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Abstract

As the quantity of publications increases daily, researchers are forced to narrow their attention

to their own specialism and are therefore less likely to make new connections with other areas.

Literature based discovery (LBD) supports the identification of such connections. A number of

LBD tools are available, however, they often suffer from limitations such as constraining possible

searches or not producing results in real-time.

We introduce HiDE (Hidden Discovery Explorer), an online knowledge browsing tool which

allows fast access to hidden knowledge generated from all abstracts in Medline. HiDE is fast

enough to allow users to explore the full range of hidden connections generated by an LBD sys-

tem. The tool employs a novel combination of two approaches to LBD: a graph-based approach

which allows hidden knowledge to be generated on a large scale and an inference algorithm to

identify the most promising (most likely to be non trivial) information.

Available at https://skye.shef.ac.uk/kdisc

1 Introduction

Literature based discovery (LBD) is an automatic technique addressing the ever increasing volume of

research literature by inferring as yet unobserved connections. The approach was pioneered by Swan-

son (1986) who hypothesised a (hidden) connection between Raynaud phenomenon and fish oil, despite

the fact that the two were not mentioned together in any publications. Swanson noticed that one pub-

lication linked Raynaud phenomenon to blood viscosity and another linked blood viscosity to fish oil,

suggesting the trial of administering fish oil to Raynaud disease patients. LBD can be executed in one

of two modes: closed or open discovery. In closed discovery, both A, the source term, and C, the target

term, are specified, and only the linking terms (with relationships to both A and C) are sought, while open

discovery explores a much larger space with only the source term being specified and all relationships

being pursued (see Figure 1).

LBD has a range of applications including identification of potential treatments, drug repurposing

and drug side effect prediction. However, in its general form LBD generates a vast number of hidden

connections and the usefulness of existing open discovery systems, such as Arrowsmith (Swanson and

Smalheiser, 1999), Bitola’s (Hristovski et al., 2006), FACTA+ (Tsuruoka et al., 2008) or Literome

(Poon et al., 2014), is often limited by heavy restrictions on the input, linking terms and output and/or

time required to generate results.

2 Approach

HiDE combines two LBD approaches. To ensure a usable (rather than excessive) quantity of quality

hidden knowledge, we combine: (1) the widely used A-B-C model introduced by Swanson (1986) which

starts from a term, A, finds all terms Bi to which A is related, repeats the process to find all terms Cij

related to each Bi, and proposes any previously unconnected A − Cij as hidden knowledge, and (2) a

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
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Figure 1: Closed discovery, both A and C specified (top), and open discovery, only A specified (bottom)

novel (to LBD) approach based on work in knowledge base completion which generates new connections

by performing random walks through a knowledge base graph.

The A-B-C model is a useful approach for LBD but it can generate vast amounts of hidden knowledge

potentially leading to the need for restrictions on the B/C terms and/or slow processing times. Exploiting

techniques from graph theory (West, 2007), our LBD system (Preiss et al., 2015) uses the adjacency

matrix M describing the graph formed from the connections between terms in a document collection:

entry mij is a positive integer if a relation R is detected between terms ti and tj . If ti and tj are not related

anywhere in the document collection, mij will be zero. Hidden knowledge in the document collection

can then be identified by looking for non zero terms in the matrix generated by norm(M2) − norm(M)
where norm converts mij to 1 if mij > 0 and leaves it as 0 otherwise. This generates hidden knowledge

connected via a single linking step and allows large amounts of hidden knowledge to be pre-computed.

The graph model is an inference system due to Lao et al (2011) based on the Path Ranking Algorithm,

which performs random walks through a knowledge base graph. In our case, the knowledge base is

constructed from the manually created triples (such as X may treat Y) listed in the Unified Medical

Language System (UMLS) Metathesaurus. The system generates path up to length 2, and uses logistic

regression to combine the paths to yield new connections.

Both LBD systems are applied to all PubMed abstracts published up to 30 April 2016: the linguis-

tically motivated subject-relation-object triples (such as X-treats-Y or X-affects-Y) are extracted from

a SemRep (Rindflesch and Fiszman, 2003) annotated 2016 version of PubMed (available as semmed-

VER26 download created using regular SemRep version 1.7 and UMLS 2016AA1) and used for the

A-B-C model. UMLS 2016AA was used to obtain the manually created triples for the graph model.

A range of filtering approaches are applied to reduce the volume of hidden knowledge (Preiss, 2014).

Individually, the A-B-C model generated a total of 2,947,874,564 pairs of hidden knowledge, while the

graph model yielded 198,295,133 pairs. The intersection of hidden knowledge pairs, 6,471,922 pairs, is

presented within the interface, and the hidden knowledge pairs are ranked by the weights output by the

graph model.

3 Online System

The approach described in Section 2 is implemented as a publicly available tool, HiDE (Hidden Discov-

ery Explorer), which allows a user to interactively explore the hidden knowledge generated by an LBD

system.

Interaction with HiDE begins with the user specifying a term of interest. HiDE then generates a list

of potentially relevant UMLS CUIs from which the user selects one. The hidden knowledge available

is grouped by UMLS Medical Subject Headings (MeSH) terms which provides types such as disease,

1https://semrep.nlm.nih.gov/



Figure 2: Raynaud phenomenon open discovery: top shows the first page of lipid hidden knowledge from

C0034735 – Raynaud Phenomenon generated from publications between 1960 and 1985 highlighting

Swanson’s fish oil connection, bottom the linking terms between C0034735 – Raynaud Phenomenon

and C0016157 - fish oil with the highly cited blood viscosity link highlighted

enzyme and gene. The user selects a MeSH term, which allows them to filter the result set to MeSH

terms of relevant to them while also reducing the number of results returned, and the hidden knowledge

generated from the original CUI is presented. Users can view hidden knowledge in increments of 100

pairs and linking terms in increments of 50.

3.1 Implementation Details

HiDE is a web-based system in which all rendering is achieved using the D3 JavaScript library. Hidden

knowledge is generated offline and stored in a MySQL database which the interface accesses using PHP.

Linking terms for a selected pair of CUIs are computed in real time. All results are cached to ensure

subsequent access for the same knowledge pair will be virtually instant.



4 Example

Figure 2 presents the output of HiDE when replicating the connection between Raynaud and fish oil

(Swanson, 1986) from 1960-8 Medline publications using the matrix method only (as the inference

method would require a UMLS from 1968 which does not exist). The top portion of Figure 2 shows a

zoomed in section of the hidden knowledge generated by HiDE by entering the search term raynaud,

selecting the CUI C0034735 – Raynaud Phenomenon and then the MeSH term lipid. The figure shows

that the link to the C term fish oil is found by HiDE (this link is highlighted). Selecting this CUI reveals

the B term(s) via which the hidden knowledge was established; the bottom of Figure 2 shows the linking

terms between Raynaud and fish oil, demonstrating that HiDE finds the frequently cited link via blood

viscosity (highlighted).

5 Conclusion

We present HiDE, an LBD tool suitable for exploring hidden knowledge generated by an LBD system

including linking terms. Rather than imposing a filtering by design, HiDE does not restrict the hidden

knowledge presented to the user while allowing them to quickly drill down to MeSH terms of interest and

thus carry out their own ‘filtering’. Using a novel combination of two LBD approaches – a graph-based

approach and an inference algorithm – the most promising information is computed off line, thereby

enabling fast response times to queries and allowing users to fully explore the information generated.
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