development of in-
spection methods of structures that are otherwise difficult or dangerous
to reach for human inspectors. However, the current development of
such platforms for bridge inspection focusses primarily on the platform
development. Furthermore, in the reviewed literature, these platforms
must be controlled by a human operator. In constrained bridge bearing
spaces autonomous inspection is required and therefore, methods for
localisation and navigation in these inspection environments should be
considered; this topic is the focus of this paper.

2.2. Overview of SLAM and localisation methods

Simultaneous Localisation and Mapping (SLAM) is one particular
area of research in robotics where a map is built whilst the robot finds
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Fig. 1. Overview of how the methods proposed in this paper can contribute to
the inspection procedures for a bridge bearing.
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its position within the map. The SLAM research question has been in-
vestigated for many years and includes implementations from under-
water inspection of ship hulls [31] to autonomous systems for planetary
exploration scenarios [32]. There is almost always a requirement for
this task to be completed in real-time as the robot navigates a pre-
viously unknown environment.

Localisation refers to the estimation of the time-dependent state of a
robot, where the robot state (e.g., position, orientation and velocity)
affects the future of the robot [33]. In the simplest case, localisation can
be performed using odometry only (commonly wheel odometry, al-
though LiDAR or visual odometry can also be used), with the current
position of the robot being determined with respect to an initial posi-
tion. However, over long periods of time, the position estimate can
drift. Data from sensors (such as LiDAR, ultrasound, camera, etc.) and
landmarks (such as walls, corners, etc.) can be recognised and used to
reduce the drift of the robot's position within the map. The position
estimate is improved using techniques such as Kalman Filters. For ex-
ample, Moore and Stouch [34] implement an Extended Kalman Filter
that combines sensor information from multiple GPS and IMU devices
to vastly improve on the dead-reckoning position estimation of a robot.
Although these approaches allow accurate position tracking, which is
important for accurate navigation, they do not necessarily allow re-
localisation if the position of the robot is lost. Global localisation (when
the robot is placed in the map with no guess for the current location) is
possible using grid-based methods, with some examples including
Markov Localisation [35] and Monte-Carlo localisation [36].

For inspection applications, however, it is more efficient to use a
pre-built map of the environment (rather than building a map from
scratch each time), which is then used to direct the robot to a specific
area that requires attention. There is still little literature on the im-
plementation of robotic localisation or mapping to civil engineering
applications, especially in infrastructure inspection, due to the difficult
nature of inspection environments, and none exist for bridge bearings.
Advances in automated infrastructure inspection often rely on labora-
tory-based or simulated environments. For example, the authors of [37,
38, 39] use a mobile robot equipped with a camera to inspect a bridge
deck, and use the images to detect deck cracks and to create a map for
robot localisation. Although testing in a controlled laboratory en-
vironment is essential for development, testing in a real bridge ad-
dresses the distinct challenges these environments offer.

Multiple sensors can be used for SLAM and localisation, including:
LiDAR, GPS, cameras and ultrasound sensors, where the sensor choice
depends on the application at hand. For example, GPS can be used to
find the current location of the robot, but can be unreliable when na-
vigating areas where the signal is weak. Since the robotic platform
presented in this paper is also used for collecting visual data for in-
spection purposes, there is a possibility of using the visual sensor data
for SLAM. However, there are several factors that need considering for
visual SLAM, such as: available frame-rate, processing requirements
and image resolution required to perform reliable visual odometry; the
effect of changing lighting conditions on the navigation results and the
types of motion required when performing the inspection. For example,
certain types of visual SLAM (e.g. ORB-SLAM [40]) require a combi-
nation of translation and rotation in turning, which may be difficult to
achieve in confined spaces. Hence, this method was deemed unsuitable
for inspection environments, although it may be possible for use in a
combined SLAM approach such as Google Cartographer1, and this could
be considered in future work.

3. Methods

In addition to a range of choice of sensors for SLAM and localisation,
there is also an ever-growing number of implementations. Many of the

implementations that have been used in outdoor or urban scenarios rely
on visual sensors (e.g., RTAB-map [41]) or LiDAR (e.g, Hector
SLAM [42]). However, due to the limitations caused by the size of the
bearing enclosure, and the complex and changeable nature of the in-
spection environments, visual sensors are not suitable for navigation in
the bridge environment. On the other hand, LiDAR is not limited by the
motion of the robot in the bearing enclosure and has existing im-
plementations in such environments. For example, Hector SLAM is a
2D-LiDAR SLAM approach that was originally designed to compete in
the RoboCup competitions for robotic post-disaster search and rescue
applications in challenging urban environments [43]. Sensor data from
2D LiDARs can also be used to navigate in existing maps. Monte-Carlo
Localisation is an established and commonly used method for locali-
sation in a known map and will be used in this work with maps created
from point cloud data.

3.1. Hector SLAM

Hector SLAM [42, 43] is primarily a 2D SLAM approach that in-
corporates 2D LiDAR scans into a planar map. In contrast to other ex-
isting SLAM methods (e.g., Gmapping and Rao-blackwell), Hector
SLAM does not require any external method of odometry (e.g., wheel
encoders), but uses fast scan matching approaches to provide this in-
formation. Traditionally, scan matching is done using Iterative Closest
Point (ICP) which is computationally expensive. In Hector SLAM
however, a fast scan-matching approach is used, which takes advantage
of the low distance measurement noise and high scan rates of modern
LiDAR [42]. The endpoints of the LiDAR beams are aligned with a map
generated by Hector SLAM and a Gauss-Newton approach is used to
find the transformation of the current scan that best minimises a cost
function to find the correct alignment of the scan to the map. In its
current implementation, the map created using Hector SLAM cannot be
reloaded for further mapping, although it is possible to save the 2D map
and use a localisation only approach such as Monte-Carlo localisation
for this purpose. Hector SLAM will be used in this paper for map
creation, as an alternative method to AMCL and to provide odometry to
the AMCL approaches.

3.2. Adaptive Monte-Carlo localisation

Monte-Carlo localisation [33, 36] uses a Bayes filter; it has a pre-
diction step and a measurement update step. The knowledge that the
robot holds about its environment (also known as belief) is represented
by a set of particles, where a particle represents a ‘guess' location. If the
starting position of the robot is unknown, these particles are spread
across the map used for localisation, with each particle representing a
potential position and orientation for the robot. Alternatively, a known
starting location can be given as an input, around which the particles
spread. The first of these cases is referred to as global localisation and
the second as local localisation. In the prediction step, the motion
commands given to the robot are applied to the particles, updating their
position in the map. At the new particle locations, measurements to
map landmarks are obtained by the 2D LiDAR and are compared to the
expected values from the current particle positions. The set of particles
begin with a uniform belief of the true location, but are then re-
weighted depending on the probability that a given particle could ob-
tain the current sensor readings in its current location. The particles are
then re-distributed for the next time-step based on this probability. The
estimated position of the robot at the current time step is centred on the
accumulative probability mass of the particles [33]. For a more detailed
explanation of Monte-Carlo localisation, refer to [33] and [36].

Adaptive Monte-Carlo Localisation (AMCL) is a version of Monte-
Carlo Localisation where the number of particles are adapted over time
using Kullback-Leibler Divergence Sampling (KLD-Sampling) to de-
termine the number of particles that are required at each time step (a
detailed description of the approach is given in [33]). Particles are1 https://google-cartographer-ros.readthedocs.io/en/latest/.
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added to the map until a statistical bound is satisfied, where the error
between the true pose and the sample-based approximation is less than
a fixed value. Changing the number of particles over time allows better
computational efficiency, since fewer particles are required if many
particles have a similar belief about the robot's position. The number of
particles required tends to decrease over time as the robot moves
around the map and the belief regarding the current position improves.
The implementation of AMCL used in this paper is an existing ROS
package2 based on the work in [33].

ROS is an open-source framework consisting of many libraries,
packages and tools that allows the control of low-level sensor drivers.
Odometry and some sensor input are required for AMCL to localise in a
map provided by the user. In this paper, odometry is provided from the
Hector SLAM ROS package (the mapping functionality of Hector SLAM
is disabled) and the raw data from the 2D LiDAR is used to update the
measurement model in AMCL.

In summary, Hector SLAM and AMCL were selected because:

• Their implementations can be performed using the same, easily
accessible, type of sensor, i.e. a 2D-LiDAR.

• They use relatively low computing power, i.e., they can be im-
plemented on the Raspberry-Pi and the Nvidia Jetson TX1.

• They have been demonstrated in urban environments (e.g., [42-44])

3.3. Maps for localisation

In robot navigation, maps are often represented in either a topolo-
gical format, where the map is decomposed into significant places in the
environment, or a metric representation, where the map is decomposed
into fine-grained cells of uniform size [33]. One common form of the
metric representation is an occupancy grid, where grid cells contain a
probability that each cell is occupied by an object in the real world. If
the probability that a cell is occupied by an object is high, the cell is
filled in black, whilst white shows free space and grey is unknown as it
is outside of the mapped area, i.e., areas out of the sensor range. This
approach prevents transient objects, such as people, from affecting the
map with artefacts.

Monte-Carlo Localisation requires an occupancy map in which to
perform localisation. These maps are often created using the same
sensors that will also be used for navigation, but they can also be cre-
ated using other approaches. For example, the authors of [45] suc-
cessfully perform localisation in simulated environments using hand-
drawn maps and Monte-Carlo Localisation in areas where no accurate
maps were available. This scenario is similar to the inspection en-
vironment, where it may not be possible to create maps using sensors
on-board a robot. An alternative approach to obtaining maps for loca-
lisation in the inspection environment is described in Section 5.3.

4. Robotic platform

The robotic platform used in this work is a commercial product
called a DiddyBorg (a six wheeled robot with a Perspex chassis, that is
built around the Raspberry Pi single-board computer – see Fig. 2),
which has been modified to accommodate additional sensors and
hardware and is approximately 25× 18×23 cm in size. The sensors
mounted on the platform include: a RPLiDAR (a 2D LiDAR of size of
7× 10×5 cm with a range of 6m) mounted on top of the platform, a
single 8MegaPixel RGB camera (Raspberry Pi Camera V2) and the ZED
Stereo Camera which can used from VGA at 60 frames-per-second (fps)
to 2 K at 15 fps. Both cameras are used for inspection applications (see
Section 7). The on-board processing, required for sensor operation and
data collection, is provided by the Raspberry Pi and NVIDIA Jetson TX1
(TX1) which was added to the platform to allow real-time visual

processing.
In addition, the Robot Operating System (ROS) is used to facilitate

data collection. Sensor data is transferred as messages to different
machines (in our case, the Raspberry-Pi, TX1 and a laptop) for pro-
cessing using a wide variety of open-source algorithms or for recording
for later use. An overview of the system architecture is given in Fig. 3.

5. Experimental set-up of the laboratory environment

5.1. Description

The lab environment used for testing of the localisation approaches
is an unfinished, domestic structure. This environment has similar
textures to the bridge environment and similar lighting conditions, with
bare concrete walls, naturally changing lighting conditions and dark or
unlit areas. The testing area is similar in size to the bearing enclosure
used in this work (approximately 2.5 m by 1.35m). In addition, a mock-
up of a bearing was created to allow testing for measuring the geometry
of a bearing using the inspection methods described in Section 7.1.

5.2. Data collection in the testing environment

A map of the environment is required to be able to direct the robotic
platform to specific areas in the bridge bearing environment. To com-
pare the different mapping approaches for localisation, the robot was
moved around the test enclosure to collect 2D LiDAR data using pre-
programmed velocity commands. A ground-truth trajectory is de-
termined from the robot odometry (provided by Hector-SLAM) and
velocity commands. Repetitions of the trajectory were performed to test
its accuracy and repeatability. The 2D LiDAR data is then post-pro-
cessed for use in mapping and AMCL. In the lab environment, the maps
tested for localisation with AMCL are:

1. A map saved from Hector SLAM.
2. A map created from a point cloud.

To create the first map, the 2D LiDAR data is processed using Hector
SLAM, and the finished map is extracted and saved. The second type of
map is created from a point cloud, which can either be produced using
the 3D reconstruction method Structure from Motion (SfM) or using a
3D terrestrial laser scanner; in the lab enclosure a map is produced
using SfM.

To obtain the data for SfM, photographs are first collected by tele-
operating the robot around the test enclosure and taking photographs at
multiple locations using the approach shown in Fig. 4. To ensure suf-
ficient image overlap for the reconstructions, the robotic platform is
rotated on the spot by a small increment, then stopped before capturing

RPLiDAR
(2D LiDAR)

ZED 
(stereo camera)

NVIDIA 
Jetson TX1 

Raspberry
Pi boardRaspberry

camera

Fig. 2. A photograph of the modified DiddyBorg robotic platform used in this
work, with the relevant on-board sensors labelled in the image.

2 http://wiki.ros.org/amcl.
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the next photo (see Fig. 4). This method may not be optimal for SfM
reconstructions in general, however it is required when space is limited
such as in bearing enclosures. The photographic data is then processed
using SfM software to create a dense 3D point cloud of the enclosure
and scaled using known measurements. The resulting point cloud is
then made into the map (see Section 5.3).

5.3. Creating a two-dimensional map for robot localisation

In this work, an occupancy grid map is created in a binary format
(i.e., a cell is either occupied or not and no probability information is
stored) using the Cartesian coordinates of points from the input point
clouds.

The steps performed to create the map for AMCL are as follows (also
depicted in Fig. 5): the point cloud is cropped to the area of interest
around the bearing enclosure using CloudCompare3; the floor level of

the point cloud is determined using the levelling tool in the software by
manually selecting points that are at floor level; from this level, a slice
through the point cloud is extracted (using the segmenting tool) cor-
responding to the location of the 2D LiDAR on the robot. The slice from
the point cloud is three-dimensional, with two dimensions corre-
sponding to the plane of the sensor data collected by the 2D LiDAR and
a third dimension, of approximately the same height as the 2D LiDAR
sensor, in order to ensure that the majority of points that could be
detected by the 2D LiDAR are included in the map. Finally, a binary
occupancy grid is extracted from this point cloud slice using the Bi-
naryOccupancyGrid function in the MATLAB Robotics Systems
Toolbox4.

An occupancy map is split into uniform grid cells representing lo-
cations in the real-world. It is possible to vary the resolution of the
occupancy maps by varying the grid size, e.g., to 1 cm /px or 1mm /px
(highest available resolution for this method). For Hector SLAM, these
maps had a resolution of 5 cm/pixel, so that each grid cell represents
5 cm in the real-world (higher resolutions were tested, but gave noisy
results that were unsuitable). Initially, as previously mentioned, the
slice taken from the point cloud data is 3D, and some method is re-
quired to represent this slice in the 2D occupancy map. A grid cell in the
map can be considered occupied if a point from the point cloud is
present in the grid cell. Since the grid cell can only be set as occupied or
unoccupied, multiple points in the same grid cell are discarded to give a
2D map. The effect of varying the resolution of the occupancy maps
created from point clouds will be discussed further in Section 6.4.

5.4. Scaling the SfM point cloud

The 3D reconstruction software Zephyr-Aerial (Zephyr)5, produced
by the company 3Dflow, is used to produce point clouds from images.
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2D scan

ZED camera 
SDK 
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Robot 
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record
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Map for
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User 
interface 

Jetson TX1
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map_
server
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b)
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Other

ROSbag
record
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Fig. 3. a) An overview of the tasks completed by hardware and software on-
board the robot in data-collection. b) An overview of the different types of data
collection and processing used with the localisation methods in this work.

Robot 
Motion

Camera
Images

2D 
Camera

Fig. 4. The method used by the robot to collect photographs for SfM re-
constructions. The figure does not represent how many photos were taken
through this process, only the manner in which the photos were collected.
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Fig. 5. An overview of the steps for processing a 3D point cloud (either from
SfM or a 3D terrestrial LiDAR) into a 2D occupancy map for use in 2D locali-
sation using Adaptive Monte-Carlo Localisation.

3 http://www.cloudcompare.org/.

4 https://uk.mathworks.com/products/robotics.html.
5 https://www.3dflow.net/.
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The input to the software is raw RGB camera images collected by the
robotic platform and the camera calibrations are performed auto-
matically by Zephyr. The first output from the software is the SfM point
cloud – a sparse point cloud. More details can be added to the sparse,
scaled, point clouds using Multi-View Stereo (MVS), to create a dense
point cloud.

It should be noted that the sparse point clouds generated by SfM are
at an arbitrary scale; therefore some method of scaling is required to
recover the global scale of the point cloud. To scale the point cloud,
control points are selected from the photographs used for the SfM re-
construction using the control point selection software in Zephyr. Using
this software, multiple instances of the control point in different images
are selected. Each control point must be selected in a minimum of two
image views [46], although accuracy of the control point location im-
proves if more images are selected.

Visually distinguishable features, such as the corners of the bearing
pads, were selected as control points. The world-scale was recovered
using measurements taken manually with a tape measure, with three-
dimensional co-ordinates from a reference point required for each
control point. Control points were selected from regions across the area
being reconstructed, with approximately eight control points being
used in each case. It is also possible to provide scale to the point clouds
using dimensions from construction drawings. However, it can be
challenging to match these dimensions with visible features from the
photographic dataset. Scaling can also be performed directly by
matching points in the SfM cloud with points in the ground-truth laser
scan, but this is only possible if laser scan data is available. The effec-
tiveness of this method for scaling the SfM point clouds in validated
against 3D terrestrial LiDAR data in Section 6.3.

5.5. Results and discussion

The trajectories resulting from AMCL when localising using the map
created by Hector SLAM (referred to henceforth as AMCL-Hector) are
plotted against the trajectories from AMCL when localising in the map
created from a SfM point cloud (referred to henceforth as AMCL-SfM),
and both trajectories are compared to the ground-truth trajectory of the
robot and to the trajectory calculated by Hector SLAM (Fig. 6 for local,

Fig. 9 for global). Global and local forms of AMCL are considered, as
three repetitions of each test (Fig. 8). For local AMCL, an initial guess
for the position and orientation of the robot is provided by a user-input
as a Cartesian map coordinate, and orientation is provided as an angle
with respect to the origin of the map. For global AMCL, particles are
sampled across the full map and no additional input is provided to
calculate the initial position of the robot. Furthermore, the spread (i.e.,
confidence) of the particles in the AMCL calculations are visualised in
Fig. 6 by plotting ellipses representing the covariance of the robot pose
at each point in the robot's trajectory and also graphically in Fig. 7b,
where a small ellipse represents a small spread of particles in the AMCL
calculations.

In Fig. 6, the initial errors for the local AMCL trajectories and the
ground-truth trajectory (errors plotted in Fig. 7a) are less than 3 cm for
all methods. Over several repetitions (see Fig. 8) this initial error is as
large as 10 cm for AMCL-SfM and 8 cm and AMCL-Hector (both in the
third repetition – see Fig. 8), where there is an error in the initial po-
sition guess of approximately 4 cm, which causes recalculation of the
robot's position over the first 10 time-steps before converging to the
ground-truth. Once the robot begins to move, the error remains below
4 cm for all AMCL methods for the remainder of the trajectory. This
error is comparable to Hector SLAM for all repetitions, which also has a
maximum error of 4 cm. Slight peaks in the error value occur at points
where the robot changes direction, such as the regions labelled B and C
in Fig. 6.

Fig. 6. A comparison of the trajectories calculated using local AMCL-SfM and
AMCL-Hector, the trajectory calculated by Hector SLAM and the ground-truth
robot trajectory. The ellipses that represent the covariance of the pose calcu-
lated by AMCL-Hector and AMCL-SfM are also plotted at each step in the tra-
jectory.

Fig. 7. Panel a): The error calculated between the ground-truth trajectory of the
robot and the trajectories calculated by both local AMCL-Hector and AMCL-SfM
for each point in the ground-truth robot trajectory. Panel b): The covariance of
the AMCL particles over the duration of the trajectory, as calculated from the
greatest dimension of the covariance ellipses seen in Fig. 6.
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The uncertainty of the AMCL particles for local AMCL, is double the
initial trajectory error with values around 6 cm in Fig. 7 (3 cm either
side of the robot). The spread of particles is initially large to ensure
calculation of the correct position and the uncertainty increases. Once
this position is found, the uncertainty and the number of particles re-
duces and the covariance value fluctuates around 5 cm for AMCL-
Hector and 3 cm for ACML-SfM.

Next, the difference between global and local AMCL is considered.
As expected, the covariance of the particles is higher for global AMCL
than for local AMCL (see Fig. 7b and Fig. 10b) since the particles begin
spread across the map. In Fig. 9 and Fig. 10a the error between the
global AMCL-Hector and the ground-truth trajectory starts at 1.25m,

with an initial guess being found at the centre of the map. The current
position is recalculated and the trajectory begins to converge to the
ground-truth. After seven time-steps the error approaches a value si-
milar to the error seen in the local localisation approaches. Similarly,
AMCL-SfM also begins with a large error of 1.1 m, which increases as
the robot begins to move before converging to the ground-truth after 20
time steps. The initial location calculations can be seen to the right of
label B in Fig. 9 as the ellipses move from the top right of the figure to
the bottom left where the true starting pose is. Although the error in the
robot position for AMCL-SfM converged after 20 time-steps, it took 80
time-steps for the covariance to converge (compared to 30 time-steps
for AMCL-Hector, see Fig. 10). Due to the large errors in the initial time-
steps, global localisation will be discounted at present, as it is not sui-
table for the bridge bearing environment.

The results in the laboratory environment showed that all local
AMCL and Hector SLAM trajectories gave an error within 4 cm of the
ground-truth. However, in the real bridge environment there is danger
that the robot could fall from height. Therefore, some maximum bound
of the error is required to reduce the risk of failure, especially since the
maps in the bridge environment are more noisy than in the lab

Fig. 8. A comparison of the error between local AMCL-Hector and AMCL-SfM
when compared to the ground-truth robot trajectory for three repetitions of a
set of input commands to the robot.
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Fig. 9. A comparison of trajectories from AMCL-Hector and AMCL-SfM with the
ground-truth robot trajectory for the global initialisation of AMCL.
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Fig. 10. a: The error calculated between the ground-truth trajectory of the
robot and the trajectories calculated by both AMCL-Hector and AMCL-SfM
when global localisation is implemented. b): The covariance of the AMCL
particles over time, as calculated from the greatest dimension of the covariance
ellipses seen in Fig. 9b.
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environment. For the purposes of this work, this bound is defined as
10 cm, which is approximately the diameter of one of the robot's
wheels, and it is anticipated that near edges in the bearing enclosure the
robot could not recover from an error greater than this value. A max-
imum error of 10 cm is an error of 8% in the shortest dimension of the
test enclosure and 3.6% in the longest dimension of the test enclosure.

Next, to understand whether such an error bound is achievable in
practice, AMCL is tested in the bridge environment using the same
system as tested in the lab environment. An additional map (created
from 3D terrestrial LiDAR scans) will be introduced as another option
for map creation. Again all results from AMCL are compared to Hector
SLAM and the ground-truth robot trajectory.

6. Experimental set-up of the bridge environment

6.1. Description of the bridge environment

The bridge and associated bearings used this work are located at the
The Millennium Bridge Leeds, UK. The Millennium Bridge is a cable-
stayed footbridge crossing the River Aire, spanning approximately
57m. The bearings on the north side of the river are studied in this
work and are located in a space approximately 2.8m by 1.2m, which
has a total height of 0.4m. The layout of this site gives an enclosed
region to be referred to as the bearing enclosure, see Fig. 11.

6.2. Data collection in the bridge environment

In all cases, only the local implementation of AMCL is considered as
it proved to be more accurate than global localisation in the lab en-
vironment. The maps used for AMCL calculations:

1. Map created using Hector SLAM.
2. Map created using SfM.
3. Map created using 3D terrestrial LiDAR (map creation process

identical to map created from SfM in Section 5.3). AMCL results
using this method will henceforth be referred to as AMCL-LiDAR.

The results of AMCL-SfM and AMCL-LiDAR will also be considered
for two different map resolutions: 5 cm/pixel and 1 cm/pixel. Examples
of the different maps tested in the bridge environment are given in
Fig. 12. Again, the results of AMCL are compared to the trajectory
calculated by Hector SLAM. Sensor data is collected in the same manner
as described in Section 5.2, with the robot traversing a pre-set trajectory
from a given set of velocity commands.

6.3. Validation of SfM data against 3D terrestrial LiDAR data

In the bearing enclosure, point cloud data is also available from a 3D

terrestrial laser scanner, the RIEGL VZ-1000. Detailed scans of the
bearing enclosure were taken from three different perspectives and the
clouds were registered using targets with a registration error of less
than 3mm. CloudCompare is then used to compare the SfM and 3D
terrestrial LiDAR point clouds. The SfM and terrestrial laser scan point
clouds are aligned by selecting common features that are visible and
easy to select by eye. Iterative Closest Point (ICP) alignment is used to
further align the point clouds. A cloud-cloud distance calculation allows
the comparison of a point cloud to a reference point cloud, where the
distance of points will be calculated relative to associated points in the
reference cloud. A scalar field is generated showing the number of
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Bridge
bearing

Trough

Mortar
bed

Metal
plates

Debris

Fig. 11. Photograph of the bearing enclosure at Millennium bridge, on the
north-side of the river. One of the bridge bearings is visible in the centre of the
image. The low wall that surrounds the enclosure is visible on the right-hand
side and some electrical cables on the left-hand side of the image.
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Fig. 12. a) 2D occupancy map created using Hector SLAM. b) 2D occupancy
map created using SfM c) 2D occupancy map at 5 cm/pixel created from 3D
terrestrial LiDAR point cloud. d) 2D occupancy map at 1 cm/pixel created from
3D terrestrial LiDAR point cloud.
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points and the distance of those points compared to the points in the
reference cloud. 90% of points from the SfM point cloud are within a
distance of 4 cm from the terrestrial 3D LiDAR point cloud and 60% of
points are within 1 cm of the terrestrial 3D LiDAR point cloud. This
result gave confidence that the SfM map was accurate and suitable for
map creation. Furthermore, using two sets of maps gives an indication
of whether localisation will be affected by scale. Further discussion on
this point can be found in Section 5.5.

6.4. Results and discussion

In the bridge environment, variation from the ground truth in the
robot trajectory and the associated uncertainty in the position can be
seen in Fig. 13, with most variation seen in the areas labelled D and C in
Fig. 13a. Similarly, the associated trajectory errors in the real bridge
environment are greater than the laboratory results, with values
varying between 2 cm and 10 cm. The maximum value for covariance is

also greater than in the lab environment, with values between 20 cm
and 1m, which covers a large portion of the bearing enclosure in
Fig. 13b. Again, the largest error and covariance occurs after in-
itialisation of the particles, with the largest error value of 9 cm pro-
duced by AMCL-SfM, and the largest covariance value of 1m, produced
by all methods. The error is slightly greater due to uncertainty in the
initial position given to the robot, but this error converges to within
3 cm of the ground-truth value after three time-steps. Errors in the in-
itial position guess occur due to the difficulty of measuring the location
by hand in the bridge environment. However, in practice a docking
station could be used to house the robot and create a repeatable starting
location.

The initial error for AMCL-LiDAR is lower than AMCL-SfM, but
slightly greater than AMCL-Hector and Hector SLAM (5 cm, 2 cm and
4 cm respectively). In addition, the covariance for AMCL-LiDAR takes
the longest to converge. This initial uncertainty is visible in Fig. 14a,
where the particles are spread over the majority of the bearing en-
closure and in Fig. 14b appear to split into two groups of particles re-
presenting the robot position. However, by Fig. 14c the covariance has
decreased to 20 cm (i.e., between the areas labelled A and B in Figs. 13
and 15). One potential reason for the greater uncertainty for AMCL-
LiDAR is that the available detail in the original point cloud is greater
than for the 2D LiDAR. Therefore, some features have been included in
the map that are not representative of what is visible for the 2D LiDAR,
and as a result, the AMCL particles group in the true position and an-
other position, but as the robot begins to move, it becomes apparent
which is the correct position and the certainty and error decreases.

An increase in error is observed at the points labelled B and C in
Fig. 15 (time-steps 60 and 100 in Fig. 15) as the robot turns towards the
less featured regions of the map (top left region of figures a–d in
Fig. 12). At these points, potential features in the map are at a distance
close to the maximum sensor range of the 2D LiDAR (6m). When
comparing the maps in Fig. 12 a–c, it is apparent that the sensor data
from the 2D LiDAR can reach some of regions of the map but not others,
which contributes to a greater error in the robot position. Although the
increase in errors are similar for all methods, the error for AMCL-SfM
does not recover as well as the other methods towards the end of the

Fig. 13. a): A comparison of the trajectories calculated using AMCL in the
bridge environment for three different maps (maps created using either SfM, 2D
LiDAR data and Hector SLAM). b): The same trajectory as in a) overlaid with
ellipses representing the covariance of the pose at each step. In the bottom right
of b), map points from the terrestrial 3D LiDAR scan are shown with a zoomed-
out view of b) to give a sense of scale of the trajectories relative to the bearing
enclosure.
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Fig. 14. The pictorial representation of AMCL-LiDAR plotted in RVIZ (ROS
visualisation software) showing the robot position within the 2D LiDAR map.
The covariance of the robot pose and robot orientation varies as the robot
moves around the map. Panel a) shows the robot position shortly after in-
itialisation of AMCL-LiDAR with particles widespread around the current guess
for robot position; panel b) shows the AMCL particles in two small groups, but
with misalignment in the current LiDAR data and the map there is uncertainty
in the current robot position; panel c) shows the particles converge to one
position and an improvement in the alignment of the current LiDAR data and
the map; panel d) shows an increase in the covariance for robot position and
orientation as the robot turns; panel e) is towards the end of the robot motion
and shows that AMCL-LiDAR is converged on the current robot position.
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trajectory at point D. In addition, the error at D for AMCL-SfM is higher
when the map resolution is increased to 1 cm/pixel. The map for AMCL-
SfM in these regions is noisier, but also the sensor data does not overlap
well, suggesting that the point cloud scaling is worse in these regions.
AMCL-SfM has the least detail in this region since the image features
used to create the SfM point cloud are far away are not as clear as
nearby features.

Otherwise, there appears to be little difference in the errors pro-
duced from AMCL-Hector and AMCL-SfM when increasing the map
resolution to 1 cm/pixel (Fig. 16). For AMCL-SfM, the error converges
quicker for the lower map resolution of 5 cm/pixel, but the error for
both resolutions of the AMCL-LiDAR maps match well. It is therefore
recommended that the map resolution of 5 cm/pixel is used for creating
the map as it allows some smoothing of noisy regions, but provides
adequate detail for localisation.

For the majority of the trajectory recorded in Figs. 13 and 15, the
error with respect to the ground-truth is equal to or below the desired
bound of 10 cm. However, for the method with the largest trajectory
error (AMCL-SfM) the error becomes greater than this bound. The
method with the lowest trajectory error is Hector SLAM, and the as-
sociated error is below this threshold at all times. However, since a
known map is required to give direction for inspection, the output from

Hector SLAM is combined with a AMCL-SfM by taking the average of
the trajectory coordinates from Hector SLAM and AMCL-SfM and
plotting the error of this new trajectory with respect to the ground-truth
trajectory (Fig. 17). By combining the two approaches, it is observed
that the averaged trajectory maintains a value below 6 cm for all time.
In addition, for the greatest error produced by AMCL-SfM (10 cm), the
equivalent error for the averaged trajectory is 4 cm and when Hector
SLAM spikes to 6 cm at time-step 50 in Fig. 17 the error for the aver-
aged trajectory remains below 4 cm. This solution is recommended to
provide robustness in the solution, particularly as a check when the
error for the trajectory calculated by AMCL approaches the 10 cm error
bound. In addition, if one of the individual methods fail, this solution
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Fig. 15. a: The error calculated between the ground-truth trajectory of the
robot and the trajectories calculated by AMCL-Hector, AMCL-LiDAR and AMCL-
SfM in the bridge environment, where the error is calculated for each point in
the ground-truth robot trajectory. Panel b): The covariance of the AMCL par-
ticles over time for the same approaches as in a), with the covariance value
being calculated from the greatest dimension of the covariance ellipses seen in
Fig. 9b.

Fig. 16. The error calculated between the ground-truth trajectory of the robot
and the trajectories calculated by AMCL-LiDAR and AMCL-SfM in the bridge
environment, where the error is calculated for each point in the ground-truth
robot trajectory. Map resolutions of 1 cm/pixel and 5 cm/pixel are compared
for both methods.

Fig. 17. The error calculated in the bridge environment between the ground-
truth trajectory of the robot and the trajectories calculated by AMCL-SfM,
Hector SLAM and a trajectory determined from the average of the two trajec-
tories.
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provides redundancy to reduce the risk of failure of the entire system.

7. Demonstration of inspection applications

Although localisation of the robotic platform in a bearing enclosure
is the main focus of this work, two inspection applications are con-
sidered here that address the specific requirements discussed at the
beginning of this paper, namely geometry monitoring and foreign ob-
ject detection and show a specific use-case for the robot.

7.1. Inspection application one: geometry monitoring of the bridge bearing

Stereo-pairs from the ZED camera are used to obtain 3D information
of points in the images and therefore monitor the geometry of the
bridge bearing. The work-flow for a proof-of-concept method for au-
tomating bridge-bearing monitoring is presented here.

First, a 2D image (left view) of the bridge bearing in the stereo pairs
is selected. During pre-processing, a Gaussian filter is applied to the
image; a Canny edge detector is then used to detect edges of the bearing
and a Hough line transform is applied to detect straight lines in the
image. The profiles of the bearing can then be obtained, from which 12
points are selected to determine the geometry of the bearing. These
points are the edge points of each edge of the bearing as shown in
Fig. 18a.

Secondly, the 3D locations of the 2D points in the 2D image can be
obtained using the ZED SDK. With such 3D locations, the dimensions of
each bearing edge can be obtained by computing the distances between

the mark points. The estimated dimensions are compared with ground
truths and shown in Fig. 18b.

From Fig. 18b, it can be seen that although most of the estimated
dimensions of the bearing are similar in magnitude to the ground truth
values, they are not accurate enough to use for inspection purposes. The
main reason is that the 3D locations of the data points are not well
estimated in the ZED SDK. It is expected to achieve better geometry
measurement results by employing more accurate depth computing
algorithms, which will be explored in future work. Another reason is
that the corner points of the bearing profile may not be accurately
detected. This is caused by the distortion effects of the stereo camera as
shown in Fig. 18a and inaccurate edge/corner detection. In the future
work, better preprocessing methods such as distortion correction and
filtering are expected to be included to improve the measurement ac-
curacy. By monitoring the changes in the bearing dimensions over time,
problems such as compression, rotating and moving out of position of
the bridge bearing, can be mitigated against before great damage is
caused to the bridge. In addition, if all proper considerations are taken
into account (e.g., the effect of changing light conditions and camera
perspective), this system will provide a more repeatable and compar-
able solution than current visual inspection methods.

7.2. Inspection application two: foreign object detection

One advantage of using cameras to perform the inspection of bridge
bearings is that extra details can be extracted that would otherwise be
difficult to record by hand. One example is detection of foreign objects
around the bearings, such as vegetation, rodents or litter. Debris and
vegetation is listed as a type of anomaly to be recorded when per-
forming inspections of bridge bearings [9]. In this section, a demon-
stration of change monitoring in the bearing enclosure using SfM is
performed.

7.3. Debris monitoring

To show the process of change monitoring, an object is artificially
introduced into the bearing enclosure. Once the object is introduced,
another dataset for SfM reconstructions are collected using the robotic
platform. This dataset is processed in the same manner as for the initial
stages of the map creation process in 5.3, and again the resulting dense
point cloud is loaded into CloudCompare, but in this instance only a
Cloud-Cloud distance calculation is performed. The new point cloud is
compared to the terrestrial laser scan in Fig. 19. A heat map shows the
differences in distances between the two point clouds and the debris is
clearly visible. Some regions in the heat map show large differences
between the point clouds that are unrelated to the foreign object. These
differences are due to gaps in the terrestrial scan point cloud caused by
occlusion when collecting the data since the scanner was unable to fit
inside the bearing enclosure, One advantage of using SfM rather than
terrestrial laser scanners is that it is potentially simpler to create a point
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Fig. 18. a) The twelve mark points selected for calculating the bearing di-
mensions. The edges of the edges are detected by Hough transform and shown
in red. The corner points of the bearing edges are selected and shown as crosses
and numbered from 1 to 12. b) The estimated bearing dimensions against the
ground truths (listed in the parentheses). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 19. A heat map resulting from the cloud-cloud distance calculation be-
tween the terrestrial LiDAR reference scan and the SfM scan with the foreign
object. Areas of large distance are shown by a range of colours in the heat-map.
The foreign object is clearly visible in the heat-map. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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cloud without occlusion because more viewpoints can be used to collect
the data.

8. Conclusions

Autonomous inspection offers opportunities for reducing the risk,
whilst also increasing the repeatability of bridge bearing inspection.
Using an pre-defined map is important for autonomous navigation to
allow targeted inspection. The map can be created from existing data,
such as 3D terrestrial scans data, which is particularly useful in en-
vironments where the robot cannot be tele-operated in order to create a
map. In this paper, 2D occupancy maps were created from 3D SfM
terrestrial LiDAR point cloud data.

A particle filter localisation approach called Adaptive Monte-Carlo
Localisation was used to localise the robot in each of the maps created
from point cloud data and also a map created from Hector SLAM.
Hector SLAM was also considered as an alternative solution to AMCL.
Two environments were considered for testing, a lab environment and a
real bridge environment.

In the laboratory environment, a typical trajectory error of 3 cm
with respect to the ground-truth was obtained for all methods, with the
largest error of 8 cm occurring on initialisation of the particle filter for
AMCL-SfM. Global localisation was also successful, but with a greater
error of 75 cm which was sustained for several time-steps and made it
unsuitable for use in a real bridge environment. An error bound of
10 cm was defined in the laboratory environment, with considerations
being made about operating in the real bridge environment.

In the bridge environment, the trajectory error was generally
greater than in the laboratory due to increased noise in the maps and in
the environment, with a typical error ranging between 1 cm and 8 cm.
However, all methods remained below the defined error bound, with
the exception of AMCL-SfM. However, by combining the worst per-
forming results from AMCL-SfM with Hector SLAM, a more robust
method for determining the trajectory is possible that keeps the tra-
jectory error below 6 cm throughout.

In addition to testing localisation and SLAM approaches in a real
bridge environment, two proof-of-concept approaches to visual in-
spection were briefly demonstrated to show potential applications of
the robot. One method showed how stereo pairs might be used to cal-
culate the geometry of the bearing and the second approach showed
debris monitoring by comparing SfM and terrestrial LiDAR point
clouds. These methods will be refined in future work.
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