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Can Violence Harm Cooperation? Experimental Evidence∗

Giacomo De Luca†, Petros G. Sekeris‡, and Dominic E. Spengler§

Abstract

In this paper we argue that natural resource conservation is jeopardised by the ability of users to resort to violence

to appropriate resources when they become scarce. We provide evidence from a lab experiment that participants inter-

acting in a dynamic game of common pool resource extraction reduce their cooperation on efficient levels of resource

extraction when given the possibility to appropriate the resource at some cost, i.e. through conflict. Theoretically,

cooperation is achievable via the threat of punishment strategies, which stop being subgame perfect in the presence

of conflict. Accordingly we argue that the observed reduction of cooperation in the game’s early stages in the lab is a

consequence of participants (correctly) anticipating the use of appropriation when resources become scarce.

Keywords: Natural Resource Exploitation, Experiment, Dynamic Game, Cooperation

JEL classification: Q20; C72; C73; C91; D74

1 Introduction

The over-exploitation of commonly-managed renewable natural resources (CPR), exacerbated by the familiar “tragedy

of the commons”, has become increasingly concerning (Hardin 1968, Homer Dixon 1999, Stern 2007). Infinitely

repeated models of resource management show that efficient resource extraction rates can be sustained among users

under the threat of a general reversion to over extraction in case of noncompliance by some users (Cave 1987, Dutta

1995, Sorger 2005, Dutta and Radner 2009). This class of models, however, entirely disregards the fact that scarcities

could push resource-users to seek alternative ways of securing access to the resource, like using violence.
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The collapse of Easter Island’s society, as documented by Diamond (2005) is one case in point. According to

Diamond, the society of Easter Island plunged into chaos because of resource depletion that was provoked by their

clans’ permanent quest for prestige. The society was organised in hierarchical clans that peacefully competed with

each other for power supremacy by erecting stone statues weighing up to 80 tons. To that end, the island’s tallest trees

needed to be cut down, as a result of which a rapid deforestation occurred.1 The exhaustion of this valuable natural

resource implied an incapacity to build new large canoes permitting high sea fishing, as a consequence of which the

rate of consumption of on-land food necessarily increased. In 1680, amidst dramatic levels of deprivation, a prolonged

period of internecine wars started. By the time the first European expedition reached the island in 1722, deforestation

was almost complete. Brander and Taylor generalise this argument stating that “[r]ather than being the cause of decline,

violent conflict is commonly the result of resource degradation and occurs after the civilisation has started to decline, as

on Easter Island” (Brander and Taylor 1998: 132). The “Cod Wars”, in which Iceland and United Kingdom confronted

each other in the 1950s-1970s over fishing rights in the Atlantic, represents another salient example (Barston and

Hannesson 1974, Glantz 1992). Perhaps even more strikingly, some of the most cruel violence in recent history, like

the Rwandan and the the Sudanese genocides, have been interpreted in light of natural resource pressure (André and

Platteau 1998, Prunier 2009, Verpoorten 2012, Olsson and Siba 2013).

Starting from this simple observation, Sekeris (2014) amended a standard dynamic model of natural resource

conservation by explicitly empowering players with the ability to violently appropriate resources. As a result, rational

agents never choose to cooperate on the efficient level of extraction, with the tragedy of the commons unfolding at

equilibrium. The intuition behind this can be summarised as follows: since conflict will eventually occur over scarce

resources, the threat of a collective reversion to over-extraction (i.e. punishment) “for ever after” to deter deviations

from the efficient extraction level is no longer credible since strategic interaction is bound to stop once conflict is

initiated. Reasoning backward from the point at which conflict is a rational response, there is no incentive to cooperate

at the point in time just before the moment of conflict, or at any earlier time period – the game becomes finite at the

moment of conflict and unravels like a finite prisoner’s dilemma problem.

Given the far-reaching potential implications of this finding for resource conservation, we reproduce the setting of

Sekeris (2014) and study the extraction rates of resource users in a controlled lab environment. This leads to the main

contribution of the present paper: we provide the first experimental evidence that the option to violently appropriate

resources reduces the incentives to cooperate on the conservation of natural resources.

We first adapt the model in Sekeris (2014) so it can be used in an experimental setting. We then design two

treatments and compare cooperation rates across them. Each treatment involves 58 participants for a combined total of

116 students from the University of York (UK). In both treatments participants are randomly matched into pairs and

then called to decide on the amount of ‘points’ to extract from a pool of points (resources) at each ‘round’ of the game,

and given a pre-defined regeneration rate of the CPR. In the first treatment, which we label the ‘conflict’ treatment,

participants get to choose between three options during each ‘round’. Participants can either extract a ‘low’ level of

points – corresponding to the theoretical prediction of a cooperative extraction –, or extract a ‘high’ level of points –

1A controversy on the real causes of the Island’s deforestation is still open among scientists (Hunt and Lipo 2011).
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corresponding to the theoretical prediction of a non-cooperative (Markov-perfect) extraction –, or to opt for resource

appropriation, denoted by ‘chance’.2 If chance is chosen, the CPR is split equally between the two paired subjects, at

some cost which is increasing in the stock of the CPR.3 If at some time period ‘chance’ is played, the optimal extraction

path is imposed on participants from the subsequent time period and thereafter.

The second treatment, named ‘control’, is identical to the conflict treatment, except for the cost of opting for

resource appropriation, which is substantially increased, such that playing chance is theoretically suboptimal. So, we

offer participants the same three options as in the conflict treatment (i.e. low, high extraction rates and chance), but if

‘chance’ is chosen, 60% of the CPR is destroyed, thus making this choice suboptimal for any level of resources.

To emulate the infinite horizon environment required for folk theorems to be applicable, we follow the methodology

in Vespa (2014), which was first introduced by Roth and Murnighan (1978), and later applied by Cabral et al. (2014).

The technique introduces an uncertain time horizon by allowing the software to terminate the game at any ‘time

period’ with some predetermined probability. This practice – which in theory is equivalent to an infinite time horizon,

if individuals are risk neutral – has been shown not to be innocuous in practice (Dal bó 2005, Frechette and Yuksel

2017). Since both our control and treatment groups are subject to the same random termination rule, however, the

validity of our experiment is not jeopardised.

Our experimental findings support our theoretical predictions. In the initial rounds of the game (or alternatively for

high levels of the CPR), where conflict is unlikely to have been selected in either treatment, the level of cooperation is

lower in the conflict treatment compared to the control treatment, and non-cooperation is higher. Hence, the expectation

of a higher likelihood of chance being played in later stages of the game in the conflict treatment seems to reduce

cooperation in favour of non-cooperation in the early stages of the game.

We find that participants who experienced violence in a specific game were more likely to behave according to

predictions in the subsequent game. This evidence lends additional intuitive support to our conjecture that a higher

expectation of chance being played in later rounds induces participants to substitute cooperation for non-cooperation.

Furthermore, we show that participants in a slightly amended treatment, in which chance is imposed for low resource

stocks, also reduce their cooperation level, which once more supports our interpretation of the results. Lastly, we track

individual paths of play by participants, and find that in 24% of the games played in the conflict treatment, participants

behave according to theoretical predictions. In the control treatment, however, no single participant made these same

choices. This constitutes suggestive evidence that our experimental findings are indeed driven by individual participants

behaving as predicted by the theory.

The rest of the paper is organised as follows. In the next section we discuss the related literature. We then lay

out the theoretical model in Section 3. In Section 4 we describe the experimental design, in Section 5 we present our

experimental results, and Section 6 concludes.

2We deliberately chose a neutral tag to denote the conflict action in our experiment to avoid any framing bias. In particular, had we named

our resource appropriation ‘conflict’ or ‘violence’, changes in cooperation rates across treatments may have been the consequence of different

moral/ethical values among participants.
3Notice that this assumption is an endogenous feature in Sekeris (2014), where conflict is modelled as a standard contest success function.
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2 Related literature

Over the recent past, game theoretic predictions on the management of the commons have received extensive attention

by experimental economists.4 The early experimental literature focused on testing the equilibrium behaviour generated

by repeated games (Palfrey and Rosenthal 1994, Dal Bó 2005), or finite dynamic games (Herr et al. 1997). In general,

findings tend to concur with theoretical predictions, suggesting that free riding, and therefore inefficiencies, do arise,

and that dynamics help fostering the cooperative equilibrium through reputation mechanisms and the existence of latent

punishment schemes (Fehr and Gaechter 2000, Casari and Plott 2003). Further experimental work provides evidence

that repeated interactions foster the development of social capital which, in turn, favors cooperation (Pretty 2003,

Bouma et al. 2008).

Exploring whether cooperation can be sustained in dynamic games of resource exploitation is a more challeng-

ing question, which has only been tackled recently (Kimbrough and Vostroknutov 2015, Dal Bó and Fréchette 2016).

Since the cooperative extraction level can be sustained with several different subgame perfect punishments, experi-

mental economists need to limit their experimental tests to a (some) specific strategy(ies). Vespa (2014) shows that

individuals tend to cooperate in a dynamic renewable common pool resource (CPR) game if they are given the options

of “cooperating” or “defecting” to the non-cooperative Markovian strategy. Yet such cooperation is jeopardised when

participants are offered the choice of a “highly profitable” deviation. These findings nevertheless seem to suggest that

individuals do cooperate under the threat of some punishment strategies.5 In contrast with this literature, Sekeris (2014)

demonstrates that in a dynamic renewable CPR game where property rights can be enforced at a cost, cooperation along

the equilibrium path may be impossible to achieve. In this paper we therefore investigate experimentally whether, in

settings comparable to Sekeris (2014), participants act as predicted by the theory.

A growing experimental literature on conflict has emerged in recent years.6 While the initial contributions subjected

static theories of conflict to experimental validation, more recent studies have focused on the dynamic considerations

we are concerned with (Abbink and de Haan 2014, Lacomba et al. 2014, McBride and Skaperdas 2014). Yet, whereas

these contributions perceive conflict as an appropriation of private goods and/or production potential, our approach

conceives the status quo as a CPR game. Cooperation in experimental conflict settings has also received some atten-

tion, but the focus of the existing literature has mostly been on alliance formation and group fighting as opposed to

cooperation in the production process (Abbink et al. 2010, Ke et al. 2015, Herbst et al. 2015).

4See also Ostrom (2006) for a review on the role of laboratory experiments for the study of institutions and common-pool resources.
5Lindahl et al. (2016) enrich this setting by showing that the expectation of a drastic depletion of the CPR can increase communication among

participants and can favor within-group cooperation, eventually leading to a more efficient management of the resource.
6See Dechenaux et al. (2015) for a recent review of this literature.
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3 Theory

3.1 The setting

We consider a dynamic common pool resource game featuring a renewable resource, rt, initially owned commonly by

two players labeled 1 and 2. Time is discrete and denoted by t = {0, 1 . . .∞}. At any time period t the two players take

two sequential decisions: first, a conflict decision, (w1,t,w2,t), with wi,t = v if player i opts for violence, and wi,t = p

otherwise, and second, a resource extraction decision where players simultaneously decide the extraction technology

to use at any time period t, a low extraction technology kl
i,t

, or a high one kh
i,t

. If either player opts for conflict, part

of the resources get destroyed and the remaining stock is immediately shared equally among the players forever after,

thus making conflict an absorbing state. If no player opts for conflict, the resources remain commonly owned. Hence,

in deciding the resources to extract, players either deplete their privately owned resources (under conflict), or else they

deplete the common pool resources (no conflict).

The initial resource endowment is given by r0 and the resource regenerates at some linear rate γ < (1− δ)/δ, where

δ designates the players’ common discount rate.7 Players costlessly select their extraction technology at each time

period, and choose their resource-use effort. If conflict has not taken place and player i opts for the low extraction

technology kl
i,t

, his period extraction in time t equals e
p

i,t
(kl

i,t
, kx

j,t
) = 1−δ

2
rt irrespective of player j’s technology choice

x = {l, h}. On the other hand, when player i opts for the high extraction technology kh
i,t

, his period extraction in time

t depends on the other player’s action so that e
p

i,t
(kh

i,t
, kh

j,t
) = 1−δ

2−δ
rt and e

p

i,t
(kh

i,t
, kl

j,t
) =

(1−δ)(1+δ)

2
rt.

8 In case of conflict

in time t the resources’ resilience is described by function φ(rt), with φ(rt)
′

≤ 0. The common pool is then split up

in two private stocks of resources, and out of the rt resources in the common pool, the actual resources that become

player i’s private property equal ri,t = φ(rt)rt/2. If conflict has taken place, the choice of the low extraction technology

is imposed on players, which emulates the first best solution, and the period extraction of player i is then given by

ev
i,t
= (1 − δ)ri,t. The above information is summarised in a normal form (game) capturing the period extraction levels

of players in Figure 1.

Dynamics

We sequentially describe the players’ dynamic payoffs under conflict and no conflict, respectively, before proceed-

ing with the equilibrium analysis.

Under conflict, at any time period t player i privately controls resources ri,t. Given the assumed resources’ regener-

ation rate, the law of motion of resources is given by:

7This restriction on the regeneration rate is meant to avoid scenarios where the resource grows dynamically along the equilibrium path since the

mechanism we uncover in this paper relates to resource scarcities.
8These seemingly ad hoc extraction levels are the ones obtained when solving the unconstrained problem in Appendix A.1.1. Our ultimate goal

being the construction of a self-contained model that we can test in the lab, we have deliberately restricted the players’ extraction levels to the

fewest necessary configurations required to characterise two potential equilibria, the non-cooperative subgame perfect Nash equilibrium, and the

cooperative subgame perfect Nash equilibrium that we describe in detail in the Appendix.
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Player 2

e
p

2,t
(., kl

2,t
) e

p

2,t
(., kh

2,t
) ev

2,t

Player 1

e
p

1,t
(kl

1,t
, .) 1−δ

2
rt,

1−δ
2

rt
1−δ

2
rt,

(1−δ)(1+δ)

2
rt (1 − δ)r1,t, (1 − δ)r2,t

e
p

1,t
(kh

1,t
, .)

(1−δ)(1+δ)

2
rt,

1−δ
2

rt
1−δ
2−δ

rt,
1−δ
2−δ

rt (1 − δ)r1,t, (1 − δ)r2,t

ev
1,t

(1 − δ)r1,t, (1 − δ)r2,t (1 − δ)r1,t, (1 − δ)r2,t (1 − δ)r1,t, (1 − δ)r2,t

Figure 1: Period extraction levels

ri,t+1 = (1 + γ)(ri,t − ei,t) (1)

The instantaneous utility of any player i is assumed to be logarithmic in consumption levels so that player i’s

instantaneous utility in time t is given by:

ui,t = ln((1 − δ)ri,t) (2)

If conflict takes place in period τ, then the discounted life-time (indirect) utility of player i in time period τ can be

shown to equal:

Vc
i (rτ) =

1

1 − δ
ln

(

(1 − δ)ri,τ

)

+
δ

(1 − δ)2
ln((1 + γ)δ) (3)

where δ designates the discount rate, and ri,τ = φ(rτ)rτ/2

If conflict did not take place in time period t or at any earlier time period, the law of motion of resources is given

by:

rt+1 = (1 + γ)(rt − e1,t − e2,t) (4)

And the discounted life-time utility of player i in time period t equals:

Ui,t(rt) = ln(ei,t) + δUi,t+1(rt+1) (5)

We denote a strategy for player i by (wi,ki) = {wi,t, k
j

i,t
}∞
t=0

, j = {l, h}. Our equilibrium concept is subgame perfect

Nash equilibrium (henceforth SPE).

3.2 Equilibrium with costly conflict

We first consider the game’s equilibria if conflict is highly damaging. More specifically, we assume that the resilience

function is defined by φ(rt) = φ, with φ ≤ 0.40.

We first demonstrate that with such costly conflict technology neither player finds it optimal to choose violence

along the equilibrium path. To establish this we begin by defining as the “non-cooperative path” the extraction path

such that both players choose a high extraction technology at any time period. We then demonstrate that the strategies
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supporting the “non-cooperative path” constitute a SPE since they are robust to the One Shot Deviation Principle.

Denote by Vh
i
(rt) the discounted expected payoff of player i from both players playing their “non-cooperative strategies”

from time t onwards. The total share of resources being extracted at any time period then equals 2(1 − δ)/(2 − δ), thus

implying that for any stock of resources rt, the available stock in t + 1 equals (1 + γ) δ
2−δ

rt. Accordingly, Vh
i,t

can be

shown to equal:

Vh
i,t =

1

1 − δ

[

ln

(

(1 − δ)rt

2 − δ

)

+
δ

1 − δ
ln

(

δ(1 + γ)

2 − δ

)]

(6)

A unilateral deviation from this play path generates an instantaneous utility of ln
(

1−δ
2

)

, which is smaller than the

instantaneous utility from conforming to the non-cooperative play path, ln
(

1−δ
2−δ

)

. On the other hand, the resources

available in t + 1 under this unilateral deviation amount to rt+1 =
(1+γ)δ(1+δ)

2
rt, an amount larger to the one obtained

under the non-cooperative play-path where rt+1 =
(1+γ)δ

2−δ
rt. Comparing the discounted expected utility under these two

play-paths reveals that a deviation is not profitable if:

ln

(

2

2 − δ

)

≥ δ ln(1 + δ) (7)

An expression which is always true for δ ∈ [0, 1], as demonstrated in Appendix (A.1.2).

We next consider the deviation whereby player i chooses chooses wi,t = v. We demonstrate that the non-cooperative

strategy strictly dominates the conflict one by showing that the following inequality is verified for the conflict technol-

ogy considered in this section:

Vc
i (rt) < Vh

i (rt) (8)

Replacing for the appropriate values and simplifying yields:

(1 − δ) ln (φ/2) + ln(2 − δ) < 0 (9)

And we demonstrate in Appendix A.1.4 that this inequality is always satisfied, both for φ ≤ 0.4 and for any

δ ∈ [0, 1).

The above results allow us to state the following Lemma:

Lemma 1. When the resilience function is described by φ(rt) = φ, with φ ≤ 0, 4, both players forever opting for the

high extraction technologies is a subgame perfect equilibrium.

Define next the extraction path such that both players choose a low extraction technology at any time period as the

“cooperative path”. We seek for the conditions making the cooperative strategies sustaining the cooperative extraction

path a SPE. It can easily be shown that players unconditionally choosing the low extraction technology cannot be an

equilibrium. To sustain cooperation, therefore, punishment strategies should be considered. A widespread strategy that

supports the cooperative extraction path as a SPE is the Grim-trigger strategy, whereby any deviation from the ‘low’

extraction technology by either player implies that both players revert to the non-cooperative SPE forever after. One

interesting route is therefore to derive the conditions that induce play of the cooperative path in equilibrium.
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We denote the discounted expected payoff of both players always opting for the low extraction technology as V l
i,t

.

For the cooperative path to be sustained as a SPE, it is necessary that the following condition be satisfied:

ln
(

edev
i,t

)

+ δVh
i

(

(rt − edev
i,t − el

j,t)(1 + γ)
)

< V l
i (rt) (10)

In the above inequality we are thus comparing a player’s life-time utility from the path where both players would

always cooperate (V l
i
(rt)), to the path where the player considered would deviate in time period t (ln(edev

i,t
)), before both

players revert to the Grim-trigger strategy where both players choose the high extraction technologies forever after

(δVh
i
). In other words, we are inspecting the condition for the cooperative path of play to be an equilibrium, where

player i considers the deviation in time period t given player j’s ‘low’ extraction technology in time period t, and given

the reversion to the non-cooperative SPE in period t + 1 (i.e. Grim-trigger strategy).

It is shown in the on-line Appendix A.1.4 that, after replacing for the appropriate terms, this expression can be

written as:

δ ln(2 − δ) > (1 − δ) ln(1 + δ) (11)

In Appendix A.1.5 we show that this condition is true for any δ ∈ (1/2, 1).

Recalling that the cooperative extraction levels are the ones solving the central planner’s problem (see Appendix

A.1.1), it follows that V l
i,t
> Vh

i,t
, ∀i, t. Having already shown that Vh

i,t
> Vc

i,t
, we can then state the following proposition.

Proposition 1. In a renewable resource exploitation game where the resilience function is described by φ(rt) = φ, with

φ ≤ 0, 4, ‘low’ extraction technologies are supported as a subgame perfect equilibrium by a Grim-trigger strategy of

reversion to the non-cooperative subgame perfect Nash strategy, for any δ ∈ (1/2, 1).

Notice that this is not the only punishment supporting ‘low’ extraction rates forever, nor is it the only play path

which may be sustained as an equilibrium and which yields higher payoffs than under non-cooperation. The essential

finding for our experimental implementation is that with costly conflict technologies there exist equilibria such that

players improve their payoffs as compared to choosing the non-cooperative extraction technologies at any time t, and

that one such equilibrium involves eternal cooperation. The conflict option does not play any role in this setting (i.e. the

same outcome would be obtained in the absence of the conflict action). It is nevertheless important for the subsequent

experimental design to demonstrate that cooperation can be sustained in such settings, and that the conflict option

should never be chosen by players.

3.3 Equilibrium with varying cost of conflict

We now consider the game’s equilibria when the resources’ resilience φ(rt) is a function of the stock of resources such

that φ(rt) ∈ [0, 1], φ(rt)
′

≤ 0, and ∃ ¯̄r > r̄ > 0, whereby φ(r) = 1,∀r ≤ r̄ and φ(r) = 0,∀r ≥ ¯̄r. The function φ(rt) is

continuous on the interval ]r̄, ¯̄r[.9

9Notice that this set of simplifying assumptions about the conflict technology is meant to produce numerical results that can easily be mapped

in the lab, while also capturing the essence of Sekeris (2014) where the players’ conflict effort, and therefore the associated damage to the resource,

are endogenous. In Appendix A.2 we develop a slightly more elaborate model with endogenous armaments and a Contest Success Function conflict

technology, which results in conflict being the players’ best response in the presence of low resource stocks.
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To understand how this conflict technology affects the game’s equilibria, we proceed in two steps. We first demon-

strate that playing ‘low’ eternally is not achievable because, (i) ‘low’ itself is sustained as an equilibrium via the

off-the-equilibrium path threat of permanently reverting to ‘high’, and (ii) through the dynamic depletion of the re-

source, the game reaches a point where both players prefer deviating from ‘high’ to conflict, thus making the threat

of eternal reversion to ‘high’ non-credible, and thereby not subgame perfect. In a second step, we demonstrate that

playing ‘low’ in the short run alone is not implementable either.

To demonstrate that ‘high’ cannot be played forever at equilibrium, it is sufficient to establish that Inequality (9)

is violated when the stock of resources falls below some threshold. For any rt+1 ≤ r̄, φ(rt+1) = 1 and Inequality (9)

is violated for any value of δ. For any rt+1 ≥ ¯̄r, φ(rt+1) = 0, and the inequality is then satisfied for any value of δ.

Moreover, since φ(rt) is continuously defined on ]r̄, ¯̄r[, there exists some r̂ ∈ [r̄, ¯̄r] such that the inequality is violated

for any rt+1 < r̂.

Having shown that playing ‘high’ forever is not an equilibrium, we deductively prove that playing ‘low’ forever

cannot be sustained as an equilibrium either. The only threat that can be wielded against players deviating from the

cooperative play path is the threat of temporarily playing ‘high’ before reverting to conflict (i.e. until Inequality (9)

becomes violated). Yet, it is straightforward to observe that since along the cooperative path play the resources are

dynamically depleted, there exists some t such that rt+1 ≤ r̄, and thus φ(rt+1) = 1. As a consequence in period t + 1

conflict will certainly be played if it has not been played earlier. Moreover, with φ = 1, ln(el
i
) = ln(ev

i
), so that in period

t there is no credible punishment for disincentivising players from deviating from the ‘low’ extraction technology. As

both players follow the same reasoning, in t they will both play ‘high’. This mutual non-cooperation is due to the fact

that in time t+1 players have no punishment scheme to support ‘low’. Applying the argument backwardly implies that

players never play ‘low’, which leads to the following proposition.

Proposition 2. In a renewable resource exploitation game where resources are increasingly resilient to conflict as they

become scarcer, the unique equilibrium is such that players choose the ‘high extraction technology’ if r > r̂ and they

declare conflict if r ≤ r̂.

The intuition of this result is that, as the stock of resources is expected to dynamically decrease as a consequence

of the players’ use of the CPR, the cost of conflict is also expected to fall dynamically, so that at some point in the

future conflict will become optimal for both players. In expectation of conflict taking place in the future, however, the

Folk theorem logic breaks, and both players find it optimal to choose the high extraction technology in earlier time

periods. It is important to mention at this stage, that our result is conditional on the parameter restriction γ < (1 − δ)/δ

that guarantees the dynamic depletion of resources along the cooperative path of play. In settings with high enough

regeneration rates, γ, the stock of resources would grow dynamically, and conflict would therefore never be profitable.

Combining the results of Propositions 1 and 2, we can enunciate the following corollary, which will be tested in

the experimental section of the paper:

Corollary 1. In a renewable resource exploitation game where resources can be violently appropriated at some cost,

replacing a highly costly conflict technology by a technology making resources increasingly resilient to conflict when

resources are scarcer implies that,
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1. The ‘high’ extraction technology is optimal (and the ‘low’ extraction technology is suboptimal) when resources

are sufficiently abundant.

2. Conflict is chosen when the resources are sufficiently depleted.

4 Experimental design

The theory developed in the previous section establishes two results. First, playing ‘low’ forever may be supported

as a subgame perfect equilibrium of the game provided the conflict technology is sufficiently costly (and hence never

optimal). Second, if conflict becomes optimal along the equilibrium path, the unique equilibrium involves players

playing ‘high’ when the stock of resources is large, and opting for conflict when the stock of resources drops below

some threshold level.

4.1 Parametrisation

For the experimental game, we fix the parameters of the model such that (i) cooperation is supported as a SPE in the

costly-conflict version of the game, and (ii) conflict is the players’ preferred option when resources are sufficiently

depleted in the version of the game where resources’ resilience to conflict increases with scarcity, therefore verifying

Proposition 2.

For (i) to hold we require that δ > 1/2 and φ ≤ 0.4. Denote next by sl
i
, sh

i
, and sdev

i
the extraction rates corresponding,

respectively to e
p

i,t
(kl
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). Setting the discount rate in the lab to δ = 0.7, we obtain that the

values of sl, sh, and sdev are fixed at 0.15, 0.23, and 0.255, respectively.10 We equally set φ = 0.4.

For (ii) to hold, we consider the following function:

φ(rt) =



























1 if rt < 25

2 − 0.04rt otherwise

(12)

which implies that the threshold value of the CPR, below which conflict is theoretically optimal, is given by r̂ = 29.15.

We set the initial stock of points to r0 = 40, and set the regeneration rate to γ = 0.3.

4.2 Design

The experiment was programmed in zTree and participants were recruited among the student pool of the University

of York using hroot (Bock et al. 2014). We conducted two different treatments capturing the two different “resilience

functions” identified in the theory: the conflict treatment with a variable resilience of resources to conflict, and the

10Notice that one of the advantages of adopting a logarithmic utility function lies in the invariability of sh and sl with respect to changes in the

expected future outcomes of the game. Changes in future outcomes typically alter expected marginal utilities, which in turn imply an adjustment of

current consumption to restore the Euler equation commanding inter-temporal optimality. With logarithmic utilities players extract a constant share

of the available resources under all scenarios. Consequently, the Euler equation remains unaffected by whether conflict will occur or not, hence

allowing us to focus on unique values of sh and sl.
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control treatment where the resources’ resilience is fixed to φ = 0.4. Each treatment involved 58 participants, and each

treatment consisted of 20 identical games (10 practice games and 10 “real” games with a lottery payment of two out

of the 10 “real” games).11 For each game, participants were randomly matched into pairs, whereby each game ran

for a randomly determined number of rounds. Random rematching at the end of each game occurred using zTree’s

matching-stranger option. To implement an infinitely dynamic game in the laboratory, we followed the methodology of

Vespa (2014), building on Roth and Murninghan (1978) and the recent application of Cabral et al. (2014). Like Vespa

(2014), we imposed that the first six rounds of each game were played with unit probability, but that the earned payoff

was discounted at a constant rate of 0.7. From round 7 onwards, the software randomly terminated the game with a

probability of (1 − δ) = 0.3. The rationale for adopting such a hybrid termination rule was that, without such a rule in

place for the entire game (i.e. such that after each round the game would terminate with probability 0.3), the average

length of a game would approximately equal 3.3 periods, thus potentially inducing players not to play ‘low’ despite

the Pareto-superiority of playing ‘low’ forever. Indeed, if both players were to always play ‘low’, this strategy would

start dominating the strategy of playing ‘high’ forever after round 6, as shown in Figure 1, where we depict cumulated

payoffs under both players opting for ‘low’ and both players opting for ‘high’, respectively. Imposing 6 rounds of

certain play increases the average number of rounds played to 9.3, without affecting players’ expected payoffs.

FIGURE 1 HERE

In both treatments, participants begin each game with a common pool of 40 ‘points’. In both treatments, participants

are given three extraction choices, a ‘high’ extraction rate, a ‘low’ one, and the ‘chance’ option. In accordance with

our theoretical setting, the (constant) shares of points that were extracted for each combination of choices of paired

participants are given as follows:

• If both participants play ‘high’, each extracts 23% of the remaining points.

• If a participant opts for ‘low’, he/she extracts 15% of the remaining points, irrespective of the other participant’s

extraction.

• If a participant plays ‘high’ and his/her match plays ‘low’, he/she extracts 25.5% of the remaining points.

• If either participant plays chance, he/she retains the control of φ(rt)rt/2 resources, and extracts 30% of the

resources in this and all remaining rounds.

If chance was selected, the CPR was subjected to a loss described by (1−φ(rt))rt with the resilience function given

by (12) in the conflict treatment, or by (1 − φ)rt = 0.6rt in the control treatment. In both treatments the remaining

stock of points was shared equally among both players, on whom, from then on, the (optimal) ‘low’ level of extraction

for the current and all subsequent rounds was imposed upon. Consistent with the theoretical findings, the expectation

was that, when confronted with the conflict treatment, participants should substitute ‘low’ by ‘high’ in a game’s early

rounds, while chance should be selected whenever the stock of points dropped below 29.15 (i.e. when inequality (9)

was satisfied).

11This payment method was chosen to prevent participants from adapting strategies with regards to accumulated payoffs obtained during earlier

games.
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In addition to the instructions that were handed out to participants (see on-line Appendix), the screen indicated the

amount of points that would be available in the next time period for each potential choice participants could make, as

well as those for all respective choices of the opponent. This information was available during each round of the game.

Participants could pre-select an option, in which case a red frame would appear around their choice. When chance was

pre-selected, a box visualised the amount of resources which would be lost in case chance was chosen. Participants

then had to confirm their selection by pressing “OK”, which let them proceed to the next round. A screenshot of the

conflict treatment is provided in Figure 2. It illustrates the functionality of the software.

FIGURE 2 HERE

Each experimental session lasted approximately 120 minutes. We paid a show-up fee of £3, and, given our two-

out-of-ten rounds lottery, the average payment per participant was £17.56, with an earnings’ variance of £1.20.

Based on the results in section 3 we formulate the following Hypothesis:

Hypothesis 1. Participants play ‘high’ (‘low’) more (less) frequently in early rounds (when conflict is suboptimal) in

the conflict treatment as compared to the control treatment.

5 Empirical analysis

The entire empirical analysis is focused on the games played for money. Before presenting the empirical results, we

provide some descriptive statistics to facilitate the inspection of the participants’ behaviour. In Figure 3 we depict the

cumulative share of participants who opted for ‘low’ across the two treatments. It shows a marked difference between

treatments, where ‘low’ was played at a higher rate – at any given round – in the control treatment (discontinuous

curve). This very preliminary result concurs with our theoretical expectations: the anticipation of chance being played

in the conflict treatment did reduce the players’ propensity to opt for ‘low’.

Our theoretical predictions suggest that ‘low’ should be substituted by ‘high’ when the CPR is relatively abundant.

To see that this is indeed the case, consider Figure 4, where we have plotted the cumulated share of participants who

opted for ‘high’ across the two treatments. Interestingly, we observe a trend which seems to mirror the ‘low’ rates in

the game’s initial rounds, so that it is the participants in the conflict treatment who played ‘low’ the least.

To show that this preliminary evidence is indeed persuasive, we have plotted the proportion of participants who

played chance for both treatments in Figure 5. This figure shows that the differences between the proportion with which

‘low’ and ‘high’ were played are intimately linked to the participants’ propensity to resort to chance during later rounds

of the game. There is a notable difference in the proportion with which chance was played in the conflict (solid line)

and the control (dotted line) treatments. In the former treatment, participants were more willing to play chance during

any round of the game, but perhaps more importantly, there is a striking difference between the chronological evolution

depicted in the separate lines. In the conflict treatment we observe a sharp increase in round 3, which corresponds

to the round where the level of points is – on average – in the range where chance becomes optimal in theory. Since

chance is never optimal in the control treatment, we should expect no similar pattern in the latter treatment, which

seems to be confirmed by Figure 5. Under both treatments we do, however, observe an increase in the proportion of

12



participants who played chance in later rounds, and more specifically around round 14. Bearing the imposed random

termination rule in mind, the probability that any game would have reached round 14 equals 0.057, which makes it a

very unlikely event. One reason that could explain this behaviour could be that participants resorted to some sort of

protection mechanism by attempting to put an end to the depletion of the CPR. Other psychological mechanisms could

be invoked to explain these observations, but irrespective of the cause of this behaviour, a prominent explanation for

the differences in the higher propensity to play ‘high’ in the game’s early rounds are the differential expectations of

such behaviour in the future (i.e. higher such expectations in the conflict treatment).

FIGURE 3 HERE

FIGURE 4 HERE

FIGURE 5 HERE

The patterns presented in Figures 3-5 are consistent with Hypothesis 1 and our proposed mechanism: in the conflict

treatment, where the depletion of resources makes the chance option optimal after rounds 2-3, there is a clear substitu-

tion of ‘low’ by ‘high’ in the early rounds of the game. On the other hand, no such substitution seems to be occurring

in the control treatment, where chance was only played in the later rounds of the game. Bearing in mind that rounds

2 and 3 were always reached, while round 14 was only reached in around 5% of the games, the expectation of chance

being played in any game ought to have been higher in the conflict treatment, thus explaining the manifest difference in

the substitution of ‘low’ by ‘high’ in the game’s early rounds. Visual correlations alone, however, cannot be interpreted

as causal evidence. We thus turn to a regression analysis, estimating the following model:

Lowigt = α + β Gamei + γ Roundig + δ Con f licti + X′i ζ + ǫigt (13)

where Lowigt is a dummy variable capturing whether participant i in game g and round t opted for the efficient extraction

of points. Gamei is the number of ‘real’ games played by participant i, whereas Roundig captures the number of rounds

played by participant i in the current game. Both controls are meant to capture potential trends or learning effects across

and within games. Con f licti is a dummy variable equal to one for all participants of the conflict treatment.12 The vector

Xi controls for individual characteristics and includes study subject and gender. Regarding the study program, we create

dummies for hard sciences (science) and for social sciences (social), with the residual group being humanities. As for

gender, since it may influence the attitude of participants, both towards extraction levels and towards the chance option,

we include a dummy variable for male. Finally, ǫigt is the standardised error term clustered at the individual level. The

coefficient of interest is δ, which captures the impact of having the chance option on the level of cooperation.

We then estimate equation (13) by replacing the dependent variable by a dummy Highigt equal to one when the

participant chooses the ‘high’ extraction level.

Table 1 contains the descriptive statistics.

12We do not include the stock of points left in our empirical model, as it is endogenous to the choice of ‘low’ vs ‘high’, and highly collinear with

the variable Round. Substituting Round with the level of stock of points, however, produces qualitatively identical results.
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5.1 Baseline results

In Table 2 we report the results of estimating model (13).13 In other words, we are evaluating the effect of the presence

of a conflict technology, which makes conflict a profitable choice on the propensity to play ‘low’. The first column of

Table 2 reports the results of the benchmark specification. Compared to the control treatment, participants in the conflict

treatment tend to play ‘low’ by 12.1 percentage points less on average, thus lending support to our theoretical findings.

Given that the average propensity of ‘low’ in the control treatment equals 23.3%, this implies that the introduction of

the chance option reduces the likelihood of ‘low’ being played by about 50%. Consistently with previous findings, the

Game coefficient, which captures the learning effect across games, implies that the propensity of ‘low’ decreases on

average by 1.2 percentage points from one game to another (Dal Bó and Fréchette 2011). Moreover, ‘low’ is decreasing

on average by 1.9 percentage point from one round to another within a game. As will become clear later, the latter

result is mainly driven by participants’ increasingly frequent choice of chance, on the one hand, and by the participants’

increasingly frequent reversion to ‘high’ when the stock of points starts to run very low. Lastly, the gender and studies

coefficients take signs compatible with earlier findings: male participants tend to cooperate less (Eckel and Grossman

1998), and the same holds true for non-humanities students (Frank et al. 1993).

Giving participants the option to play chance (resort to conflict) had a negative effect on the play of ‘low’. This

effect could, however, not be completely counterbalanced by an increase in the play of ‘high’, as it could partially be

driven by an increase in the use of the third option, chance, which is sub-optimal in the control treatment. Proposition

2 stipulates that, for high levels of the stock of points (i.e. r > 29.15 given our parametrisation), the optimal decision

is to choose ‘high’, with the chance option being used only when the stock of points is sufficiently depleted. To

verify therefore that we indeed observe a substitution of ‘low’ by ‘high’ in the game’s early rounds, as suggested by

Hypothesis 1 – and that we can exclude a selection bias –, we restrict our estimation in multiple ways. In the second

and third columns of Table 2, we restrict the sample to the first and the first two rounds of the game – where chance is

unlikely to have been chosen in either treatment – to see whether ‘low’ does decrease. The coefficients remain positive

and significant at the 1% level, thus implying that ‘low’ decreases as compared to the control treatment, when resorting

to chance is theoretically sub-optimal.

Given that all games begin with a stock of 40 points, the stock of points would equal 28 in round 2 if both players

played ‘high’ in the game’s first rounds, making participants roughly indifferent between playing chance and not in the

conflict treatment. Cooperation is significantly lower under the conflict treatment, by 11.9 percentage points, further

confirming our expectations.

Specification (13) considers a linear effect of Round and Game on the dependent variable. To allow for non-linear

effects, we reproduce the specifications of columns 1 − 3 in columns 4 − 6, now introducing round and game fixed

effects instead of linear trends. The results remain quantitatively almost unchanged.

In Table 3 we present the results of the same specifications as in Table 2 by replacing the dependent variable

with ‘high’. The benchmark regression yields a negative coefficient, which is significant at the 1% level: adding the

13All model specifications are estimated by OLS. Replicating our estimates with probit and multinomial logit does not affect our results qualita-

tively. Results are available upon request.

14



chance option reduces ‘high’ on average by 27.3 percentage points compared to the control treatment. As mentioned

earlier, one may be tempted to conclude that in the chance option, when playing chance becomes optimal, we observe a

reduction of both ‘low’ and ‘high’ in favour of chance, thus possibly contradicting Proposition 2. Such an interpretation

would be mistaken, however, since the benchmark model captures the average effects of the introduction of chance in

a standard CPR exploitation game, while Proposition 2 clearly identifies two distinct optimal choices depending on

the stock of points: when points are abundant, ‘high’ should increase, whereas when points are scarce, chance is the

optimal choice and both “low” and “high” are accordingly expected to decrease. We therefore proceed in columns

2-3 with the same sample restrictions as in Table 2. If Proposition 2 is to be confirmed, we should expect ‘high’ to

increase only when the stock of points is abundant, or alternatively in the early rounds of the game. Our results do

confirm this prediction: according to the results reported in column 3, ‘high’ increases by 16.3 percentage points in

the game’s first round compared to the control treatment. Hence, the availability of a “profitable” conflict technology

induces participants to substitute ‘low’ with ‘high’ when the stock of points is sufficiently large.14

One potential concern could be that, since playing chance implies that participants stop making choices in subse-

quent rounds of the same game, the decision to play chance could be driven by non-pecuniary motivations, such as

putting an early end to the game (playing chance too early), or deferring chance to future rounds, because participants

may simply enjoy playing the game (playing chance too late). Since our theoretical mechanism identifies a critical

resource threshold triggering conflict (i.e. chance), we reproduce Tables 2 and 3 by adding as a control variable the

level of resources. The results are contained in Tables 4 and 5. Our results are strongly robust to this additional test.

As explained earlier, the substitution of ‘low’ by ‘high’ in the conflict treatment is explained by the sharp increase

of chance being played in rounds 3 − 6. Indeed, as can be seen in Figure 3 virtually no participant opts for chance in

the first 2 rounds of the game. Secondly, we observe a surge of chance being chosen in rounds 3 to 6, rising from it

being played by 1.5% to 66% of the pairs. This coincides roughly with our expectation that chance becomes optimal

when the stock of points drops below 29, since the average stock of points in rounds 2 and 3 is equal to 29 and 21.1

points, respectively. Bearing in mind the relatively low proportion of participants opting for chance in the control

treatment, as well as the low probability of the game lasting long enough (i.e. after round 13) for there to be a real

risk of chance being played, this graph supports our narrative. Combined with the results of Tables 2 and 3, we can

confidently state that our empirical results are consistent with Hypothesis 1. The introduction of a profitable (for low

levels of resources) appropriation option in an experimental game of renewable CPR exploitation induces participants

to become more non-cooperative in the presence of abundant resource stocks, thus precipitating their depletion, and

eventually opting for the partition of the resource.

14In the on-line Appendix Tables A1-A2 replicate the same tests keeping the whole sample and adding interaction terms to identify the effect of

chance in early rounds. The interpretation is sometimes less straightforward but the pattern of our findings is identical.
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5.2 Exploring the mechanism

5.2.1 The expectation of chance

To further convince the reader that it is indeed the expectation of chance play in later rounds that triggers ‘high’ in the

early rounds of a game, we propose two alternative strategies.

First, we explore whether a higher expectations of chance being played does in fact reinforce the behaviour patterns

that are compatible with our theory. If the substitution of ‘low’ by ‘high’, as we observe it in the early rounds of the

conflict treatment, rests in the expectation of chance being played in later rounds, we should expect participants who

choose chance (‘attackers’), and those matched with them (‘victims’) in the previous game, to increase their expectation

that chance will be played later. While the attackers’ behaviour may be driven by the unobserved characteristics that

explain also their initial decision to opt for chance, the potential alteration of the victims’ behaviour should reveal some

information updating, since they should expect chance play to be more likely after experiencing chance. This implies

that past attackers, and even more so past victims, should more markedly reduce ‘low’ and increase ‘high’ in the early

rounds of a game.

To implement this test we create two additional variables: a dummy capturing whether a participant has played

chance in the previous game (lagged attacker) and another dummy capturing whether a participant was matched with

an attacker in the previous game (lagged victim). We then re-estimate our models, including these two additional

controls. The results of this test are reported in Table 6. Columns 1 − 2 and 5 − 6 replicate columns 2 − 3 of Tables 2

and 3, respectively.

The results in column 1 of Table 6 suggest that, in the first round of the game, previous game attackers play ‘low’ by

8 percentage points less than the average participant in the conflict treatment. The equivalent figure for victims in the

previous game equals 6.7 percentage points. The equivalent values for ‘high’ as contained in column 5 equal 7.3 and

6.5 percentage points, respectively. This suggests that both lagged victims and attackers fully substitute their reduced

propensity to play ‘low’ by ‘high’ when resources are abundant. This considerable difference between participants who

did not experience chance in the previous game, and those who did, further supports the conclusion that the expectation

of chance is the mechanism driving the substitution of ‘low’ by ‘high’. Results in columns 2 and 6 follow a similar

pattern, thus further strengthening our interpretation. In columns 3 − 4 and 7 − 8 we substitute round and game trends

by round and game fixed effects. The results remain unaffected.15

Finally, we replicate the same exercise, but restricting the analysis to participants in the conflict treatment only. We

therefore test whether participants that have experienced chance in the previous game, as an attacker or as a victim, are

more likely to play ‘high’ and less likely to play ‘low’ in the early periods of the game. The results, reported in Table

7, broadly confirm our previous results. We can thus confidently deduce that participants who have experienced chance

in the previous game are more likely to expect chance to be chosen in the current game, therefore substituting ‘low’ by

‘high’ in the game’s early rounds.

15Replicating the estimations in Tables 6 when including also interaction terms between con f lict and lagged attacker and lagged victim reveals

that the expectation mechanism is operating in both treatments (as both interaction terms are not significant).
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The second strategy proposed relies on a slightly modified experiment.16 We amend the conflict treatment to impose

chance on participants whenever the resource stock decreases below 25, which occurs concomitantly with the cost of

chance decreasing to 0. This minor change implies that participants now know that chance will occur with certainty

later in the game. If the expectation of chance is the reason driving the substitution of ‘low’ with ‘high’ in early rounds

of the game, as we are arguing, then we should observe the same substitution also in this modified treatment, which

we name ‘sure conflict’. The results, based on two sessions involving 42 participants are reported in Tables 8 and 9,

which follows the same structure of Tables 2 and 3.17 Even though columns 3 and 6 are not statistically significant at

the conventional levels, overall the results in Tables 8 and 9 suggest that participants did substitute ‘low’ with ‘high’ in

the early rounds of the game, thereby lending further support to our interpretation.

5.2.2 Tracking individual paths of play

To show that the mechanism identified in our theoretical framework is actually the one driving our experimental results,

we provide some additional supportive evidence based on the individual play-paths of our participants. Notice first that

the timing according to which chance has been played by participants is consistent with the theory proposed. Figure 6

reports the distribution of actions in the conflict treatment across rounds for the first five and the last five real games,

separately. It shows that right after the 10 training games (solid line), the majority of participants who played chance,

did so in round 3, when the cost is nil. It also shows that in the last five games chance players are even more concentrated

around the optimal behaviour (dashed line).

FIGURE 6 HERE

In Table 10 we report the 5 most frequent sequences chosen in the first five rounds by participants in the conflict

and control treatments, respectively. The top sequence is {h, h, h, h, h} in both treatments, where h stands for high.

The theory predicts that in the conflict treatment participants should play h for two rounds, before opting for chance

(c). In the control treatment, on the other hand, no similar pattern should be observed since conflict is theoretically

suboptimal. Interestingly, out of 580 participant-game play paths (i.e. 58 participants each playing separate 10 games),

77 perfectly match the theoretical expectations. In other words, in 13.3% of the participant-games the participants

opted for the sequence {h, h, c}.

Computing the precise optimal round where conflict should be played in the conflict treatment may, however,

involve a significant level of sophistication on behalf of the participants. Table 10 shows that in almost a quarter of

participant-games in the conflict treatment play paths, chance was chosen either in rounds 4 or in round 5, following a

continuous sequence of h choices. In the control treatment none of these sequences was ever adopted. These findings

constitute strong evidence that our results do not merely reflect behaviour compatible with the theoretical results on

average, but instead that the mechanism is verified for a large share of participants at the individual level.

16We thank an anonymous referee for proposing this test.
17Tables A3 and A4 in the on-line Appendix replicate the same test by including the stock of resources as an additional control.

17



6 Conclusion

Folk theorems permit cooperation to arise in equilibrium in dynamic common pool renewable resource games, both

theoretically and experimentally. Allowing the players to revert to violence to split the resource (and to thereafter

manage efficiently what has become a private resource) breaks the logic of folk theorems. In our theoretical section

we propose a simple version of the CPR management model of Sekeris (2014), where players can opt for potentially

costly conflict to permanently split resources. In the presence of a highly destructive conflict technology, violence

is never optimal, and thus cooperation is sustainable. With conflict technologies that make conflict profitable under

some circumstances (i.e. when resources are sufficiently depleted), infinite horizon dynamic games endogenously

become finite horizon strategic games up to the moment when conflict emerges, after which the game reduces to

a decision-theoretic problem. This deprives players of the required punishment strategy for sustaining cooperation,

thereby leading to the collapse of cooperation. In this paper we inquire experimentally whether participants respond to

such incentives that should lead to (i) less cooperation in the presence of high stocks of resources, and to (ii) conflict

after the resource stock is sufficiently depleted. We find a strong and highly significant effect of conflict on the choices

of cooperation and non-cooperation. In the game’s first round, participants reduce their cooperation by 16 percentage

points and increase non-cooperation by 16.3 percentage points. Given that the average rates of cooperation and non-

cooperation in the game’s first round are around 24.1% and and 75.7%, respectively, this equates to a 66% decrease of

cooperation, and to a 21% increase of non-cooperation.

To provide further evidence of the theoretical mechanism proposed in this paper, we included two additional ver-

ification tests. We explored whether having experienced chance in the previous game being played as an attacker

(initiator of conflict) or a victim increases the participants’ inclination to play according to the theoretical results. The

findings unambiguously point towards an increased substitution of cooperation by non-cooperation among both lagged

attackers and lagged victims. This confirms that the experience of conflict in a previous game increases the expectation

among these participants of conflict occurring in the ongoing game, in turn leading to less cooperative behaviour. The

second verification exercise was to organise a treatment where players were certain that chance would occur since we

experimentally imposed it below a certain threshold level of resources. Observing the same substitution of cooperation

by non-cooperation in the game’s early rounds as in the benchmark regressions further supports our interpretation of

cooperation decreasing in expectation of chance. Lastly, we tracked the sequence of choices made by participants in

games. We find that in the conflict treatment more than a third of the participant-game play paths match the sequence of

actions compatible with our theory, compared with none in the control treatment. We interpret these results as strong

evidence that our experimental findings are driven by the participants’ individual behaviour rather than by average

effects, thus allowing us to confidently conclude that participants behave as predicted by our theory.

This contribution constitutes the first evidence for the theory that the expectation of (possibly distant) conflicts over

shared resources can break cooperation in the short run. In equilibrium, the depletion of resources occurs more rapidly

when conflict is an option. Our findings may help comprehend the failure to reach agreements over such matters as

the conservation of the environment. This, in turn, would imply that one crucial dimension for promoting cooperation

would be the strengthening of institutions and international bodies able to contain such violence.
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Figure 1: Cumulative payoffs under both players opting for ‘low’ and for ‘high’

Figure 2: Screenshot of ‘conflict’ treatment with 28 points
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Figure 3: Share of participants opting for ‘low’
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Figure 4: Share of participants opting for ‘high’
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Figure 5: Share of participants opting for ‘chance’
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Tables

Table 1: Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max

Conflict treatment:

Low 5172 0.109 0.311 0 1

High 5172 0.453 0.498 0 1

Chance 5172 0.438 0.496 0 1

Control treatment:

Low 5292 0.233 0.423 0 1

High 5292 0.719 0.450 0 1

Chance 5292 0.048 0.213 0 1

Game 10464 5.563 2.846 1 10

Round 10464 5.293 3.119 1 16

Male 10464 0.468 0.499 0 1

Stock of points 10464 16.901 11.484 0.121 40

Science 10464 0.138 0.345 0 1

Social 10464 0.499 0.500 0 1
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Table 2: Effect of ‘conflict’ on the choice of Low

Dependent variable: Low

(1) (2) (3) (4) (5) (6)

Conflict -0.121*** -0.160*** -0.119** -0.121*** -0.160*** -0.119**

(0.030) (0.053) (0.048) (0.030) (0.059) (0.048)

Round -0.019*** -0.015

(0.003) (0.028)

Game -0.012*** -0.016*** -0.015***

(0.002) (0.004) (0.003)

Male -0.034 0.012 0.002 -0.035 0.012 0.002

(0.029) (0.061) (0.049) (0.028) (0.061) (0.049)

Science -0.085** -0.203*** -0.213*** -0.085** -0.203*** -0.213***

(0.042) (0.068) (0.055) (0.042) (0.068) (0.056)

Social -0.057* -0.019 -0.077 -0.056* -0.019 -0.077

(0.033) (0.068) (0.056) (0.033) (0.069) (0.056)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 10,464 1,160 2,320 10,464 1,160 2,320

R-squared 0.071 0.069 0.058 0.079 0.071 0.060

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.

Table 3: Effect of ‘conflict’ on the choice of High

Dependent variable: High

(1) (2) (3) (4) (5) (6)

Conflict -0.273*** 0.163*** 0.119** -0.272*** 0.163*** 0.119**

(0.035) (0.059) (0.049) (0.035) (0.059) (0.049)

Round -0.025*** 0.004

(0.005) (0.027)

Game 0.005 0.016*** 0.014***

(0.003) (0.004) (0.003)

Male -0.006 -0.009 -0.004 -0.007 -0.009 -0.004

(0.035) (0.061) (0.051) (0.035) (0.061) (0.051))

Science 0.044 0.204*** 0.217*** 0.044 0.204*** 0.217***

(0.045) (0.068) (0.056) (0.045) (0.068) (0.056)

Social 0.040 0.019 0.070 0.040 0.019 0.070

(0.039) (0.068) (0.057) (0.039) (0.069) (0.057)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 10,464 1,160 2,320 10,464 1,160 2,320

R-squared 0.099 0.070 0.055 0.120 0.072 0.057

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.
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Table 4: Effect of ‘conflict’ on the choice of Low - controlling for the resource stock

Dependent variable: Low

(1) (2) (3) (4) (5) (6))

Conflict -0.129*** -0.160*** -0.100** -0.150*** -0.160*** -0.100**

(0.029) (0.059) (0.044) (0.029) (0.059) (0.044)

Round 0.001 0.426***

(0.005) (0.069)

Game -0.011*** -0.016*** -0.013***

(0.002) (0.004) (0.003)

Resource stock 0.006*** 0.042*** 0.021*** 0.041***

(0.002) (0.007) (0.003) (0.007)

Male -0.037 0.012 -0.002 -0.043* 0.012 -0.002

(0.027) (0.061) (0.046) (0.025) (0.061) (0.046)

Science -0.082** -0.203*** -0.198*** -0.077* -0.203*** -0.198***

(0.041) (0.068) (0.052) (0.039) (0.068) (0.052)

Social -0.055* -0.019 -0.070 -0.052* -0.019 -0.070

(0.032) (0.068) (0.052) (0.030) (0.069) (0.052)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 10,464 1,160 2,320 10,464 1,160 2,320

R-squared 0.080 0.069 0.083 0.107 0.071 0.084

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.

Table 5: Effect of ‘conflict’ on the choice of High - controlling for the resource stock

Dependent variable: High

(1) (2) (3) (4) (5) (6)

Conflict -0.261*** 0.163*** 0.103** -0.185*** 0.163*** 0.103**

(0.034) (0.059) (0.047) (0.025) (0.059) (0.047)

Round -0.057*** -0.353***

(0.006) (0.096)

Game 0.004 0.016*** 0.012***

(0.003) (0.004) (0.003)

Resource stock -0.010*** -0.034*** -0.065*** -0.034***

(0.002) (0.010) (0.004) (0.010)

Male -0.001 -0.009 -0.001 0.018 -0.009 -0.001

(0.033) (0.061) (0.048) (0.024) (0.061) (0.048)

Science 0.039 0.204*** 0.205*** 0.017 0.204*** 0.205***

(0.043) (0.068) (0.053) (0.034) (0.068) (0.053)

Social 0.037 0.019 0.064 0.027 0.019 0.064

(0.037) (0.068) (0.054) (0.028) (0.069) (0.054)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 10,464 1,160 2,320 10,464 1,160 2,320

R-squared 0.113 0.070 0.071 0.277 0.072 0.072

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.

24



Table 6: The impact of experiencing chance in the past

Dependent variable: Low High

(1) (2) (3) (4) (5) (6) (7) (8)

Conflict -0.114* -0.082 -0.112* -0.080 0.121* 0.089* 0.119* 0.087

(0.062) (0.052) (0.063) (0.052) (0.063) (0.053) (0.063) (0.053)

Lagged attacker -0.080 -0.059 -0.084 -0.062 0.073 0.036 0.076 0.039

(0.052) (0.042) (0.052) (0.043) (0.053) (0.049) (0.054) (0.049)

Lagged victim -0.067** -0.070*** -0.070** -0.072*** 0.065* 0.070*** 0.067** 0.072***

(0.033) (0.026) (0.033) (0.026) (0.034) (0.026) (0.034) (0.027)

Round -0.013 0.002

(0.029) (0.028)

Game -0.013*** -0.012*** 0.013*** 0.012***

(0.004) (0.003) (0.004) (0.003)

Male 0.014 0.003 0.014 0.003 -0.010 -0.003 -0.010 -0.003

(0.060) (0.047) (0.060) (0.047) (0.060) (0.049 (0.060) (0.049)

Science -0.193*** -0.204*** -0.193*** -0.203*** 0.196*** 0.209*** 0.195*** 0.209***

(0.065) (0.052) (0.066) (0.052) (0.065) (0.053) (0.066) (0.053)

Social -0.023 -0.079 -0.023 -0.079 0.022 0.071 0.022 0.071

(0.067) (0.054) (0.068) (0.054) (0.067) (0.056) (0.068) (0.056)

Rounds 1 � � � �

Rounds 1-2 � � � �

Game & Round FE � � � �

Observations 1,044 2,088 1,044 2,088 1,044 2,088 1,044 2,088

R-squared 0.069 0.058 0.072 0.061 0.070 0.055 0.073 0.057

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1.

Table 7: The impact of experiencing chance in the past - conflict treatment only

Dependent variable: Low High

(1) (2) (3) (4) (5) (6) (7) (8)

Lagged attacker -0.071 -0.083* -0.072 -0.082* 0.071 0.062 0.072 0.062

(0.060) (0.046) (0.060) (0.046) (0.060) (0.052) (0.060) (0.053)

Lagged victim -0.056 -0.077*** -0.054 -0.076** 0.056 0.077*** 0.054 0.076**

(0.037) (0.029) (0.036) (0.029) (0.037) (0.029) (0.036) (0.029)

Round 0.015 0.015 -0.033 -0.033

(0.038) (0.038) (0.034) (0.034)

Game -0.012** -0.014*** 0.012** 0.014***

(0.006) (0.004) (0.006) (0.004)

Male -0.058 -0.056 -0.058 -0.056 0.058 0.048 0.058 0.048

(0.070) (0.058) (0.071) (0.058) (0.070) (0.063) (0.071) (0.063)

Science -0.098 -0.134** -0.097 -0.134** 0.098 0.144** 0.097 0.144**

(0.072) (0.061) (0.073) (0.062) (0.072) (0.065) (0.073) (0.065)

Social 0.027 -0.042 0.027 -0.042 -0.027 0.033 -0.027 0.033

(0.081) (0.071) (0.082) (0.071) (0.081) (0.073) (0.082) (0.073)

Rounds 1 � � � �

Rounds 1-2 � � � �

Game & Round FE � � � �

Observations 522 1,044 522 1,044 522 1,044 522 1,044

R-squared 0.038 0.048 0.045 0.050 0.038 0.041 0.045 0.043

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Effect of ‘sure conflict’ on the choice of Low

Dependent variable: Low

(1) (2) (3) (4) (5) (6)

Sure Conflict -0.179*** -0.137** -0.078 -0.184*** -0.135** -0.078

(0.029) (0.064) (0.055) (0.030) (0.064) (0.055)

Round -0.021*** -0.008

(0.004) (0.031)

Game -0.009*** -0.019*** -0.015***

(0.003) (0.005) (0.005)

Male -0.002 0.017 0.021 -0.003 0.017 0.021

(0.034) (0.071) (0.058) (0.034) (0.071) (0.058)

Science -0.048 -0.120 -0.139** -0.048 -0.120 -0.139**

(0.045) (0.087) (0.067) (0.045) (0.088) (0.067)

Social -0.023 0.000 -0.025 -0.023 0.001 -0.025

(0.037) (0.077) (0.064) (0.038) (0.077) (0.064)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 7,700 888 1,776 7,700 888 1,776

R-squared 0.073 0.039 0.025 0.083 0.041 0.029

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.

Table 9: Effect of ‘sure conflict’ on the choice of High

Dependent variable: High

(1) (2) (3) (4) (5) (6)

Sure Conflict -0.516*** 0.140** 0.070 -0.508*** 0.138** 0.071

(0.029) (0.064) (0.055) (0.030) (0.064) (0.055)

Round -0.017*** -0.005

(0.005) (0.031)

Game 0.014*** 0.018*** 0.014***

(0.003) (0.005) (0.005)

Male 0.000 -0.013 -0.016 -0.001 -0.013 -0.016

(0.036) (0.071) (0.059) (0.036) (0.071) (0.059)

Science 0.063 0.122 0.141** 0.064 0.122 0.141**

(0.045) (0.087) (0.067) (0.045) (0.088) (0.068)

Social 0.043 -0.001 0.017 0.043 -0.001 0.018

(0.040) (0.077) (0.064) (0.040) (0.077) (0.065)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 7,700 888 1,776 7,700 888 1,776

R-squared 0.252 0.040 0.023 0.288 0.042 0.026

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.
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Table 10: Top sequences for the first 5 rounds

Sequence Participant-games %

Conflict treatment

hhhhh 106 18.28

hhhcc 85 16.38

hhccc 77 13.28

hhhhc 43 7.42

hhhhl 14 2.41

Control treatment

hhhhh 211 36.38

lhhhh 37 6.38

llllll 29 5

hhhhl 26 4.48

hhhll 24 4.14

Notes: h, l, c stand for high, low and chance, respectively.
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A Appendix

A.1 Proofs

A.1.1 Unconstrained optimisation

Instead of constraining the players’ extraction rates to pre-determined values, we now consider the same game to the

one presented in Section 3 without the restriction on extraction technologies. We are thus considering the game where

any player i can choose any extraction effort ei,t ∈ R
+ at any time period t.

Derivation of the “conflict” extraction rates, ec
i,t

:

We denote by Vc
i
(ri,t) the value function of this problem given the resource stock ri,t, meaning that the indirect

aggregate utility can be expressed as a Bellman equation:

Vc
i (ri,t) = arg max

ei,t

[

ln
(

ei,t

)

+ δVc (

ri,t+1

)]

(14)

Given the assumed regeneration rule, the above expression can be written as:

Vc
i (ri,t) = arg max

ei,t

[

ln
(

ei,t

)

+ δVc
i

(

(1 + γ)
(

ri,t − xi,t

))]

(15)

Differentiating (22) with respect to ei,t, we obtain the following equation:

∂Vc
i
(ri,t)

∂ei,t

=
1

ec
i
(ri,t)

− δ(1 + γ)Vc
i

′ (

(1 + γ)
(

rit − ec
i

(

ri,t

)))

= 0 (16)

We next inquire whether ei,t(ri,t) can be a linear in the stock of resources so that ei,t(ri,t) = scri,t. This assumption

implies that the stock of resources in time t + 1 equals ri,t+1 = (1 + γ)(1 − sc)ri,t so that the player’s indirect utility now

reads as:

Vc
i (ri,t) =

[

ln(scri,t) + δ ln
(

scri,t(1 + γ)(1 − sc)ri,t

)

+ δ2 ln
(

scri,t(1 + γ)
2(1 − sc)2ri,t

)

+ . . .
]

(17)

Factoring yields:

Vc
i (ri,t) =

ln(scri,t)

1 − δ
+

∞
∑

t=0

δt ln
(

(1 + γ)t(1 − sc)t
)

(18)

Thus implying that:

Vc
i

′

(ri,t) =
1

(1 − δ)ri,t

(19)

This is turn allows to re-write (16) as:

1

scri,t

−
δ(1 + γ)

(1 − δ)(1 + γ)(ri,t − scri,t)
⇔ sc = 1 − δ (20)

And we therefore conclude that ec
i,t
= (1 − δ)ri,t.

Derivation of the “low” extraction rates, e
p

i,t
(kl

i,t
, .):
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The extraction rates defined in the paper as “low” correspond to the extraction rates the social planner would impose

on the players. Proceeding as above, and denoting by V l(rt) the value function of this problem given the resource stock

rt, the indirect aggregate utility can be expressed as a Bellman equation:

V l(rt) = arg max
e1,t ,e2,t

















∑

i=1,2

ln
(

ei,t

)

+ δV l (rt+1)

















(21)

Given the assumed regeneration rule, the above expression can be written as:

V l(rt) = arg max
e1,t ,e2,t

















∑

i=1,2

ln
(

ei,t

)

+ δV l ((1 + γ)
(

rt − e1,t − e2,t

))

















(22)

Differentiating (22) with respect to the two decision variables, e1,t and e2,t, we obtain the following system of

equations:



























∂V l(rt)

∂e1,t
= 1

el
1
(rt)
− δ(1 + γ)

∑

i=1,2 V l
i

′ (

(1 + γ)
(

rt − el
1

(rt) − el
2

(rt)
))

= 0

∂V l(rt)

∂e2,t
= 1

el
2
(rt)
− δ(1 + γ)

∑

i=1,2 V l
i

′ (

(1 + γ)
(

rt − el
1

(rt) − el
2

(rt)
))

= 0

(23)

Where these equations hold because the constraint e1,t + e2,t ≤ rt will never be binding, as limrt→0 V l
i

′

= +∞.

From (23) we deduce that el
1
(rt) = el

2
(rt) = el(rt). To derive the efficient equilibrium, we inquire whether el(rt) may

be a linear function of its argument so that el(rt) = slrt. This assumption implies that the stock of resources in time

period t + 1 can be expressed as rt+1 = (1 + γ)
(

1 − 2sl
)

rt. Replacing in V l
i
, together with using the regeneration rule

gives us:

V l(rt) = 2
[

ln
(

slrt

)

+ δ ln
(

sl(1 + γ)(1 − 2sl)rt

)

+ δ2 ln
(

sl(1 + γ)2(1 − 2sl)2rt

)

+ . . .
]

(24)

Rearranging the terms of (24) gives us:

V l(rt) =
2 ln

(

slrt

)

1 − δ
+ 2

∞
∑

τ=0

δτ ln
(

(1 + γ)τ(1 − 2sl)τ
)

(25)

Thus implying that V l
′

(rt) =
2

(1−δ)rt
. Substituting in (23) for V l

′

(.) yields:

1

slrt

−
2δ(1 + γ)

(1 − δ)(1 + γ)(1 − 2sl)rt

⇒ sl =
1 − δ

2

And we therefore conclude that el
i,t
= 1−δ

2
ri,t.

Derivation of the “high” extraction rates, e
p

i,t
(kh

i,t
, kh

i,t
) and e

p

i,t
(kh

i,t
, kl

i,t
):

We begin by focusing on the extraction rates that prevail at the Markov-Perfect equilibrium of this game, namely at

the equilibrium where strategies cannot be conditioned on the game’s history. Denote these strategies by N. Proceeding

as above, we have:

VN
i (rt) = arg max

ei,t

ln
(

ei,t

)

+ δVN
i (rt+1) (26)
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From which we deduce:

∂VN(rt)

∂ei,t

=
1

eN
i

(rt)
− δ(1 + γ)VN

i

′ (

(1 + γ)
(

rt − eN
1 (rt) − eN

2 (rt)
))

= 0

And following the above steps we easily obtain that eN
i,t
= 1−δ

2−δ
ri,t. The extraction rates imposed in the paper when

both players opt for a “high” extraction technology, e
p

i,t
(kh

i,t
, kh

j,t
), therefore emulate the Markov Perfect equilibrium

extraction rates.

Lastly, we consider the optimal “deviation” from the social planner’s solution, namely the optimal extraction rate

when facing a player who follows the social planner’s instructions, and in expectation that any subgame will involve

“high” extraction rates. Player i’s optimisation problem reads as:

max
ei,t

ln(ei,t) + δV
N

((

rt+1 − ei,t −
1 − δ

2

)

(1 + γ)

)

Replacing for the appropriate values and optimising yields the optimal extraction rate edev
i,t

given by:

edev
i,t =

(1 − δ)(1 + δ)

2
rt (27)

And lastly we set edev
i,t
= e

p

i,t
(kh

i,t
, kl

j,t
).

A.1.2 Proof of Condition (7)

Proof. We want to prove that f (δ) = ln
(

2
2−δ

)

− δ ln(1 + δ) ≥ 0, ∀δ ∈ [0, 1].

We have

f ′(δ) =
1

2 − δ
−
δ

1 + δ
− ln(1 + δ) (28)

f ”(δ) =
1

(2 − δ)2
−

1

(1 + δ)2
−

1

1 + δ
. (29)

f ”(δ) is increasing in [0, 1] and f ”(1) < 0. Hence, f ”(δ) < 0, ∀δ ∈ [0, 1]. This implies that f ′(δ) is decreasing [0, 1]. It

is easy to see that f ′(0) > 0 > f ′(1). Hence, minδ∈[0,1] f (δ) = min( f (0), f (1)) = 0. We therefore conclude that f (δ) ≥ 0

∀δ ∈ [0, 1].

�

A.1.3 Proof of Condition (9)

Proof. We want to prove that f (δ) = (1 − δ) ln
(

φ

2

)

− ln(2 − δ) < 0, ∀δ ∈ [0, 1), and φ ≤ 0, 4.

We have

f ′(δ) = − ln(φ/2) +
1

2 − δ
> 0 (30)

Fix next φ = 0, 4. We then have that f (1) = 0. It thus follows that ∀δ < 1 and ∀φ ≤ 0, 4, Condition (9) is satisfied. �

A.1.4 Derivation of expression (11)

Plugging edev
i,t

(rt) and el
j,t

(rt) in the law of motion of resources gives:

rt+1 =
δ(δ + 1)(1 + γ)

2
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δ

f(
δ
)

Replacing in expression (10) yields:

ln

(

(1 − δ)(1 + δ)

2
rt

)

+
δ

1 − δ
ln

(

(1 − δ)(1 + γ)δ(1 + δ)

2(2 − δ)
rt

)

+
δ2

(1 − δ)2
ln

(

δ(1 + γ)

2 − δ

)

<
1

1 − δ
ln

(

1 − δ

2
rt

)

+
δ

(1 − δ)2
ln

(

1 − δ

2

)

(31)

Simplifying yields:

(1 − δ) ln(1 + δ) + δ ln

(

1

2 − δ

)

< 0

which straightforwardly gives expression (11).

A.1.5 Proof that Condition (11) holds for any δ ∈ (1/2)

For Expression (11) to hold for δ ∈ (1/2, 1), we require that for that range of parameters:

f (δ) = δ ln(2 − δ) − (1 − δ) ln(1 + δ) > 0

We can first easily verify that f (1/2) = f (1) = 0.

We next compute f
′

(δ) and f
′′

(δ) which equal, respectively:

f
′

(δ) = ln(2 − δ) + ln(1 + δ) −
δ

2 − δ
−

1 − δ

1 + δ

f
′′

(δ) =
3 + δ

(1 + δ)2
−

4 − δ

(2 − δ)2

From these expressions we can obtain that f
′

(1/2) = 2 ln(3/2) − 2/3 > 0 and f
′

(1) = ln(2) − 1 < 0. Since

f
′′

(1/2) = 0 and f
′′

(1) = −2 < 0, to complete the proof it is sufficient to establish that f
′′′

(δ) < 0 over δ ∈ [1/2; 1] so

that f
′′

(δ) < 0 ,∀δ > 1/2. And this last condition is verified since:
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f ′′′(δ) = −
4 − δ

(2 − δ)2
−

5 + δ

(1 + δ)3
< 0 ,∀δ ∈ [1/2, 1]

0 0.5 1
−0.1

−5 · 10−2

0

5 · 10−2

0.1

δ

f(
δ
)

A.2 Model with no destruction and endogenous conflict efforts

In this Appendix, we consider exactly the same setting as in Section 2, with the difference that (i) φ(rt) = 1, ∀t, (ii) in

case of conflict players equally decide the amount of resources gi, i ∈ {1, 2} to devote to conflict, and (iii) the stock of

resources is share by players according to the following technology instead of being split up in two:

σi(gi, g j) =
gi + α/2

gi + g j + α

with α > 0.

For the results of Proposition 2 to hold, it is thus sufficient to show that there exists a r̄ such that gi, g j = 0, ∀r < r̄.

Re-writing the discounted expected utility under conflict as expressed in (3), taking into account the new assump-

tions of this section, we can write:

Vc
i (rt) =

1

1 − δ
ln

(

(1 − δ)
gi + α/2

gi + g j + α

(

rt − gi − g j

)

)

+
δ

(1 − δ)2
ln((1 + γ)δ)

Optimising this expression with respect to gi yields:

(1 − δ)

(

g j+α/2

(gi+g j+α)2 (rt − gi − g j) −
gi+α/2

gi+g j+α

)

(1 − δ)
gi+α/2

gi+g j+α

(

rt − gi − g j

) = 0
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Imposing symmetry, observing that rt > gi + g j at equilibrium, and denoting equilibrium conflict efforts by g∗, we

obtain:
g∗ + α/2

(2g∗ + α)
(rt − 2g∗) − (g∗ + α/2) = 0

⇔ g∗ =
rt − α

4

And since α > 0, it follows that there exists r̄ > 0 such that g∗ = 0, ∀r ≤ r̄.
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A.3 Instructions to the conflict treatment

In this section we present the instruction handed to the conflict treatment alone. The control group received the same

instructions, with the difference that the cost of chance was maintained equal to 60% of the resources throughout.

Welcome,

You are about to participate in an experiment on decision-making. You will be paid for your participation in cash,

privately, at the end of the session. What you earn depends partly on your decisions, partly on the decisions of others,

and partly on chance.

Please turn off all electronic devices now.

The entire experiment will take place through computer terminals. Please do not talk or in any way try to com-

municate with other participants until everybody has been told that the experiment is over and that you can leave the

room.

We will now give you some time to carefully read the following instructions. If you have any questions, please

raise your hand and your question will be answered so everyone can hear.

Overview & Payment

In this experiment you will play the same game 20 times. Each time you play, the computer will randomly pair

you up with someone else in the room (but you don’t know with whom). So, in each game you are paired with a

random person in the room. The first 10 games you play will be for practice. The remaining 10 games will be for

real.

Each game lasts for at least 6 rounds. After the 6th round, you will enter each next round with a probability of 70%

(so with a 30% probability the game ends). So, if you happen to enter round 7, there is a 70% share that you will enter

round 8 and so on and so forth.

When you have played the game 10 times, each game lasting 6 or more rounds, you will be paid. Your payment has

two components, an initial endowment of £5 and a payment of £1.50 per point won. To establish how many points

you have won, we will randomly draw 2 of the last 10 games (the for-real games) you played and pay you according

to the amount of points you won in those games. So, your final payment will be your initial endowment plus your

points payment.

Here is an example:

Say, the random draws were games 4 and 6, and you won 5.6 points and 2.4 points in those games respectively.

Then your final payment would be: 3 + (5.6 + 2.4) x 1.50 = £15.

Depending on how you play and for how many rounds the game continues, it is possible that you will get negative

points, though this is unlikely.
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Here is another example:

Say, the random draws were games 4 and 6, and you got -2.4 points and 1.2 points in those games respectively.

Then your final payment would be: 3 + (-1.2 + 2.4) x 1.50 = £4.80.

So, to conclude, the choices you make really matter.

Playing a game

At the beginning of each game, you and your opponent both start with a joint stock of 40 points. Each round, you

can choose how much of this stock of points you want to take. Whatever you and your opponent choose each round

will affect how much stock there will be left next round.

The game continues like this. In the second round you choose how much to take of the remaining stock and that

will affect how much stock will be left in round 3, and so on and so forth, until the game ends.

So, there are two things to understand: choice and stock.

Your choices are:

• Low

• High

• Chance

Low:

If you choose low and your opponent chooses low too, you each take 15% of the points in stock (e.g. 15% of 40

points = 6 points).

If you choose low and your opponent chooses high, you take 15% of the points (e.g. 15% of 40 points = 6) and your

opponent takes 25.5% of the points (25.5% of 40 points = 10.2).

If you choose low but your opponent chooses chance, then you are in chance mode. What this means is described

below.

High:

If you choose high and your opponent chooses low, you take 25.5% of the points (25.5% of 40 points = 10.2) and

your opponent takes 15% of the points (15% of 40 points = 6).

If you choose high and your opponent chooses high too, you each take 23% of the points (23% of 40 points = 9.2

points).

If you choose high but your opponent chooses chance, then you are in chance mode (described below).

Chance:

If either you or your opponent pick chance, then both of you will be in chance mode.

If one of you has played chance, (so that you are both in chance mode) you will each take 15% of the stock in all of

the remaining rounds. As explained more in detail below, the total number of points you will collect is entirely left to

chance under this scenario since you will not be making any more decisions after picking this option.
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Playing chance is costly. Once chance is chosen, a cost will be taken away from your joint stock. The cost is a

one-off loss of points, so it will only be applied once when you enter chance mode, but not in subsequent rounds of

chance mode. Depending on the size of the current stock, this is how much playing chance would cost:

Stock: 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 . . . 0

Cost: 24 21.8 19.8 17.8 15.8 14 12.2 10.6 9 7.4 6 4.6 3.4 2.2 1 0 0 . . . 0

There is more to know about your choices:

The points that you take from the current stock each round are not exactly the points that you get to keep. There is

a formula, which describes how many points you get to keep each round.

This will involve some mathematics, i.e. the natural logarithm. If you don’t like maths, don’t worry about understand-

ing what logarithm means. All you need to know is that the natural logarithm of something is quite a bit less than

that something.

Anyway, the following table shows how this works. In round 1 you get to keep the natural logarithm of the points

you decide to take. In round 2 you get 70% of the natural logarithm of the points you take. In round 3, you get to

keep 70% of 70% of the natural logarithm of the points you took, and so on and so forth. (Note that “ln” just means

natural logarithm.)

Round Points you get to keep

1 ln(points you take)

2 70% × ln(points you take)

3 70% × 70% × ln(points you take) =49% × ln(points you take)

4 70% × 49% × ln(points you take) =34% × ln(points you take)

5 70% × 34% × ln(points you take) =24% × ln(points you take)

6 70% × 24% × ln(points you take) =17% × ln(points you take)

Here are two examples:

Suppose you are in round 1, where your current stock is 40. If you both chose low, the points you would take

would be 15% of 40 points (i.e. 6 points) each. But you would only get to keep ln(points you take), which is

ln(6) ≈ 1.79.

Suppose again that you are in round 1, where your current stock is 40. If you chose low and your opponent chose

high, you would again take 15% of 40 points (i.e. 6 points) and your opponent would take 25.5% of 40 points (i.e.

10.2 points). Here you would only get to keep ln(points you take), which is ln(6) ≈ 1.79 and your opponent would

get to keep ln(10.2) = 2.32.

Now, if you remember, after round 6 there is only a 70% probability of getting into each subsequent round. To

be precise, at the end of each round after round 6 the computer software will roll a virtual, 100-sided dice and will

end the game if a number higher than 70 comes up on that virtual dice.

This has an effect on the points you get to keep from round 7 onwards. From Round 7 onwards, you and
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your opponent can make the same choices as previously but now you continuously get to keep 17% of the natural

logarithm of the points you take for each additional round played. The following table illustrates this:

Round Shares of playing the round Points you get to keep

7 70% =17% × ln(points you take)

8 70% =17% × ln(points you take)

9 70% =17% × ln(points you take)

10 70% =17% × ln(points you take)

11 70% =17% × ln(points you take)

. . . . . . . . .

This is what your screens look like:

The following picture shows you what your first screen will look like. The grey buttons are your choices. The

purple boxes display the points you get to keep, the yellow boxes display the points your opponent gets to keep.

The little grey boxes show you what your next stock will be if you were to make that choice. The big grey boxes

show you what either player would get if you were to choose chance.

If you click a choice button, a red frame will appear around the choice that you have picked (see image).

If you click on the “chance” choice-button, a box will appear next to it. It tells you what the cost of choosing

chance would be, if you chose it in your current round. The following screenshot gives an example:

Of course, you do not know what your opponent’s choice will be until the next round, so do not wait for him/her.
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At the bottom of the screen there is a red OK button. You ought to press it in order to confirm your choice and

enter the next round.

Finally, the following picture shows the screen you would get if either of you were to choose chance; it shows you

what chance mode looks like:

Stock:

Now, there is a little more to know about the stock of points. First, depending on the choices made, the stock

decreases in size. But second, it also replenishes. It regrows by 30% each round. This is how the next stock of points

is calculated:

1. Current stock - points you take - points opponent takes = remaining stock
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2. Remaining stock + 30% = next stock

Here are two examples:

Suppose the current stock is 40 and you choose low and your opponent chooses high. Then we calculate:

(40 − 6 − 10.2) × 1.30 = 30.94 points.

Suppose the current stock is 40 and you choose low and your opponent chooses chance. Then we calculate:

(40 − 24 − 3.2 − 1.6) × 1.3 = 14.56 points. Here the 24 is the cost of playing chance, if you remember from above.

This picture highlights your current stock and next stock if you choose low and if your opponent chooses either

high or chance:

This is it. Good luck!
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Table A1: Effect of ‘conflict’ on the choice of Low - interaction terms

Dependent variable: Low

(1) (2) (3) (4) (5) (6)

Conflict -0.121*** -0.119*** -0.126*** -0.121*** -0.118*** -0.126***

(0.030) (0.030) (0.029) (0.030) (0.030) (0.029)

Rounds 1 -0.004 0.219***

(0.043) (0.075)

Rounds 1 × Conflict -0.027 -0.028

(0.054) (0.055)

Rounds 1-2 -0.030 -0.035

(0.027) (0.034)

Rounds 1-2 × Conflict 0.040 0.040

(0.040) (0.040)

Full set of controls � � � � � �

Game & Round FE � � �

Observations 10,464 10,464 10,464 10,464 10,464 10,464

R-squared 0.071 0.071 0.071 0.079 0.079 0.079

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Rounds 1 and Rounds

1-2 are dummies equal to one for the first round and the first two rounds, respectively. FE=fixed effects. Full set of controls

includes Male, Science and Social, Game and Round.
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Table A2: Effect of ‘conflict’ on the choice of High - interaction terms

Dependent variable: High

(1) (2) (3) (4) (5) (6)

Conflict -0.273*** -0.326*** -0.317*** -0.272*** -0.326*** -0.317***

(0.035) (0.037) (0.036) (0.035) (0.037) (0.036)

Rounds 1 -0.145*** 0.239**

(0.046) (0.116)

Rounds 1 × Conflict 0.480*** 0.480***

(0.060) (0.060)

Rounds 1-2 -0.078*** -0.196***

(0.029) (0.042)

Rounds 1-2 × Conflict 0.400*** 0.400***

(0.050) (0.050)

Full set of controls � � � � � �

Game & Round FE � � �

Observations 10,464 10,464 10,464 10,464 10,464 10,464

R-squared 0.099 0.125 0.121 0.120 0.143 0.136

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Rounds 1 and Rounds

1-2 are dummies equal to one for the first round and the first two rounds, respectively. FE=fixed effects. Full set of controls

includes Male, Science and Social, Game and Round.

Table A3: Effect of ‘sure conflict’ on the choice of Low - controlling for the resource stock

Dependent variable: Low

(1) (2) (3) (4) (5) (6)

Sure Conflict -0.223*** -0.137** -0.055 -0.294*** -0.135** -0.056

(0.029) (0.064) (0.050) (0.029) (0.064) (0.050)

Round 0.016*** 0.564***

(0.005) (0.078)

Game -0.009*** -0.019*** -0.012***

(0.002) (0.005) (0.004)

Resource stock 0.012*** 0.056*** 0.032*** 0.055***

(0.002) (0.007) (0.003) (0.007)

Male -0.008 0.017 0.011 -0.013 0.017 0.011

(0.032) (0.071) (0.052) (0.028) (0.071) (0.052)

Science -0.041 -0.120 -0.131** -0.031 -0.120 -0.131**

(0.042) (0.087) (0.060) (0.038) (0.088) (0.060)

Social -0.019 0.000 -0.014 -0.012 0.001 -0.014

(0.035) (0.077) (0.058) (0.031) (0.077) (0.058)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 7,700 888 1,776 7,700 888 1,776

R-squared 0.103 0.039 0.072 0.144 0.041 0.074

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.
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Table A4: Effect of ‘sure conflict’ on the choice of High - controlling for the resource stock

Dependent variable: High

(1) (2) (3) (4) (5) (6)

Sure Conflict -0.507*** 0.140** 0.053 -0.365*** 0.138** 0.054

(0.030) (0.064) (0.052) (0.023) (0.064) (0.052)

Round -0.025*** -0.445***

(0.006) (0.104)

Game 0.014*** 0.018*** 0.011***

(0.003) (0.005) (0.004)

Resource stock -0.002 -0.043*** -0.041*** -0.043***

(0.002) (0.011) (0.003) (0.010)

Male 0.002 -0.013 -0.008 0.013 -0.013 -0.008

(0.035) (0.071) (0.054) (0.029) (0.071) (0.054)

Science 0.061 0.122 0.135** 0.042 0.122 0.135**

(0.044) (0.087) (0.062) (0.038) (0.088) (0.063)

Social 0.042 0.013 0.009 0.028 -0.001 0.009

(0.040) (0.077) (0.060) (0.033) (0.077) (0.060)

Rounds 1 � �

Rounds 1-2 � �

Game & Round FE � � �

Observations 7,700 888 1,776 7,700 888 1,776

R-squared 0.253 0.040 0.050 0.350 0.042 0.052

Notes: Standard errors clustered at the individual level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. FE=fixed effects.
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