
This is a repository copy of Examining Temporal Variations in Recognizing Unspoken 
Words using EEG Signals.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/133031/

Version: Accepted Version

Proceedings Paper:
AlSaleh, M.M.S., Moore, R., Christensen, H. et al. (1 more author) (2019) Examining 
Temporal Variations in Recognizing Unspoken Words using EEG Signals. In: 2018 IEEE 
International Conference on Systems, Man, and Cybernetics (SMC). 2018 IEEE 
International Conference on Systems, Man, and Cybernetics (SMC), 07-10 Oct 2018, 
Miyazaki, Japan. IEEE , pp. 976-981. ISBN 978-1-5386-6650-0 

https://doi.org/10.1109/SMC.2018.00173

© IEEE 2018. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Examining Temporal Variations in Recognizing Unspoken Words using

EEG Signals

Mashael AlSaleh,1 Roger Moore1, Heidi Christensen1, Mahnaz Arvaneh2

Abstract—Studies on recognising unspoken speech with the use
of electroencephalographic (EEG) signals vary in their designs.
The participants are either asked to imagine unspoken speech
within a specific time frame, or alternatively indicate the start and
end of the imagined speech. Optimizing the length and training
size of imagined speech is important to improve the rate and
speed of recognizing unspoken speech in on-line applications.
In this study, we recorded EEG data when the participants
performed unspoken speech of five words using two technologies:
(1) marking the start and end of the trial by using mouse
clicks and (2) performing the imagination in a four-second fixed
time window. Four classifiers were trained in all experiment
parts: support vector machine, naive bayes, random forest, and
linear discriminate analysis. The results show that the best time
frame is 3.5-4 seconds length. Moreover, the increase in training
size improve the average classification accuracy. However, this
improvement becomes slight between 125-175 total training trials.
The training data can be recorded in parts, however, the required
training size should be increased to have better classification
accuracy. In all analysis parts, random forest classifier shows
better results among the other classifiers.

Index Terms—EEG, Unspoken Speech, Temporal Features,
Training Size, Speech Recognition.

I. INTRODUCTION

Electroencephalographic signals (EEG) is commonly used

in Brain-computer Interface (BCI) systems to capture the

neural representation of intention, internal and imagined ac-

tivities that are not physically or verbally evident. Example of

these activities are: motor imaginary and speech imaginary.

Successfully capturing these neural activities in BCI could

potentially enable severely paralyzed people to interact with

the external world. The use of EEG in recognising motor

imagination tasks is well studied in the literature. Commonly,

these studies examine the classification between the imagi-

nation of the movement of the right hand, left hand, tongue

and feet. In motor imagination experiments, the participants

are asked to perform the motor imagination task continuously

for a specific amount of time. For example, in the most

popular dataset for motor imagination, the length of imagining

each body movement was 2.75 seconds [1]. In general, motor

imagination lends itself well to being continuously reproduced

as the patterns can be consistently repeated.

For speech imagination, several studies use EEG to capture

imagination of pronouncing words [2]–[4], syllables [5] and
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vowels [6]. In comparison with the motor task, the speech

task is discrete and short. The normal speech rate is 120-180

words per minute, about 0.5-0.33 seconds for every word [7].

This rate is around five times larger than that of the motor

imagination task described in [1]. As a result, capturing EEG

patterns related to speech events is challenging. The nature

of the speech task influences the design of unspoken speech

studies to get consistent and sufficiently long patterns.

In the literature related to the recognition of unspoken

words using EEG, the design of tasks can be divided into

three categories depending on the length and repetition of the

speech task. The first category is block recording, in which the

participant is informed before each block about the word that

should be imagined [3], [8], [9]. Thereafter, the participant is

asked to repeat the same word for a specific number of trials.

The trials are separated using either eye blinks as in [3], or

mouse clicks as in [9]. In addition to which type of separation

techniques is employed, the number of trials included in each

block for every word varies across studies; [3] used 45 and

[9] used 33.

The second category involves presenting a written or audio-

recorded word, syllable or vowel randomly to the participant.

After the stimulus disappears, the imagination should be

performed once within a specific time frame, which varies

between studies. For example, in [10], the participants were

given five seconds to imagine the pronunciation of a word.

For English vowel imagination, as in [6], it was two seconds,

whereas for Japanese vowel imagination, as in [11], it was

one second. In [5], the participants were instructed to imagine

syllables within a different time period on the basis of the

required rhythm. The presentation of the stimuli was repeated

randomly.

Recently, a new approach was presented for the online

recognition of “yes” and “no” [12]. The stimuli were a set

of questions, and the participant had to answer the questions

by imagining “yes” or “no”. Each trial lasted for 10 seconds,

and the participant repeated the imagination for an unlimited

number of times. Part of the training data was taken from a

previous session, and the rest of the training was recorded on

the same testing day. The training data that was recorded dur-

ing the testing day was augmented to increase its importance

compared to the training day data.

All of these previous studies are not consistent from two

experiment design perspectives:(a) the number of trials each

word should be imagined (training size), and (b) the length of

the imagination. The first perspective was examined partially

in [3] for the recognition of five words. The recording for

every word was performed in four modes: long blocks (20



repetitions), short blocks (5 repetitions × 4 blocks) or a single

pronunciation of ordered or randomised words for a total of

20 trials for each word. The results showed that only the

long-block recording resulted in an accuracy rate higher than

chance level (45 (%) for 5 words). Furthermore, a cross-

session examination was conducted for two participants. The

results show a chance level when the training was performed in

one-session blocks and the testing in another session blocks.

In this work [3], the researchers justified that the temporal

correlation between the trials in the long blocks makes the

recognition rate higher than short blocks or individual words

imagination.

This paper focuses on EEG based unspoken words recogni-

tion using block recording to address the following questions:

1) How does the choice of word separation technique affect

the classification accuracy?

2) What is the relation between the number of repetitions

(training size) and the classification accuracy?

3) How does the repetitions order affect the classification

accuracy?

4) How does the determination of the exact time of speech

imagination change the classification accuracy?

We believe that the answers to these questions are important

for improving recognition of unspoken speech as the EEG data

is known to vary between/within sessions and the recording

of a large amount of training is impractical. Moreover, long

calibration time and long recording sessions might affect the

quality of the data due to fatigue.

II. EXPERIMENT

A. Participants

The experiment was ethically approved from the Depart-

ment of Computer Science, University of Sheffield, UK. All

the participants have signed the consent form. Nine males

participated, and they were in the age range of 18-36 (M=22,

SD=4.6). Six of them were native speakers, and three had

studied English for an average of ten years. All the participants

disclosed that they were not suffering from any neurological,

psychological or heart problems and had not consumed any

drugs or alcohol in the 12 hours before the session time.

B. EEG Device

The Emotiv Epoc headset was used to record EEG data at

a sampling rate of 128 Hz. This headset is a wireless device

that consists of 14 channels. Based on the 10-20 system [13],

these channels are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,

FC6, F4, F8 and AF4.

C. Stimuli and Task

We chose the following five words: “Left”, “Right”, “Up”,

“Down” and “Select”. These words could be used to control

mouse cursor. In previous studies the recognition of these

words was examined in [9] for the Spanish language.

The participants were asked to imagine the pronunciation

of each word for a total of 100 trials (repetitions) during the

recording session. The participants were instructed not to move

any muscles or blink their eyes during the imagination period

(trial). The recording was divided into two parts on the basis

of how the trials were separated:

1) Mouse clicks (MC): Sixty trials (divided into two block of

40 and 20) were collected for every word. The participant

made one mouse click immediately before and after

each trial (i.e, the word imagination period). During the

recording, the time between the end of one trial and the

start of the next was decided by the participant and could

be used as the rest time for the participant.

2) Specified time frame (TF): Forty trials for every word

were collected as a block. The participants were given

four seconds to imagine the pronunciation for each word

followed by two seconds as the rest time between trials.

D. Procedure

Five participants started with the mouse click method, and

four started with the time frame method. The purpose was to

remove the effect of time and fatigue on the recognition rate.

Below, we explain the steps:

Mouse clicks (MC)

• The participant sat in front of a black screen which had

a grey “+” symbol on it, and was informed which word

he had to pronounce.

• When the recording started, the program counted 40 trials

of that word based on the number of clicks.

• The trial started when the participant made the first click,

performed the imagination and then made the second

click.

• After recording, one block of 40 trials for every word

in the following order: “Left”, “Right”, “Up”, “Down”

and “Select”. Another block for every word, including

20 trials, was recorded. However, the order of words was

changed to the following to remove the effect of word

order: “Up”, “Down”, “Select”,“Right” and “Left”.

Time frame word separation (TF)

• The trial started when “+” appeared on the screen for four

seconds. The participant had to imagine the pronunciation

of the identified word during the four seconds period.

When the “+” sign disappeared, it meant a two-second

rest time for the participant.The order of the words was

“Left”, “Right”, “Up”, “Down” and “Select”.

III. DATA ANALYSIS

A. Pre-processing

The data was filtered using a Butterworth (0.5-50 Hz) zero-

phased band-passed filter to remove any powerline noise,

and reduce the effect of electrooculography (EOG) or elec-

tromyography (EMG) artefacts. The same filter range had been

applied previously in [12] for classifying between two words

(yes and no). After that the trials were extracted from the

available channels. For all subjects, channels F7 and F8 have

been used as ground, whereas AF4 and AF3 were excluded

as they mostly recorded eye movements and blinks. For the



MC data, the trial was taken to be the samples between two

clicks. For the TF data, the trial was taken to be the samples

during displaying “+”. For every trial, baseline correction was

performed by subtracting the average EEG for 200 ms before

the trial. This is to ensure that there is no overlap between

the EEG signals of interest and the EEg signals that happened

before [14].

B. Feature Extraction

Discrete Wavelet Transform (DWT) has been applied in

several EEG studies. For example, epileptic seizure detection

[15], unspoken speech recognition [4], [9], emotion recogni-

tion [16], [17]. DWT decomposes the signal into detailed and

approximation coefficients by analysing the signal into differ-

ent frequency bands. This is performed by consecutive high-

pass and low-pass filters which are based on a selected mother

wavelet. In EEG studies, Daubechies2 (db2) or Daubechies4

(db4) have been used as the mother wavelet.

In this study we used (db4) with five decomposition levels

as this was proposed in [12] and [18] for classifying between

two words (yes and no). However, in this work we have

different numbers of resulting wavelet coefficients because

the participants can perform the imagination in different time

lengths. To make the number of features identical for all trials,

in [4], [19] it has been proposed to calculate the Relative

Wavelet Energy (RWE) for all the detailed coefficients and the

approximation coefficient to equalize the number of features.

However, the calculation of energy includes summation of

DWT coefficients which reduces the effectiveness of DWT

because it removes the temporal information included in the

coefficients [16]. Therefore, we applied statistics on the DWT

coefficients as proposed in [12] and [18]. More specifically,

we calculated the standard deviation (SD) and root mean

square (RMS) of DWT from every channel. Moreover, our

pilot analysis showed that compared to RWE these statistics

on DWT lead better classification results.

As we have 12 channels involved, with 6 DWT decompo-

sition levels (five detailed coefficients and one approximation

coefficient) from the DWT, the total number of features is

144 (12 EEG channels×6 decomposition levels×2 features i.e.

SD and RMS). In addition, for the MC data the number of

samples between the start and the end click was counted as

the imagination length feature.

C. Classification

To classify the five discussed words, four classifiers were

trained: Support Vector Machine (SVM), Naı̈ve Bayes (NB),

Random Forest (RF), and Linear discriminant analysis (LDA).

SVM depends on a discriminant hyperplane to distinguish

between classes. The margins between the classes can be

maximized based on hyperplane selection. This protects SVM

from over-training sensitivity or the curse of dimensionality

[20]. In this study we applied SVM with linear decision

boundaries which has been shown to be effective in several

EEG studies [20] [12].

NB classifier works based on the assumption that the

features related to every data point are strongly or naively

independent from each other. NB is one of the classifiers that

are depending on conditional probabilistic of Bayes theorem.

Each time before classifying a new instance, the probability of

each feature is calculated in relation to every class. Thereafter,

the instance is assigned to the class with the highest probability

[21]. NB has been used to classify unspoken speech in [4].

RF classifier creates a group of decision trees to vote for

the suitable class. The classifier is created based on a random

subset of the training data and randomly chosen features. After

that, each tree predicts the class as a voting unit. The final

decision is based on the majority voting. In this study the

number of trees used was 50 and the number of variables in

each node was log
2
(Numberoffeatures + 1) as suggested

in [4]. Also, RF has been used in [22] for envisioned speech

(object recognition) from EEG signals.

LDA classifer is similar to SVM in the use of hyperplane

to separate the classes. LDA works based on the assumption

that the data is normally distributed with identical covariance

matrix for both classes [20]. The separation between two

classes is achieved by finding the projection that reduces

the in-class variances and increases between-classes means.

In case of multi-class classification several hyperplanes are

used. LDA is simple and has relatively low computational

requirements and was successfully applied in several EEG

studies [20]. However, LDA is sensitive to dimensionality of

the classified data in relation to the proposed features. One

of the common problems in domains with small data sizes is

known as the singularity of the within-class scattering matrix

caused by high dimensionality [23].

The classification models were subject dependent and 10-

fold cross validation were used to evaluate them. However,

there was a difference in how training and testing sets were

selected in each part as will be discussed in the following

sections.

IV. RESULTS AND DISCUSSION

A. Classifying between five words separated using two differ-

ent methods

As it has been explained in the experiment procedure, the

participants pronounced the words in blocks where each block

represent specific word trials. For every word there are two

methods to separate the trials: mouse click and 4 seconds fixed

time frame (see section 2). Table I presents the average 10-

fold classification accuracy between the five words for the two

separation methods using four different classifiers. For every

word in each method, 35 trials were used for training and 5

trials for testing, all from the same block. Interestingly, for all

the classifiers using a fixed time frame gives higher average

classification accuracy. The maximum accuracy is 98.5% using

RF for subject 4 and the lowest accuracy was 40.2% using

SVM for subject 9. However, for subject 1 and 9 in some cases

the MC separated data outperform the TF separated data.RF

outperforms all classifiers in both MC and TF separated data.



TABLE I
10-FOLDS AVERAGE CLASSIFICATION ACCURACY TO CLASSIFY BETWEEN

FIVE WORDS FOR MOUSE CLICK SEPARATED DATA AND FIXED TIME FRAME

SEPARATED DATA; THE BEST RESULT FOR EVERY SUBJECT IS IN BOLD

Subject

Mouse Click Fixed Time Frame

[SVM] [NB] [RF] [LDA] [SVM] [NB] [RF] [LDA]

S1 68.8 73.1 87.2 58.7 61.3 74.3 86.4 49.7

S2 41.8 52.9 57.1 45.5 68.8 82.9 84.4 67.3

S3 50.3 64.1 69.8 55 60.8 72.4 88.9 58.3

S4 61.3 78.9 79.3 53.9 68.3 91 98.5 74.3

S5 37 44.4 54.6 33.8 55.4 76.9 80.4 51.8

S6 67.3 53 70.4 51.3 87.4 82.9 93.9 76.5

S7 48.6 54.5 60.9 46.1 68.4 66.9 83.5 54.9

S8 50.2 67.2 72 46 83.9 95 97 83.9

S9 49.8 67.2 73.1 56.6 40.2 59.8 73.8 40.2

Average 52.7 61.7 69.3 49.6 66 78 87.4 61.8

Table II shows that the difference between the classification

accuracies of the TF data and the MC data is statistically sig-

nificant for all the classifiers except LDA. This significant out-

performance of the TF separation approach can be explained

from two perspectives. First, the MC separated data includes

some activities related to the intention to click and the click

itself. In addition, the compared fixed time frame is 4 seconds

which is relatively long in comparison to the maximum time

every subject needed to do the imagination. More discussion

about the effect of time frame length is given in sections IV-B

and IV-D.

TABLE II
PAIRWISE T-TEST FOR EACH CLASSIFIER TO COMPARE BETWEEN THE

CLASSIFICATION ACCURACIES OBTAINED BY THE MC WORD SEPARATION

DATA AND THE FIXED TF WORD SEPARATION DATA

Classifier T-test

SVM p < 0.05
NB p < 0.01
RF p < 0.0001

LDA not significant

B. Effect of training size on classification accuracy

To examine the effect of training size on the classification

accuracy, 10-fold cross validation was performed for the MC

data as in each fold 5 trials per word were used for testing

while the training size was varied between 5, 10, 15, 20, 25,

30, and 35 trials per word. The four classifiers were trained

using variable sized data where the trials of each word came

from the same block.

Fig.1 shows the average cross-validation classification ac-

curacies of the for classifiers across different size of training

set. As can be seen, the highest improvement for SVM, NB,

and RF was obtained by increasing the number of training

trials from 5 to 10 per class. Thereafter, for the SVM classifier

the improvement is continued and the maximum accuracy

is obtained by using all 35 trials per class in training. For

NB and RF, the maximum accuracy is nearly achieved by

using 30 trails per class for training. Interestingly, in NB

and RF, the improvement in the average accuracy is less

the 2% after using 20 trails per class for training. LDA

behaved differently compared to the other classifiers where

the maximum accuracy was achieved with less training data

and the accuracy degraded until having 30 trials in training.

Thereafter, the average accuracy increased with 35 training

trials from every class. Using few training data, we can not

have optimal LDA classifier [24]. As a result, the well-know

problem of LDA classifier: the singularity of the within-class

scatter matrix appears and several studies in the literature

emerges to solve this problem as in [23]. As a result, the

reliable results of LDA starts with having 35 trials in training

as the number of training trials (175) becomes more than the

number of features (144).

For the TF data, the improvement in accuracy was evaluated

from two perspectives: training size, and frame length. Similar

to the MC data, the training size was varied, however, each

analysis was repeated using different imagination time frames

as the trial length (i.e. 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 seconds

immediately started from the beginning of the imagination).

In Fig.2, the behaviour of each classifier is presented. As

expected, for SVM, NB and RF the average accuracy increases

with the increase of training size regardless of the length of

the time frame. Interestingly, increasing the length of the time

frame also leads to an increase in the accuracy, although the

results of the 3.5 and 4 sec time frames are very closed (0.3 %

average difference). The relation between the increase in the

time frame and the improvement in the classification accuracy

can be justified as a longer time frame could improve the

estimation of DWT. This might be similar to the concept of

wavelet zero-padding [25] as we performed baseline correction

and the participants were instructed to perform the imagination

at the beginning of the time frame and have clear mind after

that. As a result, the end part of the time frame is most-likely

similar to adding zeros to the end of the time frame. Further

investigation is needed to prove this hypothesis. Similar trend

is observed for all the classifiers except LDA, perhaps because

LDA is more affected by training size as previously explained

for the MC data.
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Fig. 1. Average 10-fold classification accuracy (%) using different training
sizes for MC data using different classifiers.

C. The relation between repetitions order and classification

accuracy

In the MC data, 60 trails were recorded in two blocks:

40 and 20 trials for every word. We applied 10-fold cross

validation where the portion of training and testing data from
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Fig. 2. Average classification accuracy (%) of the TF data in classifying 5
imagined words, using different classifiers, when different training sizes and
different time frames are used

each block is proportional to the size of the block. From

Table III we can observe that the maximum average accuracy

achieved is 60.7% using RF and total number of training

270 trials. In comparison to Table I, if we use data from

the same block and 175 trials we can obtain 69.3% average

classification accuracy using RF. Moreover, in comparison to

Fig 1 62.5% using RF is achieved using 50 total training

trails. However, having each word recorded in one separate

block leads to a high temporal correlation in EEG patterns

across different words. Thus, recording using sub-blocks or

random representation is more representative as the temporal

correlation is reduced in EEG patterns of each class. This issue

has been investigated in [3].

D. The effect of imagination time on classification accuracy

In the MC data, the participant determined the start and the

end of the imagination trial using mouse clicks. Fig. 3 shows

the average time needed for each participant to imagine every

word. Across subjects, the average imagination length for the

five words are: 1.8, 1.5, 1.3, 1.5, and 1.6 seconds for the words:

“Left”, “Right”, “Up”, “Down”, and “Select” respectively.

As shown in Table IV, adding the imagination length as

an extra feature improves the average classification accuracy

for all the classifiers by an average of (2% - 4%), which

means that the imagination length is possibly an effective

TABLE III
10-FOLDS AVERAGE CLASSIFICATION ACCURACY TO CLASSIFY BETWEEN

FIVE WORDS FOR MC SEPARATED DATA; USING TRAINING AND TESTING

DATA MIXED FROM TWO DIFFERENT BLOCKS FOR EACH WORD.

Subject

Average classification accuracy

[SVM] [NB] [RF] [LDA]

S1 52.3 50.6 68 48

S2 51.6 41 53 50.6

S3 41.6 46.6 57.3 46.3

S4 53.6 57.3 72.6 50.6

S5 29.3 31.3 46.3 38.3

S6 58.3 44.3 73.6 56.6

S7 49.6 49 52.3 46.6

S8 41 49.3 59.3 38

S9 40.6 37.3 64.3 43

Average 46.4 45.1 60.7 46.4

TABLE IV
10-FOLD AVERAGE CLASSIFICATION ACCURACY (%) USING DIFFERENT

FEATURES FOR MC DATA BY USING 35 TRAINING TRIALS FOR EVERY

WORD.

Feature SVM NB RF LDA

DWT 52.7 61.7 69.3 49.6

Imagination length 35.4 34.8 28.5 34.8

DWT and Imagination length 56.6 64.3 71.4 47.9

feature for classifying the words. However, applying t-test

shows that for none of the classifiers this improvement is

statically significant. Importantly, the examination of how the

imagination length for each word may vary across blocks

recorded needs to be investigated because the learning curve

might affect how the subjects perform the imagination task.

In Table V we examined the effect of having subject specific

TF. This TF was adopted by reducing the fixed time frame

to a length that is approximately equal to the maximum

average length the participant needed in mouse click separated

imagination for any of the imagined words (from figure 3).

In Comparison to the classification accuracies in Table I,

the results are statically significant only for RF classifier in

comparison to MC word separation. This also approves what

we explained in section IV-B that long fixed time frame

provides low frequencies in the extracted time window to help

in distinguishing EEG patterns related to speech.
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Fig. 3. Average imagination time in second using 40 trials from every word

V. CONCLUSION

This paper addresses several issues related to the design of

unspoken speech studies in a block recording mode where the



TABLE V
10-FOLDS AVERAGE CLASSIFICATION ACCURACY TO CLASSIFY BETWEEN

FIVE WORDS WHERE FOR EACH SUBJECT THE TIME FRAME IS ADOPTED TO

THE AVERAGE TIME FRAME FOR THE WORD WITH THE MAXIMUM LENGTH

IN MC

Subject

Average length of the word

with maximum length

Fixed time frame

[SVM] [NB] [RF] [LDA]

S1 2.5 54.8 67.9 86 45.3

S2 1.5 60.7 64.2 72.8 53.9

S3 1.5 54.8 66.8 69.7 56.8

S4 1.5 55.7 85.3 91.4 62.2

S5 1.5 43.3 64.3 68.3 46.2

S6 3 87.4 79.9 91.9 75.3

S7 1.5 59.8 63.3 79.9 54.3

S8 1 71.8 91.5 92.4 65.4

S9 2.5 38.2 55.2 65.3 32.6

Average 1.8 58.5 70.9 79.74 54.6

trials separated using mouse click and fixed time frame. First,

we examined the relation between training size (5-35 trials)

and the classifier performance using the dataset collected by

imagining 5 different words and 4 classifiers. Due to the

limitation in the collected number of trials for each word,

we did not observe any saturation in the classification across

different number of training trials. However, the results show

that the rate of improvement in accuracy gets very small when

we move from 25-35 training trials for each class. On contrast,

this improvement is increasing sharply when we increase the

training from 5-15 trials for every class. For all training sizes

and both data separation methods, Random Forest classifier

provides the highest average classification accuracy. Second,

for fixed TF separation, we found that the longest time frame

provides DWT features that lead to best results. In our results

3.5-4 seconds gives the maximum average accuracy. Third, the

system was trained using data from two blocks recorded in the

same session but more training trials needed to get equivalent

performance to classification using one block. Finally, the use

of MC to separate the words showed that the imagination

speech rate was less than real spoken speech as the participants

needed 1.8 seconds on average to imagine the longest word

even after removing the time needed to do mouse click (on

average 100 ms for male adults [26] ).

Future work will include the examination of random words

presentation instead of blocks. In [3], it has been discussed that

the recognition of random words is difficult. This examination

will involve the classification accuracy as well as answering

how the word randomization will affect the extracted features.
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