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One Sentence Summary: East Asia is the source of amphibian panzootic chytrid fungi 89 
causing global amphibian declines that have emerged during the 20th century 90 

91 
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Abstract:  92 

Globalized infectious diseases are causing species declines worldwide but their source often 93 

remains elusive. We use whole-genome sequencing to solve the spatiotemporal origins of the 94 

most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a 95 

proximate driver of global amphibian declines. We trace the source of B. dendrobatidis to the 96 

Korean peninsula where one lineage, BdASIA-1, exhibits the genetic hallmarks of an 97 

ancestral population that seeded the panzootic. We date the emergence of this pathogen to the 98 

early 20th century coinciding with the global expansion of commercial trade in amphibians 99 

and show that intercontinental transmission is ongoing. Our findings point to East Asia as a 100 

geographic hotspot for B. dendrobatidis biodiversity, and the original source of these lineages 101 

that now parasitize amphibians worldwide.  102 
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Main Text:  103 

Discovery of the amphibian-killing fungus Batrachochytrium dendrobatidis (1, 2) was a 104 

turning point in understanding why amphibian species worldwide are in steep decline. 105 

Amphibian declines and extinctions had been recorded by herpetologists as early as the 106 

1970s, but were only recognized at a landmark meeting in 1990 as a global phenomenon 107 

which could not be explained by environmental changes and anthropogenic factors alone (3). 108 

The emergence of B. dendrobatidis and the disease that it causes, amphibian 109 

chytridiomycosis, as a causative agent of declines has been documented across six different 110 

regions: Australia (~1970s and 1990s) (4), Central America (~1970s) (5), South America 111 

(~1970s and 1980s) (6, 7), the Caribbean islands (~2000s) (8), the North American Sierra 112 

Nevada (~1980s and 1990s) (9), and the Iberian Peninsula (~1990s) (10). The panzootic has 113 

been attributed to the emergence of a single B. dendrobatidis lineage, known as BdGPL 114 

(Global Panzootic Lineage) (11). However, twenty years after identification of the disease, 115 

the timing of its worldwide expansion remains unknown and previous estimates for time to 116 

most recent common ancestor (TMRCA) for BdGPL span two orders of magnitude, from 100 117 

ybp (11) to 26,000 ybp (12). The geographic origin of the pathogen is similarly contested, 118 

with the source of the disease variously suggested to be Africa (13), North America (14), 119 

South America (15), Japan (16) and East Asia (17). 120 

Global diversity of B. dendrobatidis 121 

To resolve these inconsistencies, we isolated B. dendrobatidis from all the candidate source 122 

continents and sequenced the genomes of 177 isolates to high depth then combined our data 123 

with published genomes from three prior studies (11, 12, 18) to generate a globally 124 

representative panel of 234 isolates (Fig. 1A). This dataset covers all continents from which 125 

B. dendrobatidis has been detected to date, and spans infections of all three extant orders of 126 
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Amphibia (Fig. S1 and Table S1). Mapped against the B. dendrobatidis reference genome 127 

JEL423, our sequencing recovered 586,005 segregating single nucleotide polymorphisms 128 

(SNPs). Phylogenetic analysis recovered all previously detected divergent lineages (Fig. 1B 129 

and Fig. S2). The previously accepted lineages BdGPL (global), BdCAPE (African), BdCH 130 

(European) and BdBRAZIL (Brazilian), were all detected (19), but our discovery of a new 131 

hyperdiverse lineage in amphibians native to the Korean peninsula (BdASIA-1) redefined 132 

these lineages and their relationships. The BdCH lineage, which was previously thought to be 133 

enzootic to Switzerland (11) now groups with the BdASIA-1 lineage. A second Asian-134 

associated lineage (BdASIA-2) was recovered from invasive North American bullfrogs in 135 

Korea and is closely related to the lineage that is enzootic to the Brazilian Atlantic forest 136 

(BdBRAZIL) (20). It was not possible to infer the direction of intercontinental spread 137 

between isolates within this lineage so it was named BdASIA-2/BdBRAZIL. Conditional on 138 

the midpoint rooting of the phylogeny in Fig. 1B, we now define the main diverged lineages 139 

as BdGPL, BdCAPE, BdASIA-1 (which includes the single BdCH isolate) and BdASIA-140 

2/BdBRAZIL. Previous phylogenetic relationships developed using the widely used 141 

ribosomal intragenic spacer ITS-1 region do not accurately distinguish B. dendrobatidis 142 

lineages (Fig. S3) and this likely explains much of the place-of-origin conflict in the literature 143 

(15-17). 144 

Pairwise comparisons among isolates within each lineage show that the average number of 145 

segregating sites is three-fold greater for BdASIA-1 than for any other lineage (Fig. 1A and 146 

Table 1) and that nucleotide diversity (! " Fig. S4) is two to four-fold greater. Seven of our 147 

eight BdASIA-1 isolates were recently cultured from wild South Korean frogs while the other 148 

came from the pet-trade in Belgium, all of which were aclinical infections. These isolates 149 

show that the Korean peninsula is a global centre of B. dendrobatidis diversity and that East 150 

Asia may contain the ancestral population of B. dendrobatidis, as suggested by Bataille et al 151 
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(17). We investigated this hypothesis further using Bayesian-based haplotype clustering (21) 152 

and found the greatest haplotype sharing among isolates within BdASIA-1 and between 153 

BdASIA-1 and all other lineages. This provides direct genetic evidence that BdASIA-1 shares 154 

more diversity with the global population of B. dendrobatidis than any other lineage (Fig. 155 

S5). In an independent test of ancestry, we used OrthoMCL (22) to root a B. dendrobatidis 156 

phylogeny to its closest known relative B. salamandrivorans which currently threatens 157 

salamanders (23). This tree indicates that the Asian and Brazilian isolates of B. dendrobatidis 158 

lie outside a clade comprising all other isolates (Fig. S6 and Table S2). To identify the 159 

signature of demographic histories across lineages we used TajimaÕs D (24). Genome scans 160 

of most lineages showed highly variable positive and negative values of D with maxima 161 

exhibited by BdGPL (-2.6 to +6.2; Fig. 2F), indicating that these lineages (BdASIA-162 

2/BdBRAZIL, BdCAPE and BdGPL) have undergone episodes of population fluctuation, 163 

strong natural selection, or both, that are consistent with a history of spatial and host 164 

radiations. In striking contrast, BdASIA-1 shows a flat profile for TajimaÕs D (Fig. 2F) 165 

indicating mutation-drift equilibrium likely reflective of pathogen endemism in this region. 166 

Dating the emergence of BdGPL 167 

The broad range of previous estimates for the TMRCA of BdGPL spanning 26,000 years (11, 168 

12) can be explained by two sources of inaccuracy: (1) unaccounted recombination and (2) 169 

the application of unrealistic evolutionary rates. To address these, we first interrogated the 170 

178,280 kbp mitochondrial genome (mtDNA), which has high copy number and low rates of 171 

recombination compared to the nuclear genome. To resolve the structure of the mtDNA 172 

genome we resorted to long-read sequencing using a MinION device (Oxford Nanopore 173 

Technologies, Cambridge, UK), which allowed us to describe this molecules unusual 174 

configuration; Batrachochytrium dendrobatidis carries three linear mitochondrial segments, 175 

each having inverted repeats at the termini with conserved mitochondrial genes spread over 176 
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two of the segments (Fig. S7). Additionally, we sought regions of the autosomal genome with 177 

low rates of recombination to obtain an independent estimate of the TMRCA of BdGPL. 178 

Detection of crossover events in the B. dendrobatidis autosomal genome (18) using a subset 179 

of the isolates in this study revealed a large (1.66Mbp) region of Supercontig_1.2 in BdGPL 180 

that exhibits several features that identified it as a recombination ÔcoldspotÕ: (1) a continuous 181 

region of reduced TajimaÕs D (Fig. 2D); (2) sustained high values of FST when compared 182 

with all other lineages (Fig. 3A); (3) a continuous region of reduced nucleotide diversity (! #$183 

Fig. S4) and (4) shared loss-of-heterozygosity (Fig. S8). We expanded sampling to infer the 184 

temporal range of pathogen introductions using a broad panel of isolates with known date of 185 

isolation (n = 184, ranging from 1998 to 2016) and whole-genome RNA-baiting to obtain 186 

reads from preserved amphibians that had died of chytridiomycosis. We then investigated 187 

whether our dataset contained sufficient signal to perform tip-dating inferences by building 188 

phylogenetic trees using PhyML (25) (Fig. 2A and 2C) then fitting root-to-tip distances to 189 

collection dates both at the whole-tree and within-lineage scales. We observed a positive and 190 

significant correlation within BdGPL only, for both the mitochondrial and nuclear genomes, 191 

demonstrating sufficient temporal signal to perform thorough tip-dating inferences at this 192 

evolutionary scale (Fig. 2B and 2D). 193 

Tip-dating in BEAST was used to co-estimate ancestral divergence times and the rate at 194 

which mutations accumulate within the BdGPL lineage. The mean mitochondrial substitution 195 

rate was 1.01 x 10-6 substitutions/site/year (95% highest posterior density (HPD) 4.29 x 10-7 Ð 196 

1.62 x 10-6). The mean nuclear substitution rate was 7.29 x 10-7 substitutions/site/year (95% 197 

HPD 3.41 x 10-7 Ð 1.14 x 10-6), which is comparable to a recent report of an evolutionary rate 198 

of 2.4 Ð 2.6 x 10-6 substitutions/site/year for another unicellular yeast, Saccharomyces 199 

cerevisiae beer strains (26). These estimates are over 300-fold faster than the rate used in a 200 
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previous study (12) to obtain a TMRCA of 26,400 years for BdGPL. Accordingly, we 201 

estimate the ancestor of the amphibian panzootic BdGPL originated between 120 and 50 202 

years ago (Fig. 2E), with HPD estimates of 1898 [95% HPD 1809-1941] and 1962 [95% 203 

HPD 1859-1988] for the nuclear and mitochondrial dating analyses respectively (Fig. 2F). 204 

We considered an additional calibration approach for the TMRCA of the mitochondrial 205 

genome where we included informative priors on nodes around the dates for the first 206 

historical descriptions of BdGPL detection in Australia (1978), Central America (1972), 207 

Sierra de Guadarrama (Europe) (1997), and the Pyrenees (Europe) (2000). We did not 208 

include priors for nodes where observed declines have been reported, but where the lineage 209 

responsible for those declines is unknown. This mixed dating method based on tips and nodes 210 

calibration yielded very similar estimates (TMRCA estimates of 1975 [95% HPD 1939 Ð211 

1989] (Fig. S9)), further strengthening our confidence in a recent date of emergence for 212 

BdGPL. An expansion of BdGPL in the 20th century coincides with the global expansion in 213 

amphibians traded for exotic pets, medical and food purposes (27, 28). Within our phylogeny, 214 

we found representatives from all lineages among traded animals (Figs. S10-14), and 215 

identified ten events where traded amphibians were infected with non-enzootic isolates (Fig. 216 

4). This finding demonstrates the ongoing failure of international biosecurity despite the 217 

listing of B. dendrobatidis by the World Organisation for Animal Health (the OIE) in 2008.  218 

Hybridisation between recontacting lineages of B. dendrobatidis 219 

To determine the extent to which the four main lineages of B. dendrobatidis have undergone 220 

recent genetic exchange, we used the site-by-site based approach implemented in 221 

STRUCTURE (29). Although most isolates could be assigned unambiguously to one of the 222 

four main lineages, we identified three hybrid genotypes (Fig. 3B), including one previously 223 

reported hybrid (isolate CLFT024/2) (20), and discovered two newly identified hybrids of 224 
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BdGPL and BdCAPE in South Africa. Furthermore, BdCH (isolate 0739) appears to be a 225 

chimera of multiple lineages that may represent unsampled genomic diversity that resides in 226 

East Asia, rather than true hybridisation. These hybrid genomes demonstrate that B. 227 

dendrobatidis is continuing to exchange haplotypes among lineages when they interact 228 

following continental invasions, generating novel genomic diversity. We analysed isolate 229 

clustering using principle components analysis on a filtered subset of 3,900 SNPs in linkage 230 

equilibrium, revealing an overall population structure that is consistent with our phylogenetic 231 

analyses (Fig 3C). In addition, the putatively identified hybrid isolates of B. dendrobatidis 232 

were shown to fall between main lineage clusters (Fig. 3C) further strengthening our 233 

hypothesis of haplotype exchange occurring during secondary contact between lineages. 234 

Associations among lineage, virulence and declines 235 

Genotypic diversification of pathogens is commonly associated with diversification of traits 236 

associated with host exploitation (30), and is most commonly measured as the ability to infect 237 

a host and to cause disease post-infection. We tested for variation of these two phenotypic 238 

traits across four B. dendrobatidis lineages by exposing larval and post-metamorphic 239 

common toads (Bufo bufo). Larvae are highly susceptible to infection but do not die before 240 

metamorphosis, in contrast to post-metamorphic juveniles, which are susceptible to infection 241 

and fatal chytridiomycosis (31). In tadpoles, both BdGPL and BdASIA-1 were significantly 242 

more infectious than BdCAPE and BdCH (Fig. S15 and Tables S3 & S4). In metamorphs, 243 

BdGPL was significantly more infectious than the other treatments, compared to the control 244 

group, and significantly more lethal in experimental challenge, than the geographically more 245 

restricted BdCAPE, BdASIA-1 and BdCH (Fig. 2G). We further tested for differences in 246 

virulence among lineages by using our global dataset to examine whether chytridiomycosis 247 

was non-randomly associated with B. dendrobatidis lineage. We detected a significant 248 
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difference (p < 0.001) in the proportion of isolates associated with chytridiomycosis among 249 

the three parental lineages (BdASIA-1 and BdASIA-2/BdBRAZIL were grouped due to low 250 

sample sizes), and post hoc tests indicated significant excess in virulence in both BdGPL and 251 

BdCAPE lineages relative to the combined BdASIA-1 and BdASIA-2/BdBRAZIL (all p < 252 

0.05). However, we did not detect a significant difference between BdGPL and BdCAPE 253 

(Fig. S16 and Table S5). These data suggest that although BdGPL is highly virulent, 254 

population-level outcomes are also context dependent (32); under some conditions other 255 

lineages can also be responsible for lethal amphibian disease and population declines (33).  256 

Historical and contemporary implications of panzootic chytridiomycosis 257 

Our results point to endemism of B. dendrobatidis in Asia, out of which multiple panzootic 258 

lineages have emerged. These emergent diasporas include the virulent and highly 259 

transmissible BdGPL which spread during the early 20th century via a yet unknown route to 260 

infect close to 700 amphibian species out of ~1300 thus far tested (34). With over 7800 261 

amphibian species currently described, the number of affected species is likely to rise. The 262 

international trade in amphibians has undoubtedly contributed directly to vectoring this 263 

pathogen worldwide (Fig. 4; 35,36), and within our phylogeny we identified many highly 264 

supported (!  90% bootstrap support) clades on short branches that linked isolates collected 265 

from wild amphibian populations across different continents (Fig. 4; Fig. S10-S14). 266 

However, the role of globalised trade in passively contributing to the spread of this disease 267 

cannot be ruled out. It is likely no coincidence that our estimated dates for the emergence of 268 

BdGPL span the globalisation Ôbig bangÕ, the rapid proliferation in intercontinental trade, 269 

capital, and technology that started in the 1820s (37). The recent invasion of Madagascar by 270 

Asian common toads hidden within mining equipment (38) demonstrates the capacity for 271 

amphibians to escape detection at borders and exemplifies how the unintended anthropogenic 272 



aar1965 
 

 12 

dispersal of amphibians has also likely contributed to the worldwide spread of pathogenic 273 

chytrids. 274 

The hyperdiverse hotspot identified in Korea likely represents a fraction of the 275 

Batrachochytrium genetic diversity in Asia and further sampling across this region is 276 

urgently needed because the substantial global trade in Asian amphibians (39) presents a risk 277 

of seeding future outbreak lineages. Unique ribosomal DNA haplotypes of B. dendrobatidis 278 

have been detected in native amphibian species in India (40, 41), Japan (16) and China (42). 279 

Although caution should be observed when drawing conclusions about lineages based on 280 

short sequence alignments (Fig. S3), other endemic lineages probably remain undetected 281 

within Asia. Significantly, the northern European countryside is witnessing the emergence of 282 

B. salamandrivorans, which also has its origin in Asia. The emergence of B. 283 

salamandrivorans is linked to the amphibian pet trade (43), and the broad expansion of 284 

virulence factors that are found in the genomes of these two pathogens are testament to the 285 

evolutionary innovation that has occurred in these Asian Batrachochytrium fungi (23). Our 286 

findings show that the global trade in amphibians continues to be associated with the 287 

translocation of chytrid lineages with panzootic potential. Ultimately, our work confirms that 288 

panzootics of emerging fungal diseases in amphibians are caused by ancient patterns of 289 

pathogen phylogeography being redrawn as largely unrestricted global trade moves 290 

pathogens into new regions, infecting new hosts and igniting disease outbreaks. Within this 291 

context, the continued strengthening of transcontinental biosecurity is critical to the survival 292 

of amphibian species in the wild (44).  293 
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Tables: 611 

Lineage Number of 
Isolates 

Total 
segregating 

sites 

Average 
pairwise-

segregating 
sites 

Total 
homozygous 
segregating 

sites 

Average 
pairwise-

homozygous 
segregating 

sites 

! $
TajimaÕs 

D 

BdASIA-1 8 327,996 142,437 108,353 21,716 0.0044 0.2540 

BdASIA-2 / 
BdBRAZIL 12 148,021 51,069 48,722 6,216 0.0018 0.9825 

BdCAPE 24 146,466 38,881 53,884 4,977 0.0016 0.3143 

BdGPL 187 127,770 26,546 68,493 3,101 0.0009 0.9792 

 612 

Table 1. Comparison of common genetic diversity measures among Batrachochytrium 613 

dendrobatidis lineages. Total segregating sites for each lineage include all segregating sites 614 

where genotype calls were made in at least half of the isolates. Average pairwise-segregating 615 

sites is the average number of sites with different genotypes between all pairs of isolates 616 

within a lineage. Total homozygous segregating sites includes all sites within a lineage where 617 

there is at least one homozygous difference between isolates. Average pairwise homozygous 618 

segregating sites is the average number of sites with different homozygous genotypes 619 

between all pairs of isolates within a lineage. Nucleotide diversity (! ) is the mean of the per-620 

site nucleotide diversity. TajimaÕs D is reported as the mean over 1 kbp bins. 621 

  622 
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Figures: 623 

 624 

Fig. 1: Genetic diversity and phylogenetic tree of a global panel of 234 Batrachochytrium 625 

dendrobatidis isolates. A. Map overlaid with bar charts showing the relative diversity of 626 

isolates found in each continent and by each major lineage (excluding isolates from traded 627 

animals). The bar heights are the average number of segregating sites between all pairwise 628 
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combinations of isolates of each lineage in each continent (therefore only lineages with two 629 

or more isolates from a continent are shown). Outlined points at the base of each bar are 630 

scaled by the number of isolates for each lineage in that continent. The numbers around the 631 

outside of the globe are the average number of segregating sites between all pairwise 632 

combinations of isolates grouped by continent. Colours denote lineage as given by the legend 633 

in Fig 1B. B. Midpoint rooted radial phylogeny supports four deeply diverged lineages of B. 634 

dendrobatidis: BdASIA-1; BdASIA-2/BdBRAZIL; BdCAPE and BdGPL. All major splits 635 

within the phylogeny are supported by 100% of 500 bootstrap replicates. See Fig. S2 for tree 636 

with full bootstrap support values on all internal branches. 637 

 638 

  639 
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640 

Fig. 2: Dating the emergence of BdGPL. A. Maximum likelihood (ML) tree constructed from 641 

1,150 high quality SNPs found within the 178 kbp mitochondrial genome. B. Linear 642 

regression of root-to-tip distance against year of isolation for BdGPL isolates in 643 

mitochondrial DNA phylogeny in panel A, showing significant temporal trend (F-statistic = 644 

14.35, p = 0.00024). C. ML tree constructed from a 1.66 Mbp region of low recombination in 645 

Supercontig_1.2. Two BdGPL isolates, BdBE3 and MG8 fall on long branches away from 646 

the rest of the BdGPL isolates (see inset zoom), due to introgression from another lineage 647 

(BdCAPE; see Fig. 3B) and were excluded from the dating analysis. D. Linear regression of 648 

root-to-tip distance against year of isolation for BdGPL isolates from phylogeny in panel C, 649 

with significant temporal trend (F-statistic = 15.92, p-value = 0.0001). E. Top figure shows 650 

BdGPL and outgroup BdCH, with the 95% HPD estimates for MRCA for BdGPL from 651 

mtDNA dating (blue) and nuclear DNA dating (red). Lower figure shows full posterior 652 

distributions from tip dating models for mtDNA (blue) and partial nuclear DNA (red) 653 

genomes. Solid vertical lines are limits of the 95% HPD. Dashed vertical lines denote the 654 

maximal density of the posterior distributions. F. Sliding 10 kb, non-overlapping window 655 

estimates of TajimaÕs D for each of the main B. dendrobatidis lineages. The region 656 

highlighted in red is the low recombination segment of Supercontig_1.2. G. Survival curves 657 

for Bufo bufo metamorphs for different B. dendrobatidis treatment groups: BdASIA-1 (blue); 658 

BdCAPE (orange); BdCH (yellow); BdGPL (green) and Control (grey). Confidence intervals 659 
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are shown for BdGPL and BdASIA-1, showing no overlap by the end of the experiment. 660 

Instances of mortalities in each treatment group are plotted along the x-axis, with points 661 

scaled by number of mortalities at each interval (day). 662 

 663 
  664 
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665 

Fig. 3: FST and site-by-site STRUCTURE analysis. A. Non-overlapping, 10 kb sliding 666 

window of FST between lineages. The region highlighted in red is Supercontig_1.2:500,000-667 

2,160,000 low recombination region. B. Site-by-site analysis of population ancestry for a 668 

random selection of 9,905 SNPs. Results show those isolates found to be either hybrid (SA-669 

EC3, SA-EC5 and CLFT024/2), or with significant introgression from non-parental lineages 670 

(isolates BdBE3 and MG8) or a chimera of un-sampled diversity, likely originating from East 671 

Asia (0739, the BdCH isolate). Each column represents a bi-allelic SNP position. The column 672 

is coloured according to the joint-probability of either allele copy arising from one of four 673 

distinct populations. Colours represent assumed parental lineages as given in Fig. 3C. C. 674 

Principle Components Analysis (PCA) of 3,900 SNPs in linkage equilibrium. Each point 675 

represents an isolate, coloured by phylogenetic lineage. The isolates separate into clearly 676 

defined clusters. The axes plot the first and second principle components. 677 

 678 
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679 

Fig. 4: Genotypes of Bd isolated from infected amphibians in the international trade and 680 

phylogenetically linked genotypes from segregated geographic localities. The red diamonds 681 

on the phylogeny indicate isolates recovered from traded animals. Their geographic location 682 

is displayed by the red diamonds on the map. The red numbers link each trade isolate to the 683 

relevant picture of the donor host species atop the figure panel and their placement in the 684 

phylogeny. The arrows on the map link geographically separated isolates which form closely 685 

related phylogenetic clades with high bootstrap support (! 90%). Each clade is denoted by a 686 

different shape point on the map with the names of isolates within each clade displayed on 687 

the map. The dates displayed indicate the sampling time-frame for each clade. The 688 

phylogenetic position of each clade is displayed in Figs S10-14. The colours of points and 689 

arrows on the map indicate lineage according to the legend in Fig 1. A browsable version of 690 

this phylogeny can be accessed at https://microreact.org/project/GlobalBd. Photo credits: (1) 691 

Hyla eximia Ricardo Chaparro, (2) Notophthalmus viridescens Patrick Coin / CC-BY-SA 2.5, 692 

(3) Ambystoma mexicanum Henk Wallays, (4) Xenopus tropicalis Daniel Portik, (5) 693 

Hyperolis riggenbachi and (6) Leptopelis rufus Brian Freiermuth, (7) Geotrypetes seraphini 694 

Peter Janzen, (8) Bombina variegata and (9) Rana catesbeiana and (10) Bombina orientalis 695 

Frank Pasmans 696 


