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Response of Surface Topography to Basal Variability Along

Glacial Flowlines

Felix S. L. Ng1 , Ádám Ignéczi1 , Andrew J. Sole1 , and Stephen J. Livingstone1

1Department of Geography, University of Sheffield, Sheffield, UK

Abstract Predicting the amplitude and distribution of surface undulations on ice sheets and glaciers is
useful because of their influence on surface mass and energy balance, atmospheric boundary layer
processes, and supraglacial meltwater routing. We develop an approximate method of calculating the
surface elevation response due to spatial perturbations in basal topography and slipperiness, on
two-dimensional flow sections whose thickness, surface slope, and basal slip ratio vary along flow. Our main
result is an integral expressing nonuniform transfer of basal variability to the surface. It uses published Fourier
transfer functions derived through perturbing plane-slab Stokes flow but circumvents the need to
subwindow the spatial domain to estimate the response. We test the method on ice flow synthesized by a
finite-element model of Stokes flow with constant viscosity and known basal topography and slipperiness
perturbations; in this case, it predicts the observed size and shape of the surface undulations well, capturing
more than 90% of their variance. Application of the method to the central flowline of Columbia Glacier,
Alaska, and a flowline on the Greenland Ice Sheet ending on Nordenskiöld Glacier, using knowledge of the
approximate bed topography and ignoring the unknown slipperiness forcing, yields less faithful prediction of
their surface undulations (40–50% of their variance) but demonstrates the method’s potential to reproduce
their qualitative features. We discuss the factors limiting the method’s performance on real flowlines.

1. Introduction

Ice sheets and glaciers exhibit short length scale variations in surface elevation―or undulations―superim-
posed upon their shape. These undulations stem from diverse causes such as ice flow over a nonuniform
bed (Budd, 1970; Gudmundsson, 2003), spatial variation in surface mass balance (Black & Budd, 1964; Gow
& Rowland, 1965; Whillans, 1975), heterogeneous snow compaction rates (Medley et al., 2015), and unsteady
glacier dynamics (e.g., surges; Murray et al., 1998). We focus on predicting those undulations due to the first

cause, which are often pronounced at wavelengths of 10�1 to 101 km―shorter than an ice mass’s
length/span, but longer than length scales where forms arising from surface processes (e.g., sastrugi) are
abundant. These mesoscale undulations are important for setting the regional ice surface slopes and rough-
ness that influence surface mass and energy balance and atmospheric boundary layer processes (Arnold
et al., 2006). They also control supraglacial meltwater routing (Karlstrom & Yang, 2016); notably, closed sur-
face depressions provide sites for lake formation (Ignéczi et al., 2016; Lampkin & VanderBerg, 2011). The
potential for basal variability to induce surface undulations that in turn affect supraglacial drainage is perti-
nent for the Greenland Ice Sheet and mountain glaciers today, especially as changes in surface hydrology
and its linkage to the bed (via moulins) can influence basal sliding (Joughin et al., 2013; Wyatt & Sharp, 2015).

Although one can predict the detailed surface topography by solving the incompressible Stokes equations of
ice flow at fine resolution, doing so is computationally expensive in long-time simulations of large-scale
glacier/ice sheet behavior. It is more efficient to capture the topography and motion with a coarse numerical
grid and fill in the details by computing the undulations. We develop a way of doing so in this paper.

Our method draws on existing analyses that perturb steady laminar flow on an inclined bed to find the
surface elevation response to small-amplitude basal forcings. A key idea here is that ice flow acts as a filter
for upward transmission of basal variability. Gudmundsson (2003; abbreviated G2003 herein) developed a
comprehensive theory of this by extending previous work (Jóhannesson, 1992; Reeh, 1987) and considering
variability in basal topography (e.g., bumps) and basal slipperiness (e.g., sticky/slippery spots). His analysis
uses the Stokes equations as the starting point and fully accounts for longitudinal stress effects. G2003 pre-
dicts efficient transfer of basal topographic variations whose wavelengths are a few times to tens of times of
the ice thickness when ice flow occurs at high slip ratio (basal sliding velocity divided by ice deformational
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velocity). This prediction accords with the abundance of surface undula-
tions on active ice streams, as has been verified using their topography
and flow speed (De Rydt et al., 2013).

G2003 assumed a plane-parallel slab flow with constant viscosity as the
background state for imposing perturbations. The resulting linearized pro-
blem admits Fourier transform solutions; the transmission is described by
Fourier domain transfer functions, whose product with the Fourier trans-
forms of the basal variability gives the Fourier transform of the surface
undulations. De Rydt et al. (2013) tested this theory on ice stream trunks
where the parallel approximation holds. However, it is unknown how the
theory can be used where this idealization fails―namely, on nonuniform

glacier/ice sheet flowlines along which ice thickness and velocity vary con-
siderably. Here we describe an approximate method of calculating the cor-
responding surface response due to basal variability, using the same
transfer functions derived for constant viscosity. It opens the way for more
comprehensive application of G2003’s theory. To keep the exposition sim-
ple, we focus on two-dimensional (2-D) steady plane flow. Our emphasis is

on initial development of the method and demonstration of its feasibility through a few synthetic and real
case studies. While we discuss its limitations, deriving analytical error bounds and testing on many flowlines
to understand the precise factors governing its accuracy are beyond our current scope. Exploration of the
subject is thus by no means complete.

2. Mathematical Theory

Consider a vertical glacial flowline section (Figure 1). Let x be horizontal distance along flow and z be the ver-
tical coordinate. We denote the smooth (background) profiles of surface and bed elevation by S(x) and B(x),
respectively, and short-scale perturbations (variability) upon these by s(x) and b(x)—in lowercase, so the true
elevations are S + s and B + b. By mesoscale, we mean perturbations with wavelengths of about 1 (or a frac-
tion of one) to 10 times (or several tens) ice thickness. We denote the basal slipperiness perturbation by c(x),
following G2003’s definition that cmeasures normalized (dimensionless) deviations of the sliding parameter

C in the basal sliding law: that is, ub = C(1 + c)τb, where ub is sliding speed and τb is basal shear stress. Thus,
C(x) and c(x) respectively represent background and variability contributions to sliding. The basal slip ratio is
defined as

γ ¼ us

ud
� 1; (1)

where us and ud are background profiles of surface flow speed and ice deformation speed, respectively. The

γ(x) is a background control in the transfer functions of G2003.

The decompositions above assume a reasonable separation of length scales between background variations
and perturbations. Formally, this would allow the Stokes flow problem to be expressed as a multiple-scale
asymptotic expansion (e.g., Kevorkian & Cole, 1996), which uses the small ratio of the two length
scales―called the scale-separation parameter―to construct approximations to the flow solution. In such
framework, which motivates our method, perturbation analysis can in principle be performed on any nonuni-
form background (steady) flow state to link response s(x) to the basal variability. The linearized flow problem
is then inhomogeneous. One could seek its Green’s function―the position-dependent impulse respon-
se―and use this to implement the transmission, but this avenue is difficult and not pursued here. Instead,
we formulate an approximate method using G2003’s transfer functions, by assuming that they approximate
the effect of the Green’s function when the background variables (e.g., ice thickness and slip ratio) change
slowly along the flowline, which is a condition compatible with scale separation. The approximation arises
because the linearized problem becomes homogeneous (has constant coefficients representing parallel-slab
flow) when background variations vanish. The resulting approach circumvents the difficulty of calculating the
multiple-scale expansion to the first-order approximation (which is needed when the scale-separation para-
meter is numerically nonnegligible). As the bed-to-surface transmission varies spatially, the transfer functions

Figure 1. Schematic of flowline cross section and topographical symbols.
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cannot be applied multiplicatively on the Fourier transforms of the forcings; hence, our challenge is to calcu-
late nonuniform transfer/filtering. (For terminology related to equation (6), we also refer to nonstationary

transfer, but strictly in the spatial sense.) We derive our method in section 2.2 after introducing the
transfer functions.

2.1. Fourier Domain Transfer Functions

For parallel slab flow with constant viscosity and thickness H (= S(x) � B(x)), surface slope angle α, and slip
ratio γ (all these being constants), G2003 derived the following transfer functions describing the long-time
(t → ∞) spectral response of the surface due to the two kinds of basal variability:

T sb κð Þ ¼ 1þ γð ÞP þ 1þ γþ κ2γ2ð Þ coshκ½ �κ2
κ2 1þ γð Þ 1þ κ2 1þ γð Þ þ P coshκ½ � � i cotα P sinhκ � κð Þ ; (2)

T sc κð Þ ¼ �κ2γ coshκ

κ2 1þ γð Þ 1þ κ2 1þ γð Þ þ P coshκ½ � � i cotα P sinhκ � κð Þ (3)

(equations (72) to (75) of G2003). Here P(κ) = coshκ + κγsinhκ, and the dimensionless wavenumber κ is scaled
to H, that is, κ = 2π/(λ/H) if λ denotes horizontal wavelength, so the dimensional wavenumber is k = κ/H. The
subscripts of T signify the transfer type: sb refers to variability in bed topography causing the surface
response, and sc to variability in basal slipperiness causing the response. We call these topography transfer

and slipperiness transfer.

Our convention for the Fourier transform pair is

bf kð Þ ¼ ∫
∞

�∞f xð Þe�ikx dx and F�1 bf
h i

¼ f xð Þ ¼ 1

2π
∫
∞

�∞
bf kð Þeikx dk: (4)

Equations (2) and (3) account for the fact that G2003 defined this pair with k having the opposite sign.

To predict response s in this linear theory, one multiplies Tsb with the Fourier transform of the topography

forcing b(x) and compute the inverse transform (i.e., F�1[Tsbb̂]); in contrast, Tsc is multiplied with ice thickness

H as well as the Fourier transform of the slipperiness forcing c(x) before inversion (F�1[TscHĉ]). The extra H

appears here because the transfer functions relate perturbations and responses on a scaled flow of unit ice
thickness; H cancels out in the case of b. The problem is linear, and the responses to the two forcings
are summed.

Figure 2 plots the transfer functions against dimensionless wavelength for α = 3°, 0.3°, and 0.01°, which may
respectively describe the slopes on a valley glacier, an ice sheet, and an ice stream. At
intermediate/mesoscale wavelengths, λ/H ~ 1–10, we see strong influences of basal slip γ on the amplitude

of Tsb and the phase of both functions. For bed topographic undulations with such wavelengths, low slip
causes a subdued response with pronounced phase lead, whereas high slip causes them to be copied to

the surface with nearly full amplitude and reduced phase difference. The amplitude of Tsc becomes large only

at long wavelengths (λ/H ≳ 102); it is small at mesoscale wavelengths unless α is high, and even then still smal-

ler than the amplitude of Tsb for the same slip ratios. Lower slope weakens both transfers in the sameway (the

denominators of (2) and (3), where α appears, are identical so Tsc/Tsb is independent of slope).

Besides uniform-slab conditions, key assumptions behind this theory are that the forcings and responses
have small amplitudes and ice rheology is isotropic with constant viscosity. By comparing its predictions
against surface topography computed by finite-element solution of the full Stokes problem, Raymond and
Gudmundsson (2005) found that non-Newtonian rheology (e.g., with Glen’s exponent n = 3) changes the

transfers quantitatively, not qualitatively, and Tsb and Tsc are sufficiently accurate for bed undulation ampli-
tudes up to ~0.5H and slipperiness perturbation amplitudes up to 0.5. By assuming an exponential depth

dependence for ice viscosity, Gudmundsson et al. (1998) derived alternative versions of Tsb and Tsc. To limit
the use of parameterizations, however, we employ equations (2) and (3) throughout this paper.

2.2. Nonstationary Transfer Method

Tsb and Tsc are themselves Fourier transforms of impulse response functions in the spatial domain―the
responses in s when the forcings are delta functions at x = 0. Let these impulse response functions be
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ηsb (x) = F�1(Tsb) and ηsc(x) = F�1(Tsc). Then, in the uniform-slab case, the responses are given by

the convolutions

s xð Þ ¼ ∫
∞
�∞ηsb x � τð Þb τð Þ dτ (5a)

and

s xð Þ ¼ ∫
∞

�∞ηsc x � τð ÞHc τð Þ dτ: (5b)

We modify these integrals to derive our method. When the flow is nonuniform, the background variables
H(x), α(x) and γ(x) influencing the transfers are no longer constant, so Tsb and Tsc vary with position. If these
controls vary slowly, we can assume that the impulse responses resulting from their local values continue to
be valid at each position; that is, they approximate the Green’s functions. Accordingly, we generalize
equation (5a) by writing

s xð Þ ¼ ∫
∞

�∞ηsb q; pð Þb τð Þ dτ ¼ ∫
∞

�∞ηsb x � τ; τð Þb τð Þ dτ; (6)

where ηsb has been extended to be a function of two variables: the distance q = x � τ rendering the spatial

Figure 2. (a, b) Amplitude and phase of the Fourier domain transfer functions (a) Tsb and (b) Tsc of Gudmundsson (2003)
against dimensionless wavelength, for surface slope angle α = 3° and different basal slip ratios γ. Panels (c) and (d) give
the same plots for α = 0.3°, and (e) and (f) for α = 0.01°.
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variation of the response, and the forcing position p = τ. Equation (5b) is generalized in the same manner,
with H(τ)c(τ) in place of b(τ).

Equation (6) describes a nonstationary convolution commonly employed in geophysics for time-dependent
filtering of radar/seismic signals (e.g., Margrave, 1998). We are using it to model ice flow transmission for
the first time. Given (6), the Fourier transform of s can be written

bs kð Þ ¼ ∫
∞

�∞ ∫
∞

�∞ηsb X � x; xð Þb xð Þ dx
� �

e�ikX dX

¼ ∫
∞

�∞b xð Þ ∫
∞

�∞ηsb X � x; xð Þ e�ikX dX
� �

dx

¼ ∫
∞

�∞T sb k; xð Þb xð Þe�ikx dx;

(7)

which provides our method of computing s from b under nonstationary topography transfer. The integral
transform on the right-hand side here is not the Fourier transform but involves G2003’s Fourier transfer
function, whose variation with x we recognize through its dependence on the background variables. (In
the uniform case, equation (7) reduces to ŝ = Tsb(k)b̂.) With both topographic and slipperiness forcings, the
response is

bs kð Þ ¼ ∫
∞

�∞T sb k; xð Þb xð Þe�ikx dx þ ∫
∞

�∞T sc k; xð ÞH xð Þc xð Þe�ikx dx; (8)

and s(x) is found via the inverse Fourier transform of ŝ:

s xð Þ ¼ 1

2π
∫
∞

�∞
bs kð Þeikx dk: (9)

When gathering inputs for this method, a relevant question is what we classify as background variability
(which controls the transfer) and what as perturbations (forcings and responses) on a flowline.
Background variables are meant to vary slowly, so should be long waves; accordingly, perturbations
should be short waves. Decomposing variables into these components requires a smoothing filter on a
length scale, L. Given our interest in mesoscale undulations (λ/H ~ 1–10), a threshold length scale of L/
H ≈ 10 to several tens seems appropriate, but its choice is not unique. As we shall see later, the choice
is typically informed by the actual variations on a given flowline and subject to practical constraints.
Clean scale separation may be better satisfied on some flowlines or flowline sections than others, and
we expect the method to perform poorly (be more crudely approximate) when strong variations occur
on a continuous range of scales. This issue is often encountered when multiple-scale techniques are used
in real situations.

Errors in the method stem from three sources: (i) the approximation of the (unknown) Green’s functions by

ηsb and ηsc, (ii) the degree of scale separation determining how well a flow can be approximated by transfer

of perturbations controlled by background variables, and (iii) the effect of finite-amplitude variations in a
linear perturbation theory. (Items (i) and (ii) respectively concern the leading-order and higher-order terms
of the multiple-scale asymptotic expansion.)

2.3. Numerical Implementation

Those integrals in equations (7) and (8) cannot be evaluated using standard codes for the Discrete Fourier

Transform or Fast Fourier Transform because Tsb and Tsc are functions of wavenumber as well as position.
We compute them by discrete summation: for example,

bs kmð Þ ¼ ∑
N

n¼1
T sb km; xnð Þbne�ikm n�1ð ÞΔx

Δx; (10)

for wavenumbers km =mΔk,m = 0, 1,…, N–1, where Δk = 2π/NΔx, Δx is the step size, and N is the number of
points in the domain (as in the Discrete Fourier Transform). The sum is implemented by matrix multiplication,
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with the product of Tsbwith the exponential expressed as a matrix, and ŝ and b as column vectors. The inverse
Fourier transform is computed with standard code.

2.4. Wavelet Transform

The spectral contents of forcings and response vary along each flowline. In our experiments, we use the
continuous wavelet transform (CWT) to assess them and their relationship. The CWT of a signal f(x) is
defined by

Wf p; að Þ ¼ ∫
∞

�∞f xð Þ 1ffiffiffi
a

p ψ� x � p

a

� �
dx; (11)

where ψ is themother wavelet (we choose the analytic Morlet wavelet withω0 = 6), p is position, a is the scale,
and * denotes complex conjugate (Alessio, 2016; Mallat, 2009).Wf is the convolution of f with dilated (conju-
gated) daughter wavelets. The prefactor a–1/2 ensures L2 normalization of wavelet energy. We compute the
CWT with the MATLAB function cwtft.

The CWT measures the strength of variations in f at different length scales at different positions along
flow. Strength is depicted in color on a scalogram (e.g., Figure 4), where the horizontal axis is position
and the vertical axis is pseudoperiod (equivalent to wavelength λ) derived from the scale a. The strength
profile at each position can be roughly interpreted as a power spectrum. To aid readers unfamiliar with
this transform, we begin using it in our synthetic flowline experiments, where the signals are
relatively simple.

The fact that nonuniform transfer involves position-dependent spectral filtering suggests that it could be
carried out in the wavelet domain (p-a space) using wavelet transfer functions—akin to those in the Fourier
domain—that operate on Wb and Wc to give Ws; taking the inverse wavelet transform then gives s(x). This
route turns out to be possible but highly circuitous (Appendix A). We adopt the method of equations (8)
and (9) in this paper.

3. Numerical Experiments

The method was tested on three synthetic flowlines (section 3.1 and Figure 3) and two real flowlines
(sections 3.2 and 3.3), the latter being the central flowline of Columbia Glacier, Alaska, and a flowline of the
Greenland Ice Sheet ending on Nordenskiöld Glacier (Figures 6a and 6b). Our general position is to predict
s(x) from input data for the forcings b(x) and c(x) and background variables H(x), α(x), and γ(x). We call s surface
perturbation and b bed perturbation, omitting the word topographic, for brevity. We label the predicted surface

sp(x) to distinguish it from the observed surface. All flowlines show large background variations that preclude
the standard use of G2003’s transfer theory.

In the real experiments, the slipperiness forcing c(x) is unknown and we evaluate equation (8) without its
second integral to see to what extent topography transfer alone explains the surface undulations. (The
possibility of retrieving c(x) is discussed in section 4.2.)

The two real flowlines, though chosen in view of their vastly different ice thicknesses and slopes, are not
meant to be representative of flowlines on valley glaciers and ice sheets. This concept is not useful because
the combinations of H, α, and γ and of their spatial variations on and within different flowlines span a huge
parameter space. More exhaustive testing onmany flowlines is certainly desirable. While this is not done here
given space limitation, a separate study by us (Ignéczi et al., 2018) applies the method to >5,000 flowlines
across the Greenland Ice Sheet, examining also the links between their surface undulations and supraglacial
drainage features.

3.1. Synthetic Case Studies

We first tested themethod on synthetic, steady state glaciers in the (x, z) domain simulated by incompressible
Stokes flow with constant viscosity (Figure 3a). The goal is to verify that it works on nonuniform flowlines
under the favorable conditions of 2-D, linear viscous flow with completely known basal forcings. How
complications degrade its performance is then apparent from the real case studies.

On a finite-element mesh of the glacier in each experiment, the scaled model
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�∇P þ ∇
2uþ

0

�1

 !

¼ 0;

∇�u ¼ 0

(12)

was solved for the fields of pressure P and velocity u = (u, w) using the Stokes solver of the MATLAB QuickerSim

CFD Toolbox (https://quickersim.com). The computed surface velocity and kinematic free-surface condition
were used, with zero mass balance, to evolve the ice surface to steady state. Variables are dimensionless, with
the length scale [d] for both Cartesian coordinates and all distances and elevations, and the scales ρig[d] for
pressure and ρig[d]

2/μi for velocity, where g is gravity, ρi is ice density, and μi is ice viscosity. At the bed, the
sliding law ub = C(1 + c)τb and no normal penetration were imposed as boundary conditions (as in G2003).
Sliding was implemented by the common approach of a thin basal mesh layer (0.01 unit thick) with adjusted
viscosity (e.g., Raymond & Gudmundsson, 2005). Upstream and downstream boundaries were set far from
the nonuniform stretch to ensure their flow to be parallel with parabolic velocity profiles. We imposed a
constant ice flux (thus, constant thickness) at the upstream end. Numerical data of all steady state fields
and geometries are given in the repository linked with this paper.

Figure 3 shows the setup of three experiments: Syn1, Syn2, and Syn3. The forcings in Syn1 and Syn3 are a b
perturbation only―a sum of two sinusoids with wavelengths λ = 2 and 5 (Figures 3a and 3d). The forcing in

Figure 3. Modeling of bed-to-surface transmission in three synthetic flowline experiments Syn1, Syn2, and Syn3.
(a) Geometry and horizontal velocity field of each steady state glacier. (b) Profiles of observed (unsmoothed) surface
velocity us and estimated deformation velocity ud. (c) Background profiles of surface slope α and slip ratio γ. (d) Prescribed
basal perturbation forcing b(x) or c(x). (e) Observed surface undulations s (x) (the target, in black) and predicted surface
undulations sp(x) (red). All variables are dimensionless, with scales as described in section 3.1.
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NG ET AL. 7

https://quickersim.com


Syn2 uses the function in Syn1 but is a c perturbation (Figure 3d). All forcings were imposed in x = 25 to 95.
The horizontal grid spacing is Δx = 0.2. In Syn1 and Syn2, the unperturbed bed is linear with 3° slope, and we
set the background sliding parameter C(x) to rise smoothly from 1 to 10 across the central part of the domain
to induce background flow acceleration. In contrast, in Syn3 we set C ≡ 10 everywhere, as an imposed basal
overdeepening already ensures nonuniform flow. Syn1, Syn2, and Syn3 were designed to explore nonuni-
form topography transfer due to varying slip, nonuniform slipperiness transfer due to varying slip and ice
thickness, and nonuniform topography transfer due to varying ice thickness and slope, respectively. But note
that the glacier dynamics mean that no single background variable (H, α, and γ) can be held exactly constant
across the domain.

Our transfer method was used to predict the surface undulations on these glaciers. The smoothing length
scale L = 10 (discussed later) was used to extract background variables from their flow. We smoothed
each given profile with a sixth-order Butterworth low-pass filter (with cutoff frequency defined by L) to
distil its background component, and then subtracted this from the profile to find the perturbation where
needed. For the bed and surface topography, the subtraction yields b and s (Figures 3d and 3e). Using
thickness H and slope α of the smoothed topography, we calculated the background deformation speed

via the parallel-flow formula: ud = sinα(Hcosα)2/2. Then, using equation (1), we found the slip ratio γ from

ud and the background (i.e., smoothed) component of the surface speed (Figures 3b and 3c). Figure 3

shows reasonable scale separation between background variables and perturbations in all
three experiments.

Figure 3e compares sp(x) found with our nonuniform transfer method to s(x) in each experiment. The size,

shape, and phase of the undulations are reproduced remarkably well, with root-mean-square errors
(RMSEs) < 0.01 and Pearson correlation coefficients R ≥ 0.95. In Syn1 and Syn3, the undulation amplitudes
are somewhat overpredicted, probably because b reaches a nonnegligible fraction (~10%) of the ice thick-
ness. This departure from linear response under finite-amplitude forcings is known from the tests of
G2003’s theory by Raymond and Gudmundsson (2005). Rapid changes on one or more background
variables are also expected to worsen the approximation behind our method (section 2.2); indeed, we
see signs of a greater mismatch where this happens: for example, in x = 90–100 in Syn1 and x = 50–65
in Syn2.

Two aspects of the results in Figure 3e affirm our method’s ability to estimate nonuniform transfer correctly.
The ice flow transmission in each experiment is (i) wavelength-dependent and (ii) modulated by background

variations, and sp convincingly captures both features. Like s, sp relates weaker transmission of the λ = 2
forcing than the λ = 5 forcing; the observed transfer magnitudes at these wavelengths are consistent with

|Tsb| and |Tsc| in the mesoscale region λ/H ~ 1 to 5 in Figures 2a and 2b. (Note that we can interpret Tsb
and Tsc only approximately for nonuniform flow, and α deviates from 3°, and H from 1, in the experiments.)
This selective transmission explains why the surface response shows a dominant λ = 5 signal with minor

wiggles on its undulations. Regarding the modulation effect, the form of |Tsb| (Figure 2a) implies stronger
topography transfer at higher γ, higher α or lower H (via changing λ/H) for the mesoscale wavelengths of

interest. These dependences explain why s and sp grow in amplitude along flow in Syn1 and attain minimum
amplitude above the overdeepening in Syn3 (Figures 3a, 3c, and 3e). The pattern of s in Syn2 is similarly

explainable by the slipperiness transfer magnitude |Tsc|. The undulation amplitude peak at x ≈ 50–60

(Figure 3e) is due to the ice surface steepening there, which raises |Tsc| locally, while |Tsc| at λ = 5 in the areas
further upstream (where γ = 1) and downstream (γ = 10) are similar when we account for their different ice
thicknesses. These experiments and Figure 2 show that the slipperiness transfer is much weaker than the

topography transfer (|Tsc| ≪ |Tsb|) at mesoscale wavelengths, including at low slope (Figures 2e and 2f). But

we emphasize that the actual response amplitudes depend also on the sizes of the forcings b and c, which
are not directly comparable (they have different units, and H scales the slipperiness response).

These findings are corroborated by the CWTs of b, c, s and sp in Figure 4, which analyze the signals spectrally

as well as spatially. Here the top panels show the dual-λ compositions of the forcings. The middle and lower

panels, which confirm the overall match between s and sp in the experiments, show their amplitude evolution

at λ ≈ 5 across the domain and suppression of their λ ≈ 2 components (notably in Syn2), as discussed above.

But these scalograms also reveal a goodmatch between s and sp at λ ≈ 2 and at long waves (λ ≈ 7–10) that are

difficult to discern from Figure 3e. Interestingly, while the sp-scalograms show a subdued response at
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λ ≈ 2.5–3, the s-scalograms in Syn1 and Syn3 exhibit a spatially oscillatory signal at this wavelength. Its origin
is unclear and may stem from interference between the λ = 2 and 5 components (i.e., beat phenomenon) in
the free-surface flow dynamics.

How does the smoothing length L affect these results? And generally, how should we choose L? As our aim is
to transfer mesoscale perturbations (λ/H ~ 1–10), L should be at least an order of magnitude larger than the
mean ice thickness H̅ (≈1.5 units for our synthetic glaciers), and thus, in the region where the shallow-ice
approximation applies. The length scales over which background parameters vary are then consistent with

our use of Tsb and Tsc in the method (recall G2003 derived these for parallel-slab flow) and consistent with

the formula for ud, which De Rydt et al. (2013) also found using a shallow-ice formula in their ice stream work.
We chose L = 10 for these reasons. Judging from Figure 3, a much greater L is undesirable, as it would smooth
the glacier geometries excessively to cause large-amplitude features to appear on b and s, making the line-
arized theory inaccurate. (In multiple-scale terms, this occurs because L then misses the actual separation
between background and variability.) This expectation is confirmed in Figure 5a, which plots the RMSE and

Pearson R between sp and s found from repeating the predictions at different L. When L is increased past
~15, both measures show rapidly rising mismatch. When L < 5, we see small RMSEs and relatively high R,
but these aremisleading because the wavelength range of the forcings being transferred is then severely lim-
ited, and the mesoscale undulations at λ = 5 are cast as background variations, rather than explained. Our L
value lies in an optimal region (~7 to 12 units) of high R and low RMSE, and varying it across this region does
not alter the predictions substantially. These considerations and experiments show that while L is not unique
and varies between flowlines, it is sensible to pick L to be ≳ 10H̅ and as large as possible so long as the result-
ing perturbations have small amplitude.

In summary, if these synthetic flowlines were presented to us as real (and we knew the forcing c in Syn2), we
would be able to predict their surface undulations successfully.

3.2. Columbia Flowline

Columbia Glacier is a complex temperate tidewater glacier in Southern Alaska’s Chugach Range. It has experi-
enced sustained thinning and frontal retreat for over three decades (McNabb et al., 2012; O’Neel et al., 2005),
with the snout today lying>20 km upstream of its 1980 position. Given its unsteady behavior, we conducted
experiments for two years: 2012 and 2007. This choice is based on the availability of broadly contempora-
neous and spatially complete topographic and flow-speed data, and the opportunity for
comparative analysis.

Figure 4. Wavelet transforms (scalograms) of the basal forcing b(x) or c(x), observed surface undulations s(x), and predicted
surface undulations sp(x), in the synthetic experiments. Dashed white lines mark the cone of influence beyond which
edge effects maybe prominent.
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3.2.1. Data Compilation

Figure 6 introduces relevant data. We use updated coordinates for the central flowline on the glacier’s main
branch provided by R. W. McNabb (Figure 6a). The bed topography along this (Figure 6c) was extracted from
the digital elevation model (DEM) of McNabb et al. (2012), which has a 100-m grid resolution and 5-m mean
absolute error and 44-m RMS error in terms of ice thickness. The 2012 surface profile along the flowline
(provided to us at 0.5-km spacing by McNabb) is derived from the State of Alaska’s interferometric synthetic
aperture radar DEM (https://lta.cr.usgs.gov/IFSAR_Alaska); the 2007 surface profile is derived from the 40-m
resolution SPOT (Satellite Pour l’Observation de la Terre) DEM (Korona et al., 2009). Bilinear interpolation
was used in the extractions. All profiles were compiled at or resampled to the horizontal step size Δx = 50 m.
On the flowline, the mean ice thickness is ≈350 m and surface slope (α) fluctuates in the 0–10° range
(Figure 6e). Thinning occurred on the lower glacier and frontal retreat shortened the flowline (≈50 km long)
between 2007 and 2012. Despite these changes, similar undulations can be seen on the surface in both years
(Figures 6c and 7c).

At each position, equation (1) was used to find slip ratio γ from the smoothed (observed) surface flow speed

us and deformation speed ud. The latter was estimated using the formula

ud ¼ 2A

nþ 1
ρigH sinαð ÞnH (13)

based on Glen’s flow law (Cuffey & Paterson, 2010, p. 310). We prescribed n = 3 (Glen’s exponent),
A = 2.4 × 10�24 Pa�3s�1 (creep parameter for temperate ice) and data for H and α derived from the elevation
profiles smoothed at L = 3.5 km (justified shortly). To avoid negative slip, we set γ to zero where ud > us. In
areas of zero/reversed surface slope, γ becomes infinite but is capped at 105 in our computation.

Columbia Glacier exhibits seasonal cycles in its motion, with flow speeds on the main branch peaking in
spring and reaching a minimum in the late summer/autumn (Meier et al., 1985; Vijay & Braun, 2017).

Different profiles of us in the slip ratio calculation are possible. In the 2012 experiment, we used representa-

tive maximal and minimal speed profiles from spring and autumn, rather than an annual-mean speed profile
(which would require estimation), in order to assess uncertainty around the predictions and the impact of

flow acceleration/deceleration on the transmission. Specifically we used us data along the centerline for
March 2011 and October 2011 (curves labeled 2011 SPR and 2011 AUT, Figure 6e) derived by
feature/speckle-tracking on TerraSAR-X synthetic aperture radar data; the associated errors are on the order
of 1–10 m/year (McNabb et al., 2012). We lack similar-quality data for 2012, hence our decision to use profiles

Figure 5. Dependence of the root-mean-square (RMS) error and Pearson correlation coefficient R between sp(x) and s(x) on
the smoothing length scale L in the (a) synthetic, (b) Columbia, and (c) Nordenskiöld flowline experiments. Vertical lines
mark our chosen values of L.
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from 2011. In the 2007 experiment, we employed us data derived for June/July 2007 from Landsat TM/ETM+
imagery (2007 SUM, Figure 6e), whose processing used a branched version of pycorr (Fahnestock et al., 2016).
This speed profile, the only available to us for 2007, lies between the 2011 profiles and probably resembles
the 2007 annual mean. All speed profiles described here were computed by R.W. McNabb and provided to
us at 0.5-km spacing.
3.2.2. Smoothing and Decomposition of Input Profiles

Background variables and perturbations were extracted from the topographic and speed data by the filtering
procedure described in section 3.1. Given the insights from the synthetic studies, we chose the smoothing
length scale L based on the opposing interests of maximizing the wavelength range to be studied for nonuni-
form transfer (2Δx ≲ λ ≲ L) and keeping perturbations b and s small. The latter poses a strong upper limit for
the Columbia flowline, forcing us to specify L = 3.5 km (≈10H̅), the minimum acceptable. Consequently, the
mesoscale range is limited to 0.1 ≲ λ ≲ 3.5 km in our experiments.

Figure 6. Model input data for the Columbia flowline (left) and Nordenskiöld flowline (right) experiments. (a, b) Flowline
locations and bed elevation maps. (c, d) Along-flow profiles of surface and bed elevation (black) and smoothed
counterparts (gray). Surface elevations for Columbia Glacier in 2007 and 2012 are used. (e, f) Profiles of ice surface slope and
flow speed. Flow speeds on Columbia Glacier in 2007 June/July (SUM: Summer) and 2011 March (SPR) and 2011 October
(AUT) are shown. Flow speeds on the Nordenskiöld flowline derive fromMEaSUREs composite for 2000–2010 (Joughin et al.,
2010). (g, h) Profiles of slip ratio γ used in our modeling.
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Figure 6c shows the background topography S(x) and B(x), and Figures 7a and 7c the bed and surface pertur-
bations. The perturbation b(x) contains features verging on too large a fraction of the ice thickness, notably at
km 21 and km 27 where the glacier thins markedly. Increasing Lworsens this outcome. Low L heremeans that
relatively short-scale variability is classed as perturbations; the bed-topographic peaks and troughs with
wavelengths of 5–10 km visible in Figure 6c are not extracted, as their amplitudes are too large to be
addressed by the linearized theory.

Figure 6g plots the slip ratios γ(x) for 2011 spring and autumn (results for 2007 lie amid them and are omitted
for clarity). Even after smoothing, these profiles show sharp changes between high and no slip and regions of
infinite slip. This example highlights a problem when inputs fluctuate strongly. We apply the method none-
theless and discuss this issue later.
3.2.3. Results and Analysis

The perturbations b(x) and s(x) undulate with similar dominant periods of several kilometers and amplitudes
of ~100 and ~20 m, respectively (Figures 7a and 7c). The undulations on s hardly changed from 2007 to 2012,
attesting they were real, stable features. Visible correlation between the peak-trough sequences on b and s

evidences ice flow transmission, although individual peaks/troughs are often misaligned, indicating a phase
shift, with b lagging behind s. Packets of larger cycles occur over similar stretches (km 1–12; km 21–36) on

Figure 7. Model predictions of bed-to-surface transmission on the Columbia flowline (left) and Nordenskiöld flowline
(right). (a, b) Bed topographic forcing b(x). (c, d) Observed surface perturbation s(x). (e–j) Predicted surface perturbation
sp(x) in different runs. Root-mean-square error (RMSE) and Pearson correlation R between sp(x) and s(x) are indicated.

10.1029/2017JF004555Journal of Geophysical Research: Earth Surface

NG ET AL. 12



both perturbations. This inspection emphasizes the longer/larger cycles, not the smaller/shorter
superimposed variations.

As noted before, our method is used here to predict sp assuming topography transfer only, because the slip-

periness forcing c is unknown. Figures 7e and 7g plot sp for 2012 (red/blue curves, forced with autumn/spring
slip ratios) and 2007 (orange curve) alongside s of those years. These predictions portray a succession of
peaks and troughs closely resembling the observed ones in position and pacing, but their amplitudes are
overestimated on the two stretches identified above. Still, these results show that our method can predict
the qualitative features of s(x).

Higher slip should enhance the topography transfer (section 2.1). This is confirmed by the 2012 experiments,

where the lower flow speeds in autumn than spring result in slightly smaller undulations on sp. In these

autumn-/spring-forced runs, the RMSEs between sp and s are 20.9 m and 22.6 m, respectively; the corre-

sponding Pearson R’s are 0.623 and 0.637, so sp captures about 40% of the variance in s. Using annual-mean
speeds to derive slip ratios will not improve upon the autumn result, as they would exceed the autumn
speeds. The 2007 run (Figure 7g; RMSE = 22.8 m), forced by summer flow speeds, illustrates this.

In these three experiments, much of the mismatch between sp and s stems from overprediction of the undu-
lations’ size in km 1–12 and km 21–36 (their phase is rather well reproduced). While the overlarge undulations
on b(x) at km 21 and 27 presumably generate mismatch, we query what causes overprediction elsewhere.
Because switching off sliding reduces the topography transfer, we first performed another run with γ ≡ 0
to see how much this offsets the overprediction. It improved the match substantially (Figure 7i;
RMSE = 10.5 m, R = 0.719). However, we do not consider it likely that our slip ratios were overestimated,
because our autumn-forced 2012 experiment assumed minimal surface flow speeds to derive slip ratios,

and because accounting for lateral drag on glacier flow would lower our ud estimates and raise slip ratios
further. In other words, the observed flow speeds on Columbia Glacier cannot be explained without fast slid-
ing under parts of the glacier (Figures 6e and 6g): γ ≡ 0 is unrealistic and the no-slip experiment cannot
describe the transmission correctly. Consequently, we infer that the overprediction is due to fundamental
limitations of the present method. Relevant causes include (i) nonlinear ice rheology; (ii) 3-D flow effects aris-
ing from the trough-shaped bed topography, proximity of lateral shear margins (the glacier is ≈3–6 km wide)
and tributaries entering the main branch (Figure 6a); and (iii) surface processes that attenuate surface undu-
lations. Moreover, (iv) the unknown slipperiness forcing cmay cause a response that explains some of the dis-

crepancy between sp and s. Figure 2b shows that on the steeper sections of the glacier where α ~ several

degrees, we may expect |Tsc| ~ 0.05 for the wavelengths of interest (λ ≈ 2.5 km or λ/H ≈ 5–10). Assuming c

to be of order 1, the slipperiness transfer can cause undulations reaching |Tsc|cH ~ 20 m in amplitude.

These limitations are discussed in section 4.

To study the results spectrally, we compare the CWTs of b, s, and sp in the 2012 autumn-forced and the no-slip
experiments (Figures 8a–8d). At long pseudoperiods/wavelengths (≈2–3.5 km) on all four scalograms, we see
signals around km 2–14 and km 21–36 reflecting the larger undulations noted before. In these stretches, the

match in CWT strength and pattern between s and sp in the no-slip case, and the overestimated strength of sp
in the 2012 experiment, confirm our earlier findings. The scalograms show different details at shorter wave-
lengths too. In Figure 8b, light blue tongues at λ ~1 km protruding toward the x axis reveal some short-scale

variability on s. While sp in the 2012 autumn experiment carries signals in the same area (Figure 8c), sp in the

no-slip experiment generally lacks them (Figure 8d). Although this difference is subtle, revisiting Figure 7

shows that the sliding experiments indeed predict more fine-scale variations on sp(x), whose presence on s

is confirmed by the 2007 surface derived from the 40-m SPOT DEM (Figures 7c and 7g). The no-slip experi-
ment apparently underestimates the short-scale transfer, besides producing no response in km 39–46
(Figure 8d); that its visually pleasing match in Figure 7i has these deficiencies supports our conclusion that
the no-slip assumption is untenable.

We also examine the predicted phase of the surface response on wavelet-coherence plots (Figures 8e and 8f).

These plots use arrows to indicate the phasemisalignment between undulating signals in sp and s at different
wavelengths, wherever the correlation between these signals (coherence) exceeds 0.7. A right-pointing
arrow means perfect alignment. The no-slip experiment performs better than the 2012 autumn-forced
experiment in λ ~ 2 to 3.5 km, but worse in λ ~ 1 to 2 km, which again highlights its short-wave deficiency.
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Not surprisingly, both experiments perform poorly at λ < 1 km, because the spatial resolution of the 2012
surface elevation data is 0.5 km.

The impact of changing L in the 2012 autumn-forced experiment is shown in Figure 5b. Our L value is a rea-
sonable choice as it yields a Pearson R near the maximum achievable and relatively low RMSE. As expected,
raising L worsens the prediction by retaining more large-amplitude undulations on b, which frustrate the
linear theory.

3.3. Nordenskiöld Flowline

This flowline, 416 km long, starts from the Greenland Ice Sheet’s central divide and ends on Nordenskiöld
Glacier, an outlet glacier on the ice sheet’s western margin (Figure 6a). We traced it using the velocity field
of the ice sheet model validation framework by Price et al. (2017) and extracted its surface elevations from
the MEaSUREs Greenland Ice Mapping Project DEM from GeoEye and WorldView Imagery Version 1 data
set (Howat et al., 2014, 2017; 30-m grid resolution) and bed elevations from the IceBridge BedMachine
Greenland Version 2 data set (Morlighem et al., 2014, 2015; 150-m grid resolution). These data and the slip
ratios discussed below were sampled at every 250 m (= Δx) on the flowline.

Along flow, surface speeds increase from several meters per year in the interior to ≈120 m/year near the mar-
gin, and ice thickness decreases from 2,500 m to a few hundred meters, so a parallel-slab idealization is inva-
lid; surface slopes are ≈1° or less (Figure 6f). The flow traverses a rough landscape of subglacial mountains and
interconnected valleys (Figures 6b and 6d). In 210 ≲ x ≲ 370 km, a detailed bed topography is retrieved by the
BedMachine optimization constrained by dense airborne radar soundings measurements, with elevation
errors ≲100 m (Morlighem et al., 2014, Figure S6; Figure 2 at https://nsidc.org/data/idbmg4). Due to scarce
measurements, the topography is considerably less certain (errors >200 m; Morlighem et al., 2014) in the

Figure 8. Wavelet transforms of (a) bed topographic undulations b(x), (b) observed surface undulations s(x), (c) predicted
surface undulations sp(x), and (d) sp(x) with sliding ignored, for the Columbia profile. (e, f) Plots of wavelet coherence
between s and the predictions in (c) and (d), with pseudoperiod on log-2 scale. Where coherence level exceeds 0.7, arrows
depict the phase error by how much their azimuth deviates from east; that is, right-pointing arrow indicates zero error.
Dashed white lines mark the cone of influence beyond which edge effects become prominent.
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first 210 km of the flowline, as is apparent from its smooth appearance there compared to areas further
north (Figure 6b).

The bed and surface profiles were decomposed into background and perturbation components, and the
smoothed topography used to find H and α, as before. For Nordenskiöld, we specified a large smoothing
length scale L = 40 km (≈20H̅) because the resulting bed and surface undulation amplitudes are still much
smaller than H. (L> 45 km causes visible problem on the last 30 km of the flowline.) Thusmesoscale variability
over a wide spectrum (0.5 < λ < 40 km) is classified as perturbations.

Unlike in the Columbia case, compiling slip ratios for the Nordenskiöld flowline presents a challenge because

most ice in the section is presumably cold. Here, estimating ud with a Glen-based description requires the
local vertical profile of ice temperature T, which controls the creep parameter A. In this ice sheet sector, we
expect T near the divide to be as low as ≈ �20 °C through the upper part of the ice column and increase
toward the bed due to geothermal heat influence, and T to rise with distance from the divide but remain sub-
zero at intermediate depths. Borehole temperature measurements on Isunnguata Sermia (an outlet glacier
145 km further south) made within 50 km of the margin (Harrington et al., 2015) show that the ice column’s
top and bottom parts may be temperate in the ablation zone, and the whole column temperate at the
margin. Temperature measurements are lacking on/near our flow section, andmodeling its thermal structure

(e.g., Meierbachtol et al., 2015) is beyond our scope, so we cannot estimate ud and γ easily.

Given this uncertainty, we conjectured a range of slip ratio profiles for our experiments. MacGregor et al.

(2016) recently calculated a conservative map of us/ud for the Greenland Ice Sheet using topographic and

us data together with equation (13)—assuming the A value for temperate ice. Since A increases strongly with

T, for example, it is ≈10 times less at�15 °C than at 0 °C (Cuffey & Paterson, 2010), their ud is overestimated, so
their map underestimates the true slip by a factor that increases towards the cold ice sheet interior. We com-

piled γ(x) profiles by multiplying their us/ud data (sampled along the flowline) by the spatial correction factor

β xð Þ ¼ β1 þ β2 � β1ð Þ x

xmax
(14)

before smoothing and subtracting 1 (see equation (1)). This correction is linear, and β1 and β2 define its levels
at x = 0 and xmax (416 km); our thermal considerations above suggest β1 ~ 10 and β2 ~ 1. We conducted three
different experiments and compared their prediction skills:

1. Free correction: β1 and β2 are varied to find their optimal combination yielding best fit (minimum RMSE)
between sp(x) and s(x).

2. Uniform correction: Best fit optimization was done with β2 = β1 (≡ β).
3. No correction (no optimization): β1 = β2 = 1 (≡ β).
3.3.1. Results and Analysis

Figure 7 presents these experiments’ inputs and results. The surface perturbation (Figure 7d) shows more
short-wave variability than the bed perturbation (Figure 7b), indicating wavelength-dependent transmission.
Undulations have amplitudes of ~200 m and tens of meters, for b and s, respectively and appear well corre-
lated in x > 200 km where the dominant λ is 10–30 km. The predicted responses in Experiments 1–3 are
shown in Figures 7f, 7h, and 7j. Rising trends in their slip ratio profiles (Figure 6h) indicate increasing basal
lubrication or a switch from cold to temperate basal conditions along flow (either is consistent with our
understanding of thermal regime). The steep rise in slip ratio in x > 370 km reflects acceleration of the ice
flow as it overtops a ridge to enter the Nordenskiöld subglacial valley (Figure 6b).

In Experiment 1, which yields the most successful prediction, the match between sp and s has a RMSE of 8.5 m

and Pearson R of 0.724 (Figure 7f). Over 210< x< 370 km, where the bed topography is most reliable, sp con-

vincingly mimics the detailed undulations on s at λ ~ several kilometers, as well as the broader-scale

peaks/troughs on which they reside. The optimal correction parameters β1 = 15.0 and β2 = 1.61 in this experi-

ment confirm our thermal expectation. While the large β1 implies strong amplification of MacGregor et al.’s

(2016) us/ud data near the divide—thus, a substantially cold ice column there, β2 ~ 1 suggests the column
near the margin to be near temperate. At the ends of the stretch of interest, β = 8.2 (210 km) and 3.1
(370 km); the tilted correction results in a roughly constant slip ratio of γ ≈ 13 across the stretch (Figure 6h,
red). In contrast, the slip ratios in Experiments 2 and 3 are smaller for the same stretch due to their low
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β-values―3.57 and 1, respectively. The correspondingly weaker transmissions explain why they predict
progressively fewer fluctuations on s and even fail to capture its broad features (Figures 7h and 7j). We

also performed a no slip experiment (γ ≡ 0); then sp is similar to that in Experiment 3 but shows even fewer
short undulations, as can be expected from the effect of reduced sliding on transmission. Closer
examination reveals that Experiment 1 underestimates details on the upstream part of the stretch, not its
downstream part (Figure 7f). This suggests that a nonlinear amplification (with β enhanced more
upstream) may better represent the true slip pattern than equation (14).

In Experiment 2, the optimal β (≡ 3.57) is less than the β needed in Experiment 1 to enhance the topography
transfer in 210 < x < 300 km for a good prediction there. A larger β is not found because raising its value
degrades the fit near the downstream end of the flowline; thus, the optimization in Experiment 2 is con-
strained because the RMSE weighs all parts of the domain equally. The optimization in Experiment 1 is less
restricted given its extra degree of freedom.

In x < 210 km, all three experiments yield subdued responses that underpredict the variability on s(x) and
miss most of its peaks and troughs. Thicker ice here (H > 2 km) compared to downstream means that bed
undulations have shorter dimensionless wavelengths (λ/H) so the topography transfer is weaker, but our
method accounts for this factor. A likely reason for the underestimation is that b(x) here is missing real details
due to inadequate radar-sounding measurements of bed elevations. Also, with thicker ice, some of the

observed undulations might be due to the unknown slipperiness forcing (|Tsc| ~ 0.01 at λ ≈ 20 km, α ~ 0.3°

and γ ~ 10 from Figure 2d, so that |Tsc|cH ~ 20 m).

Wavelet analysis shows that, on b(x) and s(x), the pronounced undulations in x > 210 km are in fact charac-

terized by two modes of variability at λ ~ 20 km and λ ~ 35–45 km (Figures 9a,b). In Experiment 1, sp captures
both modes and the changing spectral composition of s across this region very well (Figure 9c, cf. Figure 9b).
These scalograms confirm its poor prediction skill in x < 200 km; notably, the emergent signals on s in

x = 80–180 km, with λ ~ 10–20 km, are absent from sp. This dichotomy between the two halves of the flowline,
which we suspect is due to erroneous bed topography for the upper half, is unmistakable on the wavelet-
coherence plots also (Figure 9d). In x > 200 km, long surface undulations with λ > 6 km are predicted with
excellent phase alignment, but shorter undulations have misaligned phases. Going from km 370 to km
210, we also see an increase in the minimum λ where coherence level exceeds 0.7 (Figure 9d). This trend

Figure 9. Wavelet transforms of (a) bed topographic undulations b(x), (b) observed surface undulations s(x), and (c) pre-
dicted surface undulations sp(x) in the free-correction prediction experiment, for the Nordenskiöld profile. (d) Plot of
wavelet coherence between s and sp. Where coherence level exceeds 0.7, arrows depict the phase error by howmuch their
azimuth deviates from east. Dashed white lines mark the cone of influence beyond which edge effects become prominent.
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may be due to degrading accuracy of the bed in this direction and/or increased significance of other
processes influencing the mesoscale surface topography (e.g., variations in surface mass balance) as thicker
ice attenuates the topography transfer for short waves.

We also repeated Experiment 1 with different smoothing lengths Lwithout changing β1 and β2 (i.e., the same
thermal structure is assumed for the flow). Figure 5c shows that our L-value lies at the top end of a region of
stably high Pearson R. Although decreasing L to 20 km (≈10H̅) lowers the RMSE, this substantially limits the λ
range of the mesoscale transfer.

4. Discussion

In a nonuniform flow setting, how well do the 2-D transfer functions of G2003 predict surface undulations?
Our synthetic flowline experiments confirm the validity of the nonstationary transfer method employing
these functions. The real case studies show that when complicating factors are present, the method is less
accurate as one may expect, but still has explanatory power. Our best prediction runs―the 2012 autumn
experiment on the Columbia flowline and Experiment 1 on the Nordenskiöld flowline―reproduce 40% to
50% of their observed mesoscale surface variability (Figures 7e and 7f). By recalling their different aspects,
here we gather ideas about the bed-to-surface transmission and the method’s applicability and anticipate
research avenues.

4.1. Cause of Surface Undulations on the Real Flowlines

A first point to make is that in the real case studies, the method suffers diverse limitations so we cannot hope

for exact match between sp and s. Besides the limitations discussed later (section 4.2), our calculation ignores
extraneous mechanisms that cause or modify undulations, for example, nonuniform surface mass balance
due to wind-driven processes, albedo variations, or coupling between atmosphere and surface topography.
Such mechanisms may have biased the optimisation in the Nordenskiöld runs, and neither equation (8) nor
G2003’s theory involves mass balance. That surface processes can createmesoscale undulations is evidenced,
for instance, by the fields of megadunes in central Antarctica with spacing of a few to ~10 km (Fahnestock
et al., 2000), and pronounced spatial variations in snow accumulation on similar length scales and correlated
with surface slopes near Talos Dome, East Antarctica (Frezzotti et al., 2007).

Despite this, we conclude that the method is capturing the bed-to-surface transmission more or less cor-

rectly, because sp predicts undulations with size, shape, and sequence like the observed—remarkably well
in some places, even if not everywhere. It follows that numerous undulations on our real flowline must
owe their origin to topography forcing (as our runs ignore slipperiness forcing), and rapid sliding activates
some of them. The transfer function characteristics for α = 3° and α = 0.3° (Figure 2), which roughly describe

the surface slopes on the Columbia and Nordenskiöld flowlines respectively, show that |Tsb| becomes large at

high slip ratios across the corresponding ranges of mesoscale wavelengths being studied―2/7 ≲ λ/H ≲ 10

and 1/4 ≲ λ/H ≲ 20. In contrast, the slipperiness transfer magnitude |Tsc| is much weaker over these wave-
lengths (Figures 2b and 2d); but, as explained in sections 3.2 and 3.3, high surface slope and/or thick ice

may still enable a slipperiness response (~|Tsc|cH) that explains some of the remaining mismatch between

sp and s. (We distinguish the meanings of transfer and response as before.) On flow sections with very low

slopes, such as found on Antarctic ice streams and some outlet glaciers in Greenland, |Tsc| is even smaller
in the mesoscale range (e.g., Figure 2f). In this case, a surface response dominated by slipperiness forcing
can arise if the ice is very thick and/or an exceedingly smooth bed (b ≈ 0) preconditions a minimal topogra-

phy transfer. Since thicker ice reduces |Tsc| at each wavelength (by decreasing λ/H), we expect such response

to show larger amplitude and be more noticeable at longer wavelengths.

4.2. Estimating the Slipperiness Forcing

Can we derive c(x) in order to complete the input prescriptions to our method? c(x) quantifies short-scale
perturbations of the basal-sliding boundary condition of ice flow, as governed by subglacial processes such
as drainage and till mechanics. Accordingly, finding c requires observations/measurements or a physical
model of these processes. Both of these approaches are intensely researched; the latter is necessary where
our method is used to predict surface undulations in palaeo/future ice flow simulations. To our knowledge,
a sound physical model for c(x) is currently out of reach.
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However, for present-day ice flow with the right observations, it should be possible to estimate c(x) through
an inversion to constrain basal stress/sliding conditions, as has been tackled by Sergienko and Hindmarsh
(2013) in a 3-D numerical model. We outline this idea in our context of linearized, nonuniform transfer along
flowlines―for future study. Equation (8) predicting surface undulations can be supplemented with a similar
equation predicting the perturbation in surface speed, that is,

bs kð Þ ¼ ∫
∞

�∞T sb k; xð Þb xð Þe�ikx dx þ ∫
∞

�∞T sc k; xð ÞH xð Þc xð Þe�ikx dx; (15)

bu kð Þ ¼ ∫
∞

�∞Tub k; xð ÞU xð Þb xð Þ=H xð Þe�ikx dx þ ∫
∞

�∞Tuc k; xð ÞU xð Þc xð Þe�ikx dx; (16)

where Tub and Tuc are Fourier transfer functions describing the transmission of topographic and slipperiness
forcings to generate perturbation u on the background surface speed U. (These transfer functions are present,
but not listed explicitly, in G2003’s theory.) Given data for us (filtered to extract u and U) as well as for b, s, and
the background geometry, equations (15) and (16) form an inverse problem allowing c(x) to be found, for
example, via control methods (MacAyeal, 1993). Optimal estimation with the pair of equations is needed,
because ŝ and û are expected to be weakly sensitive on c (especially at small λ) and the bed topography
has uncertainty. Note that this approach retrieves c(x) at a given time only. Ultimately, we need robust models
of subglacial processes to predict its temporal evolution.

4.3. Theoretical and Practical Limitations

On what kind (or what parts) of real flowlines do we expect our integral method to predict undulations accu-
rately? Under what circumstances would it underperform? To address these questions, we review its limita-
tions alongside findings from the case studies.

Limitations stem from its linearity and two-dimensional, steady flow assumptions. Departure from conditions
compatible with these hampers the method, as is demonstrated by the different prediction accuracies
between the synthetic (R > 0.9) and real experiments (R ~ 0.6–0.7).

Considering linearity first, equation (8) is approximate because Tsb and Tsc (in (2) and (3)) come from a pertur-
bation theory assuming small-amplitude variability and constant ice viscosity, and because the nonstationary
convolution approximates the actual transfer (the Green’s function approximation; section 2.2). For these
approximations to hold, background variables should vary slowly with x, and s and b be small compared to
H. A key case where prediction succeeds because these requirements are met is found in x > 210 km in
the Nordenskiöld experiment (Figure 7f). The Columbia experiments often violate these requirements,
yielding worse prediction due to rapid variations in α and γ (Figures 6e and 6g) and large bed undulations
compared to the local ice thickness at km 21 and 27 (section 3.2), which must cause more nonlinear effects.
How rheological anisotropy and nonlinearity (nonconstant ice viscosity due to its stress/temperature
dependence) affect the surface response is more difficult to analyze. However, as noted before, numerical
simulations by Raymond and Gudmundsson (2005) show that nonlinear viscosity tends to cause minor
deviations to the response, rather than a fundamentally different response.

Lateral variations in the background flow state (e.g., nonzero lateral shear, flow curvature, or
convergence/divergence) and in the forcings (e.g., bedforms having finite width) introduce 3-D effects.
These effects appear minor in the Nordenskiöld case study. The flowline is relatively straight (Figure 6b)
and the velocities straddling it are near parallel, including in 210 < x < 370 km where the major bed topo-
graphic features are wide enough to resemble transverse obstacles to flow. We think that these factors, which
limit the amount of lateral variations, allow the 2-D flowline approximation to hold well and contribute to the
experiment’s success. In contrast, 3-D effects probably upset our prediction in the Columbia case study; there
we attributed some of the overestimation of undulation amplitude to flow dynamics associated with lateral
margins, the underlying valley shape and incoming tributaries (section 3.2). Similar interpretations that shear
margins, flow constriction, and 3-D bedforms cause discrepancies in the transfer prediction were made by De

Rydt et al. (2013), when they tested the same Tsb as used here on ice stream trunks. These authors explained
that 2-D transfer functions can overestimate undulation amplitudes because transverse bed perturbations
(which render bedforms as 3-D objects) dampen the transmission. Such dampening is predicted by the more
general 3-D transfer functions at finite transverse wavelengths (G2003) and confirmed by numerical simula-
tions in 3-D of isothermal quasi-parallel ice flow with basal forcings (Sergienko, 2012).
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Whether the ice flow is steady or evolving matters also. Our method assumes s(x) to have reached steady
state and the background to be time invariant. For real flowlines, this adds a further layer of approximation.
In the Nordenskiöld case, one might assume that ice flow has not varied substantially for centuries, given the
lack of information to the contrary. But Columbia Glacier has been retreating, thinning, and accelerating over
recent decades and shows strong seasonal variations in flow speed (section 3.2). Its surface undulations are
therefore the lagged response of a transmission that evolves in time. If the glacier-scale change is gradual,
however, we may expect to see at different times similar undulations that differ mainly in their details; the
seasonal variations should also only perturb s(x) about a mean. Such pseudosteady response may be why s
changed negligibly between 2007 and 2012 (Figure 7c). Furthermore, the similarity between the predicted
undulations in the experiments forced with spring/autumn speeds and no slip shows that their basic form
is insensitive to sliding.

These ideas can be quantified further. For the surface undulations to be pseudosteady, their equilibration or
relaxation timescale should be much shorter than the timescale of background evolution. From G2003’s

equation (72), the relaxation timescale td―formally, the e-folding time of the response―is given by

td ¼ 1þ γð Þκ3 þ Pκ coshκ

cotα P sinhκ � κð Þ � H½ �
ud½ � ; (17)

where κ = 2π/(λ/H) as before and [H] and [ud] are the characteristic scales for ice thickness and deformation
speed. We estimate td using the background values of H and ud on our flowlines as these scales, so td varies
not only with wavelength but also with position (Figure 10). For the mesoscale wavelengths studied (the λ/H
ranges noted in section 4.1), td does not exceed a few decades on the Columbia flowline, except where it
reaches very high peaks or infinity, and td is<100 years on the Nordenskiöld flowline except near the divide.
The peaks in td are due to high slip ratio and/or low slope (as td ∝(tan α)(sin α)–n); thus, undulations on gently
sloping ice flow with enhanced basal slip equilibrate slowly. Figure 10 shows that at each position, td
decreases with λ/H at short wavelengths and increases with λ/H at long wavelengths to exhibit a minimum,
as found by G2003; the shortest undulations (λ/H < 1) on our flowlines relax most slowly. With the back-
ground evolution timescales anticipated above, these results show that pseudosteadiness is met strongly
on the Nordenskiöld flowline (especially for λ/H > 1) and marginally on the Columbia flowline, so s(x) in
the latter case is still a valid prediction target for our method.

How well the background and mesoscale variations on a flowline are separated in length scale is another fac-
tor determining themethod’s performance. That the smoothing length L used to extract these components is
nonunique reflects our key approximation: each L effectively assumes a different background state for
defining the local impulse response. Based on our experience from the case studies, we recommend choos-
ing L = 10–20H̅. When there is clear separation, the transfer of a mesoscale component with wavelength λ is
unaffected if L is varied above λ; and choosing a high L expands the mesoscale wavelength range to be

Figure 10. Relaxation time td for surface undulations with different wavelengths λ/H along the (a) Columbia flowline and
(b) Nordenskiöld flowline (respectively, in logarithmic and linear scales). In each plot, the largest and smallest values of λ/H
bracket the mesoscale wavelengths analyzed in our bed-to-surface transmission experiments. In (a), gray bars indicate
where vanishing ice surface slope causes td → ∞.
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transferred, without degrading the prediction accuracy much (e.g., Nordenskiöld study). With less separation,
L needs to be reduced (e.g., ≲ 15H̅ in the synthetic studies). The Columbia study shows an example where
poor scale separation forces us to use L = 10H̅ and still leaves behind fast changes on the background and
large amplitudes on the perturbations. The maximum prediction accuracy is then rather low (Figure 5b).

In summary, we expect equation (8) to work best for thick ice (which makes the perturbation amplitude rela-

tively small) whose flow has been steady or varying slowly on timescales ≫ td, is not strongly

converging/curving/shearing, shows smooth background variations with length scales separated well from
themesoscale perturbations, and occurs over bed topography without major transverse variations (e.g., large
longitudinally/diagonally oriented ridges or valleys). These restrictions make the flanks and interiors of ice
sheets potentially better places for applying the method than valley/outlet glaciers. The pseudosteadiness
requirement may preclude surging glaciers. However, our experiments show that even in adverse cases,
the method can mimic the response by capturing the leading-order transmission.

There are also practical issues concerning the inputs. Besides the unknown slipperiness forcing, the bed
topography may be inaccurate; the upper half of the Nordenskiöld flowline is a likely example. For cold
and polythermal ice masses, the slip ratio γ cannot be reliably estimated without knowledge of their

thermal/viscosity structure or measurements of ud. In the Nordenskiöld study, we inferred γ(x) by tuning a
thermal correction factor (section 3.3) and those runs are thus not purely predictive. Note that this issue does
not arise when numerical modeling is used to follow the thermo-mechanical evolution of the ice mass
(section 1), because the simulated coarse grid results naturally include all background variables for ourmethod
to be used to predict the mesoscale undulations.

4.4. Further Research

An obvious extension is to generalize the method for time-variable forcings and response in 3-D (perhaps for
depth-dependent ice viscosity) by using suitable Fourier transfer functions, some of which had been derived
previously (Gudmundsson et al., 1998; G2003). In such effort, it is straightforward to reformulate the convolu-
tion in equation (6) as a double integral carrying a 2-D impulse response function. We expect complications
from background flow convergence and shearing though. Local coordinate rotation will be needed, as ice
flowing in different directions over the bed must yield different responses.

Deriving analytical error estimates/bounds for sp(x) will facilitate a comprehensive assessment of the factors

that hamper our method on real flowlines (even though we have identified the key ones), and this is possible
via multiple-scale asymptotic expansion. We foresee obstacles in such derivation. First, the expansion relies
on the smallness of a scale-separation parameter (ratio of length scales of short and long variations) but this
parameter is not necessarily well defined or easy to determine for real ice flow carrying diverse variations.
Second, the first-order problem in the expansion (which, together with the parameter, measures the approx-
imation errors of nonstationary convolution) may not be easy to solve. Third, analytical error bounds for equa-
tion (8) cannot be used to predict or evaluate mismatch on flowlines where the complications discussed
above operate; deriving error estimates accounting for these is harder still. Meanwhile, it may be fruitful to
assess the method’s performance and errors statistically by running prediction experiments on
many flowlines.

Despite its limitations, our 2-D method can be used to explore 3-D topographic variations on contemporary
ice masses, notably ice sheets. By representing their flow with a dense collection of flowlines in plan view, we
can begin to study whether the transmission explains the observed mesoscale undulations and how these
affect surface water routing (e.g., Ignéczi et al., 2018). For numerically simulated palaeo/future ice sheets,
our method can be used to hindcast/predict surface undulations by using their gridded flow variables,
circumventing the need for a full Stokes solution. The predictions can inform the calculation of evolving
supraglacial water drainage that may feedback on ice sheet dynamics. Important prerequisites for such
forward modeling are (i) a reliable subglacial model for describing slipperiness c and (ii) high-resolution
bed topographic data (produced nowadays, but still with many gaps).

4.5. Concluding Remarks

The key advance made here is an extension of Gudmundsson’s (2003) theory of bed-to-surface transmission
for nonuniform ice flow. We derived an approximate yet mathematically consistent model of the transmis-
sion and demonstrated its ability to reproduce surface undulations on several synthetic and real flowlines.
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While more experiments with the method are needed, it paves the way for a 3-D, time-dependent descrip-
tion. General models of the occurrence of mesoscale undulations on ice should consider the combined effect
of the transmission and surface/firn processes and their coupling with mass and energy balance.

Appendix A: Nonuniform Transfer With Wavelets
According to equation (11), the wavelet transform of s(x) is

Ws p; að Þ ¼ ∫
∞

�∞s xð Þ 1ffiffiffi
a

p ψ� x � p

a

� �
dx: (A1)

Since convolution in the spatial domain is the same as a multiplication operation in the Fourier domain
(Convolution theorem), (A1) can be rewritten as

Ws p; að Þ ¼ 1

2π
∫
∞

�∞
bs kð Þ

ffiffiffi
a

p
bψ� akð Þeikp dk; (A2)

where bψ is the Fourier transform of the mother wavelet. Now, substituting from equation (7) for ŝ(k) predicted
by our theory (assuming only topographic transfer, as example) leads to

Ws p; að Þ ¼ 1

2π
∫
∞
�∞

ffiffiffi
a

p
bψ�

akð Þeikp∫∞�∞T sb k; xð Þb xð Þe�ikx dx dk

¼ ∫
∞
�∞b xð Þϕ x; p; að Þ dx ;

(A3)

where we introduce

ϕ x; p; að Þ ¼ 1

2π
∫
∞
�∞T sb k; xð Þ

ffiffiffi
a

p
bψ� akð Þe�ikx

� �
eikp dk: (A4)

Here ϕ represents new wavelets that are the original daughter wavelets filtered by the local properties of Tsb.
These results show that, to find s(x), one can evaluate the transform integral in (A3) forWs and take its inverse
wavelet transform. However, the nonstationary filtering operation in (A4) implies that the shape of the new
wavelets ϕ varies with position, so (A3) is not the standard wavelet transform. Computing (A3) and (A4)
involves considerably more work than in our method.
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