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ABSTRACT

We examine the dynamical evolution of both Plummer sphere and substructured (fractal)

star-forming regions in Galactic Centre (GC) strong tidal fields to see what initial conditions

could give rise to an Arches-like massive star cluster by ∼2 Myr. We find that any initial

distribution has to be contained within its initial tidal radius to survive, which sets a lower

limit of the initial density of the Arches of ∼600 M⊙ pc−3 if the Arches is at 30 pc from the

GC, or ∼200 M⊙ pc−3 if the Arches is at 100 pc from the GC. Plummer spheres that survive

change little other than to dynamically mass segregate, but initially fractal distributions rapidly

erase substructure, dynamically mass segregate and by 2 Myr look extremely similar to initial

Plummer spheres, therefore it is almost impossible to determine the initial conditions of

clusters in strong tidal fields.

Key words: methods: numerical – stars: formation – Stars: kinematics and dynamics –

Galaxy: centre – open clusters and associations: individual: the Arches cluster.

1 IN T RO D U C T I O N

When we observe star clusters, we almost always see that they

are relaxed, dense, and spherical objects (de Grijs et al. 2002a,b,c;

Lada & Lada 2003; Gouliermis et al. 2004; Sana et al. 2010; Pang

et al. 2013), but star-forming regions are clumpy, filamentary, and

substructured (Elmegreen 2002; Cartwright & Whitworth 2004;

McKee & Ostriker 2007; Zinnecker & Yorke 2007; Schneider et al.

2012; Könyves et al. 2015). This has led to a possible picture of star-

cluster formation as the merger/relaxation of substructure, however

simulations of this have so far been without tidal fields which is

a reasonable approximation to the Solar Neighbourhood (Allison

et al. 2009a; 2010; Parker, Goodwin & Allison 2011; Parker et al.

2014).

The Arches and Quintuplet clusters (Figer, McLean & Morris

1999; Figer et al. 1999, 2002; Najarro et al. 2004) are examples

of young massive star clusters we observe near the Galactic Centre

(GC) where the tidal field is extremely strong. In particular, the

Arches cluster is a well-studied young (2–4 Myr; Najarro et al.

2004; Martins et al. 2008), massive (∼2 × 104 M⊙; Kim et al.

2000; Clarkson et al. 2012), and mass-segregated (Figer et al. 1999;

Stolte et al. 2002; Kim et al. 2006; Espinoza, Selman & Melnick

2009; Habibi et al. 2013; Hosek et al. 2015) star cluster with a

projected distance of ∼30 pc from the GC.

In this paper we investigate the possible initial conditions that

could produce an Arches-like star cluster close to the GC in the

⋆ E-mail: smp.smpark@gmail.com (S-MP); sungsoo.kim@khu.ac.kr (SSK)

presence of a very strong tidal field. We perform N-body simulations

of both fractal and Plummer distributions with a range of initial

sizes at a variety of distances from the GC. Our goal is to see what

possible range of initial conditions could give rise to a cluster like

the Arches, and which could not.

2 M E T H O D

We simulate the early dynamics of star clusters using Aarseth’s

NBODY6 code (Aarseth 1999) with full (non-truncated) tidal forces

(Kim et al. 2000). We simulate both smooth (Plummer sphere) and

clumpy (fractal) initial conditions at distances of 30 and 100 pc,

respectively, from the GC.

Star clusters are evolved for 2 Myr, the (minimum) age of the

Arches cluster (Najarro et al. 2004; Martins et al. 2008); these

simulations are computationally expensive which sets this fairly

short time-scale.

2.1 Tidal forces

The tidal radius is the distance from the centre of the star clus-

ter where the gradient of the effective potential is locally zero.

Therefore, outside the tidal radius, stars are influenced more by the

external potential of the Galaxy than that of the cluster. Often, tidal

fields are modelled simply by applying a cut-off at several tidal radii

beyond which stars are ‘lost’ (i.e. removed from the simulation).

However, in a strong tidal field such as we are simulating, there is

a significant tidal force within the tidal radius, therefore it is im-

portant to fully include the Galactic potential (i.e. the variation of

C© 2018 The Author(s)
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the orbital angular velocity across the cluster as given by equation

3 below cannot be ignored).

Note that throughout, when we refer to ‘tidal radius’ we mean the

tidal radius for a point mass. In situations where a cluster extends

over the ‘tidal radius’ the mass interior to the ‘tidal radius’ is less

than we assume.

The Galactic potential is constructed using Oort’s A and B con-

stants (Oort 1927):

A(RG) = −
1

2
RG

d�(RG)

dRG

,

B(RG) = −

{

� +
1

2
RG

d�(RG)

dRG

}

, (1)

where RG is the Galactocentric distance, and � is the orbital angular

velocity. To calculate these constants near the GC, Kim et al. (2000)

make two assumptions.

First, the Galactic enclosed mass (MG) profile at RG follows a

power law (Kim, Morris & Lee 1999):

MG = 5.5 × 107 M⊙

(

RG

30 pc

)1.4

,

MG = 6.4 × 108 M⊙

(

RG

100 pc

)1.6

, (2)

where 5.5 × 107 and 6.4 × 108 M⊙ are the enclosed masses at 30

and 100 pc, respectively, from the GC. We determine these enclosed

masses from Launhardt, Zylka & Mezger (2002; their fig. 14).

Secondly, the star clusters are moving in a circular orbit so that

their orbital angular velocity is

�(RG) =
1

RG

√

GMG(RG)

RG

, (3)

where G is a gravitational constant. By using equation (3), we can

obtain Oort’s constants for equation (1)

A = −
α − 3

4
�(RG),

B = A − �(RG), (4)

where α is the power-law index of equation (2). And the tidal radius,

Rt, of the star cluster is

Rt =

{

GMc

4A(A − B)

}1/3

, (5)

where Mc is the cluster total mass (Aarseth 1999).

Kim et al. (2000) also consider the effective potential for a re-

alistic Galactic tidal force. It includes the differential gravitational

potential and the centrifugal potential in an acceleration form:

d2
Rc

dt2
=

2GMc Rc

RG
3

− � × (� × Rc), (6)

where Rc is the total cluster radius. The first term is the differen-

tial gravitational potential and the second term is the centrifugal

potential.

2.2 Cluster mass and IMF

We simulate clusters of mass ∼2.0 × 104 M⊙ from the best-fitting

model for the Arches from Kim et al. (2000). We set the total number

of stars to be N= 31000, and randomly select stellar masses from

the Maschberger (2013) initial mass function between 0.01 and

100 M⊙. This results in a total cluster mass ∼2.0 × 104 M⊙.

Masses are initially distributed at random in the clusters

(i.e. there is no primordial mass segregation, but we do ex-

amine if mass segregation occurs dynamically during the

evolution).

2.3 Initial distributions

We use both Fractal (Goodwin & Whitworth 2004) and (spheri-

cal) Plummer (Plummer 1911; Aarseth, Hênon & Wielen 1974)

distributions for the initial distributions.

Fractal initial conditions are chosen as a (hopefully) reasonable

approximation to realistic substructured distributions that follow

the turbulent gas in star-forming giant molecular clouds (GMCs)

(although we note that in the environment of the GC it is not obvious

that GMC structure would be the same as we observe in the outer

Galaxy). A Plummer sphere is chosen as it is a simple model that

fits the relaxed distributions of older star clusters, as shown by e.g.

Allison et al. (2010) and Parker, Goodwin & Allison (2011) bound

fractal distributions rapidly relax into a Plummer-like configuration

in the absence of a strong tidal field (as we show below the same

is true in strong tidal fields as long as the initial distribution is

contained).

A Plummer sphere is a simple model similar to the current state

of the Arches. It is defined by the total mass and a scale radius

(we use the half-mass radius). Formally the Plummer sphere is

infinite in extent, however if a truncation radius is set to be sev-

eral scale radii then they are relatively stable. Plummer spheres

are set up using the prescription of Aarseth, Hênon & Wielen

(1974).

Fractals are constructed following Goodwin & Whitworth (2004).

A box fractal is constructed in a cube and a sphere is cut from

the cube and scaled to the desired total size. Velocity structure is

produced by inheriting velocities (plus a small random component)

from a parent during the generation of the box fractal. This produces

locally correlated velocities which are then scaled to the desired total

virial ratio. We use moderately substructured initial distributions

with fractal dimension D = 2.0.

The characteristic size/density of a Plummer sphere is set by

the half-mass radius, Rh, and the total cluster radius Rc is rather

unimportant as long as it is several Rh (as density drops rapidly

beyond the half-mass radius). However, for fractals the important

scale radius is the total cluster radius Rc as that contains all of the

mass, the half-mass radius is poorly defined and rather unhelpful

as the mass distribution within Rh is clumpy. Therefore, while we

quote both Rh and Rc for both Plummers and fractals the important

radii are Rh for Plummers, and Rc for fractals.

A note on gas. Our simulations are purely N-body and do not

include any contribution from gas left over after star formation.

This is mainly a computational limitation in that even pure N-

body calculations are expensive, and N-body plus hydro would be

significantly more-so. However, given the results of our simulations,

we return in the discussion to an argument that the star formation

efficiency must have been high as any distribution must be contained

within its tidal radius to survive.

2.4 Initial internal energy

We set the initial internal energy of our star clusters using the

isolated global virial ratio, Q. That is, the ratio of kinetic to potential

energies of the clusters if they were in isolation.
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Table 1. A summary of initial conditions for the simulations at 30 pc from

the GC. Rt is the nominal tidal radius, Rc is the total (outer) cluster radius,

Rh is the half-mass radius, and Q is the virial ratio.

Model Rt Rc Rh Q

Fractal ∼2.0 pc ∼4.0 pc ∼3.0 pc 0.3

∼2.0 pc ∼1.0 pc 0.5

∼2.0 pc ∼1.0 pc 0.3

∼1.0 pc ∼0.7 pc 0.5

Plummer ∼2.0 pc ∼4.0 pc ∼3.0 pc 0.5

∼2.0 pc ∼1.0 pc 0.5

∼1.0 pc ∼0.7 pc 0.5

Table 2. A summary of initial conditions for the simulations at 100 pc from

the GC. Where Rt is the tidal radius, Rc is the total (outer) cluster radius, Rh

is the half-mass radius, and Q is the virial ratio.

Model Rt Rc Rh Q

Fractal ∼3.0 pc ∼4.0 pc ∼3.0 pc 0.5

∼4.0 pc ∼3.0 pc 0.3

∼3.0 pc ∼2.0 pc 0.5

∼3.0 pc ∼2.0 pc 0.3

∼2.0 pc ∼1.0 pc 0.5

∼2.0 pc ∼1.0 pc 0.3

∼1.0 pc ∼0.7 pc 0.5

Plummer ∼3.0 pc ∼3.0 pc ∼2.0 pc 0.5

∼2.0 pc ∼1.0 pc 0.5

∼1.0 pc ∼0.7 pc 0.5

For Plummer spheres we always use Q = 0.5 (virialized), but for

fractal distributions we use cool (Q = 0.3) and tepid1 (Q = 0.5).

Fractals in isolation will shrink in size by a factor of several, erasing

substructure and reaching virial equilibrium (Allison et al. 2009a).

2.5 Summary of initial conditions

We simulate ∼2.0 × 104 M⊙ (N = 31000) clusters for 2 Myr in

a realistic strong tidal field 30 pc and 100 pc from the GC. Our

initial distributions are virialized Plummer spheres, and both cool

and tepid D = 2.0 fractal distributions. A detailed summary of the

initial conditions that we use is given in Tables 1 and 2.

2.6 The mass-segregation ratio, �MSR

Mass segregation is a more concentrated distribution of more mas-

sive stars than lower-mass stars. There are a number of ways of

attempting to quantify if the massive stars are distributed differ-

ently, but probably the most useful is that of Allison et al. (2009b)

as it makes no assumptions about the underlying density distribution

of stars or require a ‘centre’ to be determined (Parker & Goodwin

2015).

Allison et al. (2009b) introduced the mass-segregation ratio

�MSR. The value of �MSR is a measure of how much more con-

centrated a particular set of the N most massive stars compared to

many sets of N random stars of any mass. The ‘length’ of the distri-

bution is the length of the minimum spanning tree (MST) between

the N members of a set. The value of �MSR is the ratio of the length

of the MST of the N most massive stars, lmassive to that of the average

1Note that Q = 0.5 is a virial balance of energies, but due to the fractal

distribution these regions are not in equilibrium.

of many sets of N random stars, 〈lnorm〉

�MSR =

〈

lnorm

〉

lmassive

±
σnorm

lmassive

. (7)

How unlikely it is that lmassive is drawn from the distribution of

random values is given by the 1σ standard deviation of 〈lnorm〉. If

�MSR ∼ 1 (within the ‘errors’) then there is no significant difference

between the distributions of the most massive stars and random stars,

when �MSR is significantly >1 then the most massive stars are more

concentrated.

3 R ESULTS

We are interested in what initial conditions give rise to clusters that

look similar to the Arches after ∼2 Myr in a strong tidal field. First,

we will examine how clusters survive and evolve at 30 pc from the

GC, and then compare this with similar initial conditions at 100 pc

from the GC.

3.1 Clusters at 30 pc from the GC

3.1.1 Well-contained clusters

We define a ‘well-contained’ cluster to be the one which is initially

well within its initial tidal radius (i.e. a cluster that would probably

be expected to survive).

A dense, virialized Plummer sphere. Let us first examine the

evolution of ‘standard’ initial conditions (i.e. initial conditions that

are close to the currently observed state of the Arches). That is;

a virialized Plummer sphere whose initial size is smaller than its

(nominal) tidal radius (Rc = 1 pc, and Rh ∼ 0.7 pc).

In Fig. 1, we show the initial conditions at T= 0 Myr in the left-

hand panel, and the ‘final’ state at T= 2 Myr in the middle panel (we

will explain the right-hand panel shortly). The majority of stars are

shown by black dots, and the 10 most massive stars by red triangles.

The black circle around the cluster shows the size of the initial

tidal radius (Rt). As stars escape beyond the tidal radius the interior

mass decreases and the tidal radius decreases, but for ease of com-

parison between panels we keep the circle at the size of the initial

tidal radius.

The viewpoint in all of our figures similar to Fig. 1 is viewing

down from above the Galactic plane (i.e. viewing the plane of the

orbit). It is worth noting that this is not the view we have of the

Arches cluster and the GC as we lie in the same plane, rather it

is the view one might have of nuclear clusters in face-on galaxies.

Moving to a viewpoint similar to our own adds many complications

as there are many viewing angles we might have. In this paper we

only view from above the Galactic plane (but we will return to the

effect of viewing angles in a later paper).

In 2 Myr the dense Plummer sphere has not evolved significantly.

In the middle panel it is obvious by visual inspection that two tidal

tails have formed, and also that the massive stars have dynamically

mass segregated. But there is no very significant difference between

the cluster at 0 and 2 Myr. The fraction of stars lost over the tidal

boundary is roughly 7 per cent of the stars by number (but somewhat

less by mass, see below).

Interestingly, Hosek et al. (2015) find that the Arches cluster does

not have an observable tidal tail. At face value this might rule out

the Arches being at 30 pc from the GC as our simulated cluster quite

clearly has a tidal tail. However, Hosek et al. (2015) are only able

to observe stars more massive than ∼2.5 M⊙. When we apply this

observational limit in the right-hand panel of Fig. 1, we see that the
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Figure 1. The evolution of an Rc = 1 pc, virial (Q = 0.5) Plummer cluster at 30 pc from the GC. The black dots are stars and the red triangles the 10 most

massive stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively,

and the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr (an ‘observational’ limit; see the text for explanation).

Figure 2. The mass functions (MFs) of a final distribution of Plummer star

cluster (the right-hand panel of Fig. 1). The blue solid line is all stars, and the

red line is only stars inside the tidal radius (Rt) of this cluster. The vertical

dotted line shows the 2.5 M⊙ ‘observational’ selection limit.

tidal tail is now barely visible (∼96 per cent of stars in the tidal tail

are <2.5 M⊙).

This is mostly due to the vast majority of stars in our initial mass

function (IMF) being <2.5 M⊙, but is enhanced by dynamical mass

segregation (i.e. none of the most massive stars are in the tidal tail).

Mass segregation causes a difference between the half-mass ra-

dius measured in stars >2.5 M⊙ of ∼0.5 pc, compared to the ‘true’

half-mass radius from all stars of ∼0.6 pc. This suggests that a half-

mass radius measured from only intermediate and massive stars

could well underestimate the true half-mass radius by ∼20 per cent.

Fig. 2 shows the MFs of all stars (blue histogram), and only stars

within the nominal tidal radius (red histogram). The mass function

of stars within the tidal radius is very slightly different with slightly

fewer low-mass stars than in the full IMF. However, this would be

essentially impossible to actually detect as (a) the difference is very

small, (b) the difference occurs at the very low-mass/low-luminosity

end of the mass function that would be extremely difficult to ob-

serve, and (c) once away from the ‘cluster’ contamination from

‘background’ stars would be almost impossible to disentangle.

A dense, tepid fractal cluster. Next, we run a simulation with

clumpy substructure, with a fractal dimension D = 2.0 and virial

ratio Q = 0.5. The total radius of this fractal distribution is

Rc = 1 pc, i.e. the same total radius as the dense Plummer sphere

above.

In Fig. 3 we show the evolution of this dense and tepid fractal

star cluster to compare directly with Fig. 1. In the left-hand panel,

we can see a clumpy and substructured star cluster. The middle

panel shows the total final distribution at ∼2 Myr, and right-hand

panel shows the final distribution with the ‘observational’ 2.5 M⊙
cut. In this case, ∼10 per cent of stars (by number) have escaped

from the star cluster, and ∼96 per cent of the stars in the tidal tails

are <2.5 M⊙.

It is worth noting that the initial fractal distribution does not seem

quite centred in the tidal radius circle (this becomes more obvious

in some later figures). This is an artefact of the fractal generation

procedure as it is a sphere cut from a cube whose centre of mass is

often not at the centre of the sphere. The centre of mass of the fractal

is at the centre of the tidal radius circle, although this is sometimes

not obvious to the eye.

The fractal distribution rapidly evolves into a compact, smooth,

and spherical star cluster within the tidal radius (cf. Allison et al.

2009a). Again, there is a clear tidal tail if all stars are observed, but

one that is barely present when applying the ∼2.5 M⊙ cut. And

again, the half-mass radius measure for all stars or stars >2.5 M⊙
is different (this time 0.5 pc for all stars, and 0.4 pc for the more

massive stars).
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Figure 3. The evolution of an Rc = 1 pc, tepid (Q = 0.5) fractal cluster at 30 pc from the GC. The black dots are stars and the red triangles the 10 most massive

stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively, and

the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

Note that the fractal distribution decreases in size. A fractal distri-

bution, even with a ‘virial’ energy balance, is not in equilibrium. It

will undergo violent relaxation which erases substructure and redis-

tributes the potential energy in the substructure. This is explained in

detail in Allison et al. (2009a), but essentially the potential energy

of a distribution is ηGM2
c /R, where R is a scale radius, and η is

a constant that depends on the density distribution: for a Plummer

sphere η ∼ 0.75 if R is the Plummer radius, but in a very clumpy

fractal η ∼ 1.5. Therefore if the virial ratio remains the same R

must fall by a factor of 2 after violent relaxation from a fractal to a

Plummer-like distribution as η has changed (This is rather stochas-

tic as the exact value of η depends on the particular details of each

fractal realization.)

The final state at 2 Myr of the dense Plummer sphere and the dense

fractal are qualitatively and quantitatively very similar. After erasing

the initial substructure, it is essentially impossible to distinguish the

simulations at 2 Myr (The particular fractal initial conditions we use

give rise to a slightly denser final cluster, but we could easily ‘fine-

tune’ either set of initial conditions to produce an almost identical

final cluster.)

Mass segregation in high-density clusters. Fig. 4 shows the evo-

lution of mass segregation as measured by �MSR (see Section 2.6) as

a function of time for four subsets of NMST = 10, 50, and 150 (solid

line, dotted, and dashed) most massive stars in the Plummer (upper

panel) and fractal (lower panel) clusters.2 To determine �MSR we

use stars more massive than 2.5 M⊙ that are within two tidal radii.

In both cases, 10 and 50 most massive stars dynamically mass

segregate in 2 Myr (full line and dotted line, respectively). The

fractal shows slightly more mass segregation than the Plummer

sphere, but the difference is not particularly significant.

2The masses of 10th, 50th, and 150th most massive star are ∼53, ∼25,

and ∼11 M⊙, respectively.

Figure 4. The evolution of �MSR as a function of time for the 10, 50, and

150 (solid line, dotted, and dashed) most massive stars in Figs 1 and 3.

The upper panel shows a Plummer star cluster, and the lower panel shows

a fractal star cluster. The error bar means 1σ error. We plot error bars only

for 10 the most massive stars for clarity. The red solid line shows no mass

segregation (�MSR = 1).
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Figure 5. Final density distributions inside the tidal radius of stars >2.5 M⊙ shown by the dots. The initial Plummer sphere is on the left (Fig. 1), and initial

fractal (Fig. 3) is on the right. The dashed lines are Plummer models, and the black line is a power-law slope.

It is worth noting that in Fig. 1 we show only one realization of

the initial conditions. Because Plummer spheres are simple, spheri-

cal models differences between different realizations are small and

are only different in the initial locations of the most massive stars.

Fractals, however, have stochasticity in the initial (position and ve-

locity) structure as well as the placement of the most massive stars,

therefore they show much more variation between different realiza-

tions (see e.g. Allison et al. 2010). At these densities, whilst there

are differences between different realizations, the high density of

the fractal initial conditions means that later dynamical evolution

dominates over stochasticity in the initial conditions and all real-

izations of even the fractals are fairly similar at 2 Myr and what we

have plotted is a typical example of the evolution of �MSR.

3.1.2 Density profiles

Another slight, but potentially observable, difference between the

initial Plummer sphere and initial fractal is the density profiles of

the final clusters.

In Fig. 5 we show the final density profiles of the initially

well-contained Plummer sphere on the left, and the initially well-

contained fractal on the right. To match what might be observable,

we determine the profiles only from stars >2.5 M⊙, and inside the

tidal radius (Rt ∼ 2 pc).

On the left is the profile of the cluster resulting from the initial

Plummer sphere which has kept a density distribution very similar

to that with which it started (with some, unsurprising, evidence of

tidal truncation at large radii).

On the right is the profile of the initially fractal region (which

underwent violent relaxation and erased its substructure) and its

final density profile is somewhat steeper with a power-law de-

cline, and a Plummer model is not a particularly good fit to the

profile.

Hosek et al. (2015) find that the outer density profile of the

Arches is fitted well by a power law (see their fig. 14) rather than a

King model (i.e. a tidally truncated Plummer-like model). Their fit is

more similar to our results for what was initially a fractal, but we are

hesitant to make too much of this as it is quite possible that small

adjustments to the initial Plummer sphere’s density profile could

reproduce the observations as well. However, it is interesting that

the observed profile is what is expected of a post-violent relaxation

clumpy distribution.

3.1.3 Just-contained clusters

It is no particular surprise that bound clusters initially well-

contained within their tidal radius are able to survive. Therefore,

we now examine clusters that are just contained within their tidal

radius (and so are larger and less dense than the ‘well-contained’

clusters considered above).

A virialized just-contained Plummer sphere. In Fig. 6 we show

the initial and final states of an intermediate density virialized Plum-

mer sphere with total radius Rc = 2 pc (cf. Fig. 1). It is clear from

Fig. 6 that the initial distribution fills the initial tidal radius (al-

though the circle indicating the tidal radius in Fig. 6 is rather hard

to see).

After 2 Myr, the just-contained virialized Plummer sphere has

not survived as a cluster (middle and right-hand panels of Fig. 6).

In this case, as the intermediate-density virialized Plummer sphere

initially fills the tidal radius, stars in the outskirts are more affected

by Galactic tidal field than those in the inner region, so stars in

the outskirts can escape through the Lagrange points. The more

stars escape, the smaller the tidal radius becomes, and the mass-loss

becomes more rapid, and so-on.

A tepid just-contained fractal. In Fig. 7 we show the initial and

final states of an intermediate density tepid (Q = 0.5) fractal with

total radius 2 pc (compare with Fig. 3), we can see a surviving star

cluster within the tidal radius unlike Fig. 6. A single cluster remains

after 2 Myr which is not as mass segregated as in the high-density

case (compare with Fig. 3). In this case, ∼53 per cent of stars (by

number) escape from the star cluster, and again ∼96 per cent of the

stars in the tidal tails are <2.5 M⊙.

The reason the intermediate-density fractal could survive is that

it undergoes a rapid collapse and erasure of substructure resulting

in a denser final Plummer-like sphere than the initial just-contained

Plummer sphere which was destroyed.

Here we have an apparent difference between Plummer sphere

and fractal initial conditions, but it is (again) quite minor. A slightly

more extended fractal would be destroyed (see below), and a slightly

more compact Plummer sphere would survive. But, because of the

collapse of fractals they are able to survive with slightly more

extended initial distributions.

Mass segregation. As noted above, for the initial Plummer

spheres, just-contained initial conditions cannot survive for 2 Myr.

In the fractal case where they can survive, one difference be-
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Figure 6. The evolution of an Rc = 2 pc, virial (Q = 0.5) Plummer cluster at 30 pc from the GC. The black dots are stars and the red triangles the 10 most

massive stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively,

and the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

Figure 7. The evolution of an Rc = 2 pc, tepid (Q = 0.5) fractal cluster at 30 pc from the GC. The black dots are stars and the red triangles the 10 most massive

stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively, and

the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

tween initially well-contained and just-contained clusters is the

degree of mass segregation observed after 2 Myr (a visual inspec-

tion of Fig. 7 shows much less apparent mass segregation than in

Fig. 3).

Earlier we discussed only one realization of a fractal cluster

as the dynamical age of the initially well-contained clusters means

there is little variation between realizations. However, there is rather

more variation in the final states of the lower-density and just-
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Figure 8. The evolution of an Rc = 2 pc, cool (Q = 0.3) fractal cluster at 30 pc from the GC. The black dots are stars and the red triangles the 10 most massive

stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively, and

the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

Figure 9. The evolution of �MSR as a function of time for the 10 most

massive stars with 10 ensembles of tepid (Q = 0.5) fractal initial condition at

30 pc from the GC when Rc ∼ Rt. Coloured solid lines mean each ensemble.

Black dotted line indicates no mass segregation. We plot the 1σ error bars

only one case for clarity.

contained clusters as they are dynamically younger at 2 Myr than

well-contained clusters.

Therefore, in Fig. 9 we plot the evolution of �MSR for each of

10 different realizations fractal initial conditions: each differently

coloured line is a different realization (in each case �MSR is de-

termined for the 10 most massive stars compared to stars 2.5 M⊙
within two tidal radii, as above).

In Fig. 9 we see that there is a lot of variation in �MSR between

realizations after ∼1 Myr with around half of clusters showing very

significant mass-segregation signatures, and half no signature. This

is due to both the ejection of a high-mass star, or the constant

formation and destruction of higher-order Trapezium-like multiples

(see Allison & Goodwin 2011).

A cool just-contained fractal. In Fig. 8 we show the initial and

final states of the same fractal distribution as in Fig. 7, but having

reduced the virial energy ratio to Q = 0.3.

As this fractal is cool, in the absence of a strong tidal field, it

would collapse to a denser state than the tepid fractal we discussed

above. However, in the middle panel of Fig. 8, we see the rather

unanticipated result that rather than forming a single cluster with

tidal ‘arms’, the stars are spread along the orbit, but with significant

overdensities.

In particular, just below the ‘starting point’ (at roughly −5 pc in

the middle panel) is a significant cluster containing six of the most

massive stars. Its total mass is ∼5500 M⊙, with over half of its

mass (∼2800 M⊙) in stars >2.5 M⊙. It is this cluster that is the

‘remnant’ of the main cluster, having lost a significant amount of

its mass now spread along the orbit. There is another small remnant

at roughly +5 pc in the middle panel, its total mass is ∼1300 M⊙
with again roughly half of its mass (∼700 M⊙) in stars >2.5 M⊙.

It is worth noting that if the two surviving sub-clumps were

observed and thought to be discrete ‘units’ of star formation they

would appear to have top-heavy IMFs (our initial global IMFs have

∼42 per cent by mass in stars >2.5 M⊙). In the context of these

simulations we know that they are mass segregated and tidally

stripped subunits from a ‘normal’ IMF, but this may well not be

apparent when observing a single (late) point in the evolution of the

region.

The reason for this very different behaviour is that a collaps-

ing cluster will ‘bounce’, i.e. in the destruction of substructure and

the attempt to reach virial equilibrium causes a deep collapse after

which the cluster ‘bounces’. As mentioned above, fractal clusters

will undergo violent relaxation and erase their substructure caus-

ing them to collapse. However, they do not immediately relax into

a smooth, virialized distribution, rather they collapse down to an
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Figure 10. The evolution of an Rc = 4 pc, cool (Q = 0.3) fractal cluster at 30 pc from the GC. The black dots are stars and the red triangles the 10 most massive

stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively, and

the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

overdense state, and then re-expand and ‘bounce’ for a while with

the virial ratio oscillating around Q = 0.5 (see e.g. Allison et al.

2009a; Smith et al. 2011). Depending on the exact time of an obser-

vation the virial ratio varies from about 0.3 to 0.5 to 0.7, back to 0.5,

etc. This oscillation is enhanced by rapid dynamical mass segrega-

tion that gives energy to low-mass stars (Allison et al. 2009a). With

no tidal field this oscillation dies away and the cluster stabilizes

(Smith et al. 2011; see e.g. Fig. 10), but in a strong tidal field the

re-expansion takes some stars outside the tidal radius where they

can be stripped.

If we were to observe the state at 2 Myr it would be extremely dif-

ficult (essentially impossible) to reconstruct the initial conditions.

Probably the most obvious conclusion one would draw from ob-

serving the structure in the middle panel of Fig. 8 is that the initial

star formation event was extended over >10 pc, and it would prob-

ably not be obvious that all of these stars had formed within a 2 pc

radius.

This illustrates that it can be very difficult to ‘guess’ the re-

sults of evolution of a system in a strong tidal field. Our as-

sumption before running this simulation was that a cool fractal

within the nominal tidal radius would survive, and would probably

produce a cluster that looked similar to the well-contained initial

conditions.

3.1.4 An overflowing, cool fractal cluster

Following well-contained and just-contained initial conditions, we

now consider initial conditions that ‘overflow’ (i.e. are larger than)

the nominal initial tidal radius.

As described above, in no (or weak) tidal fields cool (sub-

virial) fractals can collapse by factors of several in radius forming

dense and mass-segregated clusters very quickly (on time-scales

of ∼1 Myr). Therefore, it is interesting to investigate if a cool struc-

ture which is initially overflowing the tidal radius can collapse to

within the tidal radius before the tidal field destroys it. We take the

same cool (Q = 0.3) fractal distribution as used above and increase

the radius (by a factor of 2) to 4 pc.

In Fig. 10 we show the initial conditions of this low-density

fractal (left-hand panel), and the state after 2 Myr (middle and right-

hand panels with the right-hand panel again showing only the stars

>2.5 M⊙).

What is clear from Fig. 10 is that the substructured initial cluster

is completely destroyed by 2 Myr. The main reason for this is that

our nominal circular tidal radius drawn on all figures assumes a

concentration of mass within that radius. When starting with a

clumpy mass distribution larger than the nominal tidal radius the

effect is to divide the cluster into subregions each with their own

tidal radius: i.e. if the density within a group is large enough then

that group may survive, but the entire distribution is not a single

entity, essentially there is a very significant shear over an 8 pc region

at 30 pc from the GC (i.e. between 26 and 34 pc from the GC). The

fractal cannot survive as a single entity to collapse, but some sub-

regions are able to survive (e.g. a significant overdensity at around

−10 pc in the middle panel containing two massive stars, and a

smaller overdensity at around −7 pc containing one).

Similarly, we simulate a virialized Plummer sphere which is

larger than its tidal radius as illustrated in Fig. 11. This is also very

rapidly destroyed by the tidal field for exactly the same reason.

However, as the initial Plummer distribution was much smoother

than the fractal, no structures or overdensities remain and the fi-

nal state is smoothly distributed around the orbit. This shows that

structure/clumpiness in the initial conditions can survive. Similarly

to the low-density cool fractal above, from an observation of the

distribution in Fig. 10 at 2 Myr it would be essentially impossi-

ble to reconstruct the initial conditions, and it would be perfectly
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Figure 11. The evolution of an Rc = 4 pc, virial (Q = 0.5) Plummer cluster at 30 pc from the GC. The black dots are stars and the red triangles the 10 most

massive stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively,

and the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

reasonable to consider this a much more extended star formation

event.

3.1.5 Summary for 30 pc from the GC

If clusters form well- or just-within their nominal tidal radii they

can usually survive for 2 Myr (the age of the Arches) at 30 pc from

the GC. Any cluster which overflows the nominal 2 pc tidal radius

is destroyed (if it initially overflows it, or if a dynamical bounce

causes this to happen later).

This sets a minimum initial density for an Arches-like cluster

forming at 30 pc from the GC of ∼600 M⊙ pc−3 irrespective of the

initial spatial structure.

At such high densities any initial structure is rapidly erased and

so all clusters that survive appear as smooth, spherical distributions

by 2 Myr.

All surviving clusters at 30 pc from the GC show tidal features,

although they might not be observable if only looking at stars

>2.5 M⊙.

Even when no mass segregation was initially present it occurs

rapidly in high-density initial conditions due to the short dynamical

time-scales at these densities. This could cause a difference in the

half-mass radius as measure from stars >2.5 M⊙ to be 10–20 per

cent lower than the true half-mass radius.

Any cluster that has survived to 2 Myr in the strong tidal field at

30 pc from the GC will appear Plummer-like and mass segregated,

no matter what its initial conditions were.

3.2 Clusters at 100 pc from the GC

In this section, we examine the dynamical evolution of star clusters

at 100 pc from the GC. The projected separation of the Arches from

the GC is ∼30 pc meaning, that this is a lower limit on the 3D

separation. It is not unreasonable to think that the Arches is at a

true distance of, say, 100 pc from the GC (Stolte et al. 2009; Habibi,

Stolte & Harfst 2014), which would mean that it is in a significantly

weaker tidal field than at 30 pc (although still ‘strong’ by any usual

definition of tidal field strength).

At 30 pc from the GC the nominal tidal radius of a 2 × 104

M⊙ cluster is ∼2 pc, but at 100 pc this increases to ∼3 pc (see

equation 5). When just filling this larger tidal radius, the density

would therefore be a factor of ∼3 times lower.

In Section 3.1 (at 30 pc from the GC) we found that clusters must

initially be within their tidal radii in order to survive as a single

cluster. In this section we find that this is still true at 100 pc from the

GC with some small caveats. Note that when the results are simply

scaled-up versions of those at 30 pc, we will not illustrate them.

Well-contained initial conditions at 100 pc. Initial distributions

(Plummer and fractal) are well-contained within the nominal tidal

radius at 100 pc with Rc= 2 pc. These are eight times lower densities

than at 30 pc, but their evolution is very similar. They are able to

survive as distinct bound entities for 2 Myr, and fractal initial con-

ditions erase their substructure. As in the 30 pc case, both Plummer

and fractal initial conditions appear very similar to each other by

2 Myr. Due to the lower densities, dynamical evolution is slightly

slower so they mass segregate to a slightly lesser degree than for

well-contained clusters at 30 pc (although if they have the same

initial densities, i.e. are very well contained, they evolve in almost

exactly the same way as at 30 pc). This is unsurprising.

Just-contained initial conditions at 100 pc. When the initial

distributions are just contained within the nominal tidal radius of

3 pc (at 100 pc from the GC), the evolution is somewhat different

to when they are just contained within the 2 pc nominal tidal radius

(at 30 pc from the GC).
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Figure 12. The evolution of an Rc = 3 pc, virial (Q = 0.5) Plummer cluster at 100 pc from the GC. The black dots are stars and the red triangles the 10 most

massive stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively,

and the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

In Fig. 12 we show the evolution of a just-contained virialized

Plummer sphere at 100 pc from the GC. This should be compared

with Fig. 6 for a just-contained virialized Plummer sphere at 30 pc.

The first panels of Figs 12 and 6 are very similar – the only difference

is that to be just contained within the nominal tidal radius the

Plummer sphere at 100 pc is 1.5 times larger. But at 2 Myr in the

second panel, whilst the cluster is being destroyed for the same

reason as at 30 pc, the destruction is on a longer time-scale due to

the lower tidal field strength. Therefore, the stars have had a chance

to interact with each other as well as feel the tidal field. Interestingly,

the massive stars (red triangles) are much less dispersed than the

‘background’ and an observer may still see this as a ‘cluster-like’

object (or even ‘association-like’), especially when observing only

stars >2.5 M⊙ as in the third panel. Therefore a just-contained

Plummer sphere is more distinct at 100 pc than at 30 pc (although

still is not surviving in any real sense).

For a just-contained tepid fractal at 100 pc as shown in Fig. 13 is

interestingly less able to survive as a single entity than its equivalent

at 30 pc. The larger just-contained fractal distribution at 100 pc takes

longer to relax and erase substructure compared to the equivalent

cluster at 30 pc (as shown in Fig. 7). This is due to the longer dy-

namical time-scales at the lower density. In particular, a significant

‘subcluster’ has detached from the main cluster (to the upper left).

The mass of the main cluster is ∼13000 M⊙ (with ∼5700 M⊙ in

stars >2.5 M⊙), and the mass of the ‘subcluster’ is ∼1100 M⊙
(with ∼500 M⊙ in stars >2.5 M⊙). Any hypothetical observers

viewing Fig. 13 would find it extremely difficult to say if the sub-

cluster at the top left had formed with the main cluster and been

‘detached’, or if it had formed as a separate entity. (A similar sub-

cluster is detached from the 30 pc case, but this is rapidly destroyed

by the stronger tidal field).

Overflowing initial conditions at 100 pc. As at 30 pc, overflow-

ing Plummer spheres are completely destroyed and spread along

the orbit. Overflowing fractals do not survive as a single entity, but

significant structure and subclusters can remain. In Fig. 14 we show

the evolution of an overflowing fractal with total radius Rc= 4 pc

(with a nominal tidal radius of 3 pc at 100 pc from the GC). A sig-

nificant cluster still survives after 2 Myr (located at roughly 2 pc,

−2 pc) which contains five of the most massive stars. This is a

more extensive surviving subcluster than in Fig. 10 (the equivalent

at 30 pc from the GC) as the longer dynamical time-scales for the

relaxation of the fractal are more than balanced by the weaker tidal

field.

In Fig. 15 we illustrate a cool, overflowing fractal (Q = 0.3

and Rc = 4 pc; i.e. the same as that in Fig. 14 but dynamically

cooler). Again, this fails to survive as a single entity, but there are

considerable surviving overdensities, and a ‘string’ slightly below

the origin containing six of the 10 most massive stars within 2 pc

of each other. Note that these are all stars with masses >50 M⊙
and so this feature would be very obvious. As with many features in

strong tidal fields, this ‘filament of massive star formation’ (which

would be a seemingly sensible interpretation) is not ‘real’.

3.2.1 Summary for 100 pc from the GC

Initial conditions that are well contained within the nominal tidal

radius at 100 pc from the GC survive, and mass segregate, and

evolve in a very similar way to those at 30 pc from the GC, but

can do so in a somewhat longer time-scale due to the (potentially)

lower density. Again we find that to survive as a single entity the

initial conditions must be contained within the tidal radius, setting

a minimum initial density for the Arches if it is (or formed at) 100 pc

from the GC of 200 M⊙ pc−3.

Initial conditions that are just contained within the 3 pc nominal

tidal radius at 100 pc from the GC evolve in a slightly subtle way.
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Figure 13. The evolution of an Rc = 3 pc, tepid (Q = 0.5) fractal cluster at 100 pc from the GC. The black dots are stars and the red triangles the 10 most

massive stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively,

and the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

Figure 14. The evolution of an Rc = 4 pc, tepid (Q = 0.5) fractal cluster at 100 pc from the GC. The black dots are stars and the red triangles the 10 most

massive stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively,

and the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

The weaker tidal field affects them less (e.g. the initially Plummer

distribution is destroyed more slowly), but the lower density means

they can evolve internally less (hence fractals can have subclusters

removed by the tidal field before they are erased).

Any initial conditions that are able to survive look Plummer-like

and tend to be mass segregated at 100 pc from the GC; they can be

very similar to those at 30 pc from the GC, and potentially slightly

larger (by a factor of roughly 1.5 at most).
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Figure 15. The evolution of an Rc = 4 pc, cool (Q = 0.3) fractal cluster at 100 pc from the GC. The black dots are stars and the red triangles the 10 most

massive stars in the cluster. The black circles are the nominal initial tidal radius (Rt). The left-hand and middle panels show all stars at 0 and 2 Myr, respectively,

and the right figure shows only stars more massive than ∼2.5 M⊙ at 2 Myr.

4 IN I T I A L C O N D I T I O N S A N D G A S

A key result from these simulations is that for a purely N-body star

cluster to survive in a strong tidal field it must be initially well-

contained within its nominal tidal radius. Distributions that either

start or are able to expand/bounce beyond their nominal tidal radii

are rapidly shredded by tidal forces.

Due to computational limitations our simulations are just of the

stellar distribution and ignore any gas left-over after star formation.

One would not expect star-forming clouds to convert gas to stars

at 100 per cent efficiency, and so a (significant) gas potential may

remain. The removal of gas from young clusters can have a signifi-

cant effect on the stellar component causing it to expand, and even

unbind the cluster (Goodwin & Bastian 2006; Baumgardt & Kroupa

2007). However, what effect gas loss has can depend very strongly

on the density and velocity distributions of the stars within the gas

potential meaning that it is difficult to simply link star formation

efficiency to the possible effects of gas loss (Verschueren & David

1989; Goodwin 2009; Farias et al. 2015; Lee & Goodwin 2016).

The effect of losing whatever gas is left-over after star formation

will be to cause the stellar distribution to expand to some extent.

Therefore, the minimum densities at which the stellar distributions

can have in order to survive are lower limits on the initial densities

at which the stars could form, e.g. at 100 pc from the GC the initial

stellar distribution must have a density of >200 M⊙ pc−3 after any

effect of gas expulsion (whatever that may have been).

5 C O N C L U S I O N

We investigate the early evolution of ∼2 × 104 M⊙ Plummer and

fractal initial conditions in a strong tidal fields at 30 and 100 pc

from the GC where the nominal tidal radii are ∼2 pc and ∼3 pc,

respectively.

We perform N-body simulations using NBODY6 (Aarseth 1999)

with full tidal fields from Kim et al. (2000). We start our stellar

initial conditions either well contained within the tidal radius, just

filling the tidal radius, or overflowing the tidal radius at both 30

and 100 pc from the GC. We evolve the clusters for 2 Myr and then

compare the final state with each other and the Arches cluster.

Both Plummer sphere and fractal stellar initial conditions that are

well-contained within the nominal tidal radii survive for 2 Myr as

distinct bound clusters. Fractal initial conditions rapidly relax and

erase their substructure and become spherical and Plummer-like,

and both Plummer spheres and fractal initial conditions are able to

dynamically mass segregate within 2 Myr. Both Plummer sphere

and fractal initial conditions give rise to tidal tails of low-mass

stars that would be difficult to observe at the GC. It is essentially

impossible to determine the initial conditions from the state at 2 Myr

as both fractals and Plummer spheres produce round, virialized, and

mass-segregated final clusters.

If the stellar initial conditions completely fill the tidal radius then

if a single significant cluster survives depends somewhat on the

initial conditions. Plummer spheres are destroyed, and somewhat

unexpectedly, tepid (virial ratio 0.5) fractals survive, but cool (virial

ratio 0.3) fractals are destroyed due to a ‘bounce’.

Stellar initial conditions that overflow the nominal tidal radius

are destroyed. But if the initial conditions are fractal then significant

‘subclusters’ can survive. It would be extremely difficult to disen-

tangle the initial conditions, and a rapidly shredded localized star

formation event would rapidly look to be a more extended event.

If a single significant cluster survives then after 2 Myr it appears

as a mass segregated Plummer-like object irrespective of the initial

conditions. This is because clumpy initial conditions are dynami-

cally erased, and the high densities cause dynamical mass segrega-

tion. There are subtle signatures in the degree of mass segregation
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and density profiles to the initial conditions, but it is doubtful they

could ever be observed in enough detail to be useful.

The Arches cluster is a 2 Myr old, spherical, virialized, and mass-

segregated cluster close to the GC. In order to appear like this now,

it could have formed as either a smooth Plummer-like, or a clumpy,

fractal-like distribution. However, its initial radius must have been

<2 pc if it formed at 30 pc from the GC, or <3 pc if it formed at

100 pc from the GC. This sets a lower limit on the formation density

of the Arches of >600 M⊙ pc−3 at 30 pc, or >200 M⊙ pc−3 at

100 pc.
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