
This is a repository copy of Global estimates and energy identities for elliptic systems with 
antisymmetric potentials.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/132670/

Version: Accepted Version

Article:

Lamm, T and Sharp, B orcid.org/0000-0002-7238-4993 (2016) Global estimates and 
energy identities for elliptic systems with antisymmetric potentials. Communications in 
Partial Differential Equations, 41 (4). pp. 579-608. ISSN 0360-5302 

https://doi.org/10.1080/03605302.2015.1116559

© 2016 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor 
& Francis in Communications in Partial Differential Equations on 16 Nov 2015, available 
online: http://www.tandfonline.com/10.1080/03605302.2015.1116559. Uploaded in 
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


GLOBAL ESTIMATES AND ENERGY IDENTITIES FOR

ELLIPTIC SYSTEMS WITH ANTISYMMETRIC POTENTIALS

TOBIAS LAMM AND BEN SHARP

Abstract. We derive global estimates in critical scale invariant norms for
solutions of elliptic systems with antisymmetric potentials and almost holo-

morphic Hopf differential in two dimensions. Moreover we obtain new energy
identities in such norms for sequences of solutions of these systems. The re-
sults apply to harmonic maps into general target manifolds and surfaces with

prescribed mean curvature. In particular our results confirm a conjecture of
Rivière in the two-dimensional setting.

MSC classification: 35A23, 35B33, 53C42, 58E20

1. Introduction

Harmonic maps are one of the most studied solutions to a geometric partial
differential equation. They are critical points of the Dirichlet energy

E(u) =
1

2

∫

M

|∇u|2dvg,

where u ∈ W 1,2(M,N) is a map between between two Riemannian manifolds
(Mm, g) and (N l, h) and where we assume that (N l, h) is isometrically embed-
ded in some euclidean space R

n. The elliptic system satisfied by harmonic maps
is

−∆u = A(u)(∇u,∇u),(1.1)

where A is the second fundamental form of the embedding N →֒ R
n. When m =

2 the Dirichlet energy, and thus harmonic maps, are invariant under conformal
transformations of M therefore this situation is of particular interest.

It was discovered by Hélein [12] that in the local situation M = Bm1 ⊂ R
m and

N = Sn−1 the system (1.1) can be written as

−∆u = ∇⊥B · ∇u,(1.2)

where∇⊥B ∈ L2(Bm1 , so(n)⊗
∧1

R
m) and where∇⊥B·∇u denotes an inner product

of one forms coupled with matrix multiplication. In this situation div∇⊥B = 0
weakly, and an extension of results due to Wente [44] and Müller [30] by Coifman
et al. [6] allows to conclude that the right hand side ∇⊥B ·∇u is in the local Hardy
space H1

loc(B
m
1 ,R

n), which is a strict subspace of L1(Bm1 ,R
n). In particular the

improved regularity of the right hand side allows to conclude the global non-linear
estimate

∥∇2u∥L1
loc(B

m
1 ,S

n−1) ≤ CE(u).(1.3)
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2 TOBIAS LAMM AND BEN SHARP

Whenm = 2 one infers from (1.3), that u ∈ C0
loc(B

2
1 , S

n−1) and higher regularity
then follows from standard results on elliptic systems. Hélein showed that two-
dimensional harmonic maps into general closed target manifolds are also smooth
by rewriting the equation (1.1) using a so called Coulomb frame, see [13], [14]. We
would like to remark that the construction of the Coulomb frame in this setting
requires the target manifold to have a trivial tangent bundle, which (via a technical
result) one may assume without loss of generality for sufficiently smooth targets.

For general closed target manifolds N it was shown by Rivière [36] that the
equation (1.1) can be written in the form

−∆u = Ω · ∇u,(1.4)

with Ω ∈ L2(Bm1 , so(n) ⊗
∧1

R
m) but it is no longer true that divΩ = 0, however

Ω remains anti-symmetric. For two-dimensional domains Rivière even showed that
every critical point of a conformally invariant variational integral which is quadratic
in the gradient satisfies an equation of the form (1.4). His main result, an extension
of Hélein’s regularity result, was that every weak solution of (1.4) with small L2-
norm of Ω is as smooth as allowed by Ω - and in particular continuous. He obtained
this result by deriving a conservation law which satisfies compensation properties
via perturbing a Coulomb frame approach to studying (1.4). We remark that the
anti-symmetry of Ω is crucial to the improved regularity, moreover that this method
applies to the harmonic maps setting without requiring any condition on the target
manifold other than it being a C2 sub-manifold of some Euclidean space.

We further remark that (1.3) does not hold in general for solutions of (1.4),
without the assumption that divΩ = 0 - for a counterexample see [20].

Using a small energy assumption several interesting energy convexity, uniqueness
and higher regularity results for harmonic maps and certain solutions of (1.4) have
recently been obtained in [7], [19], [40] and [42] using differing techniques.

For m ≥ 3 a partial regularity result for minimising harmonic maps was shown
to hold by Schoen and Uhlenbeck [39]. For stationary harmonic maps this was
proved by Evans [10] for N = Sn−1 and by Bethuel [2] for general closed target
manifolds, using again the Coulomb frame. All of these results were generalised by
Rivière and Struwe [37] by studying the system (1.4) under appropriately motivated
assumptions.

Going back to harmonic maps for arbitrary closed targets N a linear estimate of
the form

∥∇2u∥L1
loc(B

m
1 ,N) ≤ C(N)

√

E(u)(1.5)

is known to hold for weakly harmonic maps when m = 2 (resp. weakly stationary
harmonic maps for m ≥ 3) but requires the Dirichlet energy to be small and hence
one cannot directly conclude a global estimate which only depends on the energy
of u. For arbitrary u and m = 2, one might try using a naive approach to cover
a compact subset of B2

1 by balls in which the energy is small, yielding a global
estimate for any fixed solution, but with a constant depending on the inverse of the
smallest radius used in the covering. By considering a sequence of harmonic maps
where the energy concentrates, which is possible due to the conformal invariance
of E, one readily observes that this smallest radius has to tend to zero and hence
a global estimate obtained in this way degenerates along the sequence.

One of the main results of the present paper is to confirm the two-dimensional
case of the following conjecture of Rivière (see page 9 in [36]): for every harmonic
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map u : Bm2 → N →֒ R
n with E(u) ≤ Λ, there exists a constant C = C(m,N,Λ)

so that

∥∇2u∥L1(Bm
1 ,N) ≤ C.(1.6)

In the present paper we confirm this conjecture for m = 2, and closed target
manifolds N of class C2. We actually prove such a global estimate for general
(approximate) solutions u of (1.4) whose Hopf differential ϕ is suitably controlled
or almost holomorphic (see Theorems 2.1 and 2.3 for details). Recall that for a
map u ∈W 1,2(B2

1 , N) the Hopf differential is defined by

ϕ := |ux|2 − |uy|2 − 2i⟨ux, uy⟩ ∈ L1(B1).

It follows from Rivière’s regularity results that ϕ is weakly differentiable when u
solves (1.4), and a calculation shows that ϕ is holomorphic for every critical point
of a conformally invariant variational integral which is quadratic in the gradient,
and hence our result applies to all these critical points. In particular, the global
estimate holds for (approximate) harmonic maps into general target manifolds and
conformally parametrised surfaces in N of prescribed mean curvature H ∈ L∞ and
even with H ∈ L2. We remark that the special case of harmonic maps into a two-
dimensional target manifold N2 which is not diffeomorphic to S2 has been solved
previously by Rivière, see Theorem I.7 in [36].

For stationary harmonic maps for m ≥ 2 into target manifolds which do not
carry harmonic spheres Sp, 2 ≤ p ≤ m, Lin [23] showed a global estimate of the
form

∥∇u∥L∞(M,N) ≤ C(M,N,E(u)).

This results applies in particular to target manifolds N whose universal cover Ñ
supports a pointwise convex function, as was also shown by Lin.

We note that for energy minimising harmonic maps into general target manifolds
and in arbitrary dimensions, Cheeger and Naber [3] recently showed that there
exists a number p > 2 so that u ∈ W 1,p ∩W 2,p/2(B1/2, N) with uniform bounds.

This was improved in [31] where uniform bounds for ∇u in L3,∞ and ∇2u in L3/2,∞

were derived.
The importance of the estimate (1.6) stems from its applications in proving the

so called energy identity during the bubbling process, which naturally occurs when
one studies sequences of critical points of conformally invariant functionals or their
corresponding gradient flows. A “bubble” is formed when a certain threshold of
energy concentrates on shrinking discs along a sequence - see [38] for a first descrip-
tion of this phenomenon in the context of harmonic maps. In fact the bubbling
process can be thought of as a covering-type argument where one attempts to keep
track of potential energy concentration along sequences of solutions - the difficulty
then being to gain a suitable estimate on each component of this covering - which
consists of shrinking discs, their complement (which is a multiply connected do-
main) and an intermediate region formed of degenerating annuli. Good control is
obtained locally on the shrinking discs and multiply connected domains via the
ε-regularity results of Hélein or Rivière. Thus the only place left to control is the
degenerating annuli, or connecting neck regions. In order to explain this further
we need to introduce two more function spaces, the Lorentz spaces L2,1 and L2,∞,
the latter one is also called the weak-L2 or Marcinkiewicz-space. For U ⊂ R

2 and
measurable f let λf (s) := |{x ∈ U : |f(x)| > s}| which is non-increasing in s > 0.
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We define:

L2,1(U) = {f :

∫ ∞

0

λf (s)
1
2 ds <∞} and L2,∞(U) = {f : sup

s>0
s2λf (s) <∞}

and we note that L2,1(U) ⊂ L2(U) ⊂ L2,∞(U). This can be easily checked once
one considers

∥f∥2L2(U) =

∫ ∞

0

2sλf (s)ds.

There are norms associated with the above spaces which are equivalent to the
quantities appearing in the definition. Moreover it should be at least intuitively
clear from the definition that

∣

∣

∣

∣

∫

U

fg

∣

∣

∣

∣

≤ ∥f∥L2,1(U)∥g∥L2,∞(U),(1.7)

which can be summed up by (L2,1)∗ = L2,∞, see [15].
Going back to the bubbling picture, when studying a sequence of say harmonic

maps uk from two-dimensional domains with uniformly bounded energy a certain
amount of energy can concentrate at finitely many points and disappear when
taking weak limits uk ⇀ u. By performing suitable re-scalings (called blow-up’s)
one can recapture this lost energy and re-discover it as the energy of a non-trivial
harmonic map from R

2 → N (a so called bubble). Away from the finitely many
points where the energy concentrates one concludes from standard small-energy
regularity results that the maps uk are very close to the weak limit u and in small
degenerating balls around the energy concentration points, uk is very close to the
bubbles. There is some intermediate region between the two sets on which we have
good control on the uk’s and it can be shown to consist of degenerating annuli,
i.e. annuli for which the quotient of the outer radius divided by the inner radius
diverges. In order to show that there is no unaccounted energy loss (i.e the energy
identity) in this process, one has to show that the energy converges to zero on
these degenerating annuli. Now it follows from standard small energy regularity
results that the L2,∞-norm of ∇uk has to tend to zero on the annuli. Hence, using
(1.7), it remains to derive a uniform bound on the L2,1-norm of ∇uk on the annuli
and this fact indeed follows from (1.6) using an extension of the classical Sobolev
embedding theorem (see e.g. [12]). To our knowledge Lin and Rivière [24], [25], [26]
were the first ones to observe the importance of the duality (1.7) in this setting.
Indeed, in [26] they used this idea to derive a type of energy identity for sequences
of stationary harmonic maps from higher dimensional domains into spheres and
an extension of (1.6) to this setting would have direct applications to obtaining a
corresponding result for general targets. We note that the same idea has later been
used, see [22], [18], [28], [46] in the setting of harmonic maps, [35] for Yang-Mills
fields and [1] for Willmore surfaces.

Since this bubbling process is a crucial ingredient in our argument, we include
a detailed presentation of it in the appendix. Similar results can be found in [8],
[32], [20] and [1].

Our second main result consists of energy identities for sequences of approximate
solutions of (1.4) with almost holomorphic Hopf differentials (see Theorem 2.6).
These results extend previous work of [8], [9], [16], [22], [27], [28], [32], [33], [43] and
[45], in which various versions of the energy identity have been proved for sequences
of approximate harmonic maps or other systems of the type (1.4). We also want to
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mention that Laurain and Rivière [20] recently showed an energy identity for the
angular derivative of sequences of solutions of (1.4) without assuming a condition
on the Hopf differential. Moreover, they constructed a counterexample which shows
that the full energy identity cannot be true without additional assumptions, such
as the almost holomorphicity of the Hopf differential.

We also highlight that our main supporting Theorem 2.5 yields an energy identity
in terms of the L2,1 norms of the gradients and as a direct consequence we conclude
that the no-neck property holds, i.e. the weak limit u and all the bubbles are
connected without necks. This fact generalises the results of [5], [34] and [46]
to our more general setting. Imposing a structural condition on Ω, which is for
example satisfied by solutions of (1.1), we also derive an energy identity in terms
of the L1-norms of the second derivatives.

Finally we study solutions to (1.4) on Riemann surfaces under the condition
that the Hopf differential is holomorphic. We draw attention to the fact that
such solutions are conformally invariant which allows for a general study of these
solutions on a sequence of potentially degenerating Riemann surfaces, similarly
to the harmonic map setting [47]. We do not go into full details here, however
the critical analysis on a degenerating Riemann surface is along conformally long
cylinders - or degenerating annuli, for which our main supporting Theorem 2.5 can
be applied. We also link this to the study of W 2,2 conformal immersions (see [17],
[21]).

An outline of the paper is as follows: In section 2 we state our main results and
the most important supporting result. In section 3 we derive estimates relating
the radial derivative of a map and its Hopf differential together with the angular
derivative. We also extend various results on harmonic functions and Wente-type
equations on annuli of [20] to our setting. The proof of the global estimate is con-
tained in section 4 and in section 5 we prove the energy identities. In section 6
we make some remarks on the equation (1.4) on Riemann surfaces. The bubbling
argument which is crucial to us can be found in the appendix.

Acknowledgements The second author was funded by André Neves’ Euro-
pean Research Council STG agreement number P34897 during the writing of this
paper. He would also like to thank Karlsruhe Institute of Technology for their kind
hospitality during the preliminary stages of this project.

2. Results

Our first main result is the global W 2,1-estimate for solutions of (1.4) under
further control on the Hopf differential.

Theorem 2.1. Let B1 ⊂ R
2 be the unit ball and consider u ∈ W 1,2(B1,R

n),

f ∈ L logL(B1,R
n) and Ω ∈ L2(B1, so(n)⊗

∧1
R

2) solving

−∆u = Ω · ∇u+ f.

We will also assume that the Hopf differential

ϕ := |ux|2 − |uy|2 − 2i⟨ux, uy⟩ ∈ L1(B1)

satisfies |ϕ| 12 ∈ L2,1
loc(B1). Then for every compact subset K ⊂ B1, there exists some

C = C(K, ∥Ω∥L2(B1), ∥∇u∥L2(B1), ∥f∥L logL(B1), ∥|ϕ|
1
2 ∥L2,1(K)) <∞
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such that

∥∇2u∥L1(K) + ∥∇u∥L2,1(K) ≤ C.

Remark 2.2. 1) Recall that the space L logL(B1,R
n) is defined by

L logL(B1,R
n) := {f : B1 → R

n|
∫

B1

|f(x)| log(2 + |f(x)|)dx <∞}.

Hence the condition that f ∈ L logL can be thought of as a borderline
between f ∈ L1 and f ∈ Lp for p > 1.

2) We note again that this result cannot be deduced from standard small energy
regularity results together with a covering argument, since in this case the
constant would also depend on the inverse of the infimum of all radii such
that the small energy regularity result is applicable. But this infimum can be
arbitrary small by considering a sequence of solutions of the above system
which allows bubbling.

3) Notice that, a-priori, |ϕ| 12 ∈ L2(B1) so we really do require more regularity
for the Hopf differential than is given by the assumptions on u. However
this improved regularity for ϕ is easily obtained in the vast majority of
situations - for instance if the Hopf differential is almost holomorphic, see
Proposition 4.2.

4) As already stated, this theorem is not true without the extra control on ϕ -
see [20].

5) An open question here is whether one can replace L logL by the local Hardy
space H1

loc and still get W 2,1 control - even in the case that ∥Ω∥L2 is small.

A corollary of the above theorem is the following:

Theorem 2.3. Let B1 ⊂ R
2 be the unit ball and consider u ∈ W 1,2(B1,R

n),

f, g ∈ L2(B1,R
n) and Ω ∈ L2(B1, so(n)⊗

∧1
R

2) solving

−∆u = Ω · ∇u+ f(2.1)

0 = Ω · ∇⊥u+ g.(2.2)

Then for every compact subset K ⊂ B1, there exists some

C = C(K, ∥Ω∥L2(B1), ∥∇u∥L2(B1), ∥f∥L2(B1), ∥g∥L2(B1)) <∞
such that

∥∇2u∥L1(K) + ∥∇u∥L2,1(K) ≤ C.

In order to prove this theorem, we show in section 4, that under these assump-
tions ∂ϕ ∈ L1(B1), from which we derive the necessary regularity in order to be
able to apply Theorem 2.1. We remark that in all known geometric applications of
this result the second equation (2.2) holds for g ≡ 0.

Remark 2.4. Interpreting Ω as being connection forms for the trivial pull-back
bundle u∗(TRn) we could re-write the PDE system (2.1) and (2.2) as

δΩ(du) := δdu− ⋆(Ω ∧ ⋆du) = f(2.3)

dΩ(du) := d(du) + Ω ∧ du = ∗g.(2.4)

Or more succinctly with the standard complex structure on R
2:

−∂Ω(∂u) := −∂(∂u)− Ωz ∧ ∂u =
1

4
(f + ig).
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The second condition ∗(Ω∧du) = −Ω·∇⊥u = g is satisfied in all known geometric
applications of this theorem for g ≡ 0.

The next result is our main supporting theorem, which we couple with the esti-
mates for harmonic functions on cylinders (c.f. Proposition 3.2) and the bubbling
argument in the appendix in order to prove Theorem 2.1.

Theorem 2.5. There exists an ε > 0 such that for all λ, r > 0 satisfying 2r < 1,
λ < 1 and Ω ∈ L2(B1\Br, so(n)⊗

∧1
R

2), f ∈ L logL(B1\Br), u ∈W 1,2(B1\Br,Rn)
with |ϕ|1/2 ∈ L2,1(B1\Br) satisfying

−∆u =Ω · ∇u+ f on B1\Br
and

sup
r<ρ< 1

2

∫

B2ρ\Bρ

|Ω|2 ≤ε,

there exists some C = C(λ, n) <∞ such that
∥

∥∇2u
∥

∥

L1(Bλ\Br/λ)
+ ∥∇u∥L2,1(Bλ\Br/λ) ≤C

(

(1 + ∥Ω∥L2(B1\Br))(∥∇u∥L2(B1\Br)

+ ∥f∥L logL(B1\Br))
)

+ C∥|ϕ|1/2∥L2,1(B1\Br).

A similar result has been obtained by Laurain and Rivière [20] without an as-
sumption on ϕ. But on the other hand, they only conclude an estimate for the
L2,1-norm of the angular part of the first derivative of u. Moreover a counter-
example from [20] serves to show that our estimate is false without the condition
on ϕ.

The argument required to prove Theorem 2.1 will be by contradiction coupled
with Theorem 2.5; we perform a bubbling argument and show that the only way
a uniform bound as in Theorem 2.1 can fail to hold is if the norm blows up on so
called “neck domains” which are precisely of the form of Theorem 2.5.

Finally, we also mention our main new energy identity and no-neck property
result.

Theorem 2.6. Let uk ∈W 1,2(B1,R
n) be a sequence of solutions of

−∆uk =Ωk · ∇uk + fk,

where Ωk ∈ L2(B1\Br, so(n) ⊗
∧1

R
2), fk ∈ L logL(B1,R

n), and we assume that
there exists a constant Λ > 0 so that for every k ∈ N

∫

B1

(

|∇uk|2 + |Ωk|2
)

dx+ ∥fk∥L logL(B1) + ∥|ϕk|1/2∥L2,1(B1) ≤ Λ.

Then there exists a subsequence, still denoted by uk, Ωk and fk, so that uk ⇀ u
weakly in W 1,2(B1), Ωk ⇀ Ω weakly in L2(B1) and fk ⇀ f ∈ L logL(B1) in a
distributional sense and the limits are solutions of

−∆u =Ω · ∇u+ f.

Moreover there exist at most finitely many ω-bubbles ωi,j : R2 → R
n, 1 ≤ i ≤ p,

1 ≤ j ≤ ji, i.e. solutions of

−∆ωi,j = Ωi,j · ∇ωi,j ,
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sequences of points xi,jk ∈ B1, x
i,j
k → xi, and sequences of radii ti,jk ∈ R+, t

i,j
k → 0,

such that for every r < 1 so that {x1, . . . , xp} ∈ Br

max{ t
i,j
k

ti,j
′

k

,
ti,j

′

k

ti,jk
,
dist(xi,jk , x

i,j′

k )

ti,jk + ti,j
′

k

} → ∞, ∀ 1 ≤ i ≤ p, 1 ≤ j, j′ ≤ ji, j ̸= j′,

(2.5)

lim
k→∞

∥∇uk∥2L2(Br,Rn) = ∥∇u∥2L2(Br,Rn) +

p
∑

i=1

ji
∑

j=1

∥∇ωi,j∥2L2(R2,Rn).(2.6)

If we assume additionally that fk ∈ Lp(B1,R
n) for some 1 < p ≤ ∞ with

∥fk∥Lp(B1) ≤ Λ

and

∥|ϕk|1/2∥L2,1(Z) → 0

for every subset Z ⊂ B1 with |Z| → 0, then we also have for every r < 1 as above

lim
k→∞

∥∇uk∥2L2,1(Br,Rn) = ∥∇u∥2L2,1(Br,Rn) +

p
∑

i=1

ji
∑

j=1

∥∇ωi,j∥2L2,1(R2,Rn).(2.7)

Furthermore, the map u and the maps ωi,j are connected without necks and ωi,j

are all conformal.

Remark 2.7. Once again an easy corollary of this theorem is in the setting where
fk ∈ L2(B1,R

n) and additionally Ωk · ∇⊥uk = gk ∈ L2(B1,R
n) (with uniformly

bounded norms) under which all the additional assumptions on the Hopf differ-
ential are true. In particular, the result applies to sequences of critical points of
conformally invariant variational problems with quadratic growth in the gradient.

It is known that for general solutions to (1.4) we cannot expect better thanW 2,p
loc

regularity for p < 2 - see [41], however we make the following

Conjecture 2.8. If u is a solution to (1.4) such that ϕ = 0 almost everywhere,
then u ∈W 2,2 ∩W 1,∞ - in particular u could be said to have weak mean curvature
in L2.

We also remark that an interesting question here is whether or not the zeros of
∇u are finite and isolated under these conditions.

3. Supporting results

In this section we collect all results which are needed in order to prove the main
Theorems mentioned before.

3.1. Estimates involving the Hopf differential. In the following we do some
computations in polar coordinates (ρ, θ): Obviously for a map u ∈ W 1,2(B1) we
have

ux = uρ
x

ρ
−uθ

y

ρ2
, uy = uρ

y

ρ
+uθ

x

ρ2
and |∇u|2 = |ux|2 + |uy|2 = |uρ|2 +

|uθ|2
ρ2

.

Recall that for a, b ≥ 0 we have

(a
1
2 + b

1
2 )(a+ b)

1
2 = (a2 + ab)

1
2 + (b2 + ab)

1
2 ≥ a+ b
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and hence (a+ b)
1
2 ≤ a

1
2 + b

1
2 so we have

(3.1) |uρ| =
(

|uρ|2 −
|uθ|2
ρ2

+
|uθ|2
ρ2

)
1
2

≤
(∣

∣

∣

∣

|uρ|2 −
|uθ|2
ρ2

∣

∣

∣

∣

)
1
2

+
|uθ|
ρ
.

Proposition 3.1. Let u ∈W 1,2(B1) and let ϕ be the Hopf differential of u, then

|uρ| ≤ |ϕ| 12 +
|uθ|
ρ
.

Proof. By formula (3.1) we see that it suffices to show that

∣

∣

∣

∣

|uρ|2 −
|uθ|2
ρ2

∣

∣

∣

∣

≤ |ϕ|.

From the above formulas for the partial derivatives of u we have

2⟨ux, uy⟩ = 2
xy

ρ2

(

|uρ|2 −
|uθ|2
ρ2

)

+ 2
x2 − y2

ρ2

⟨

uρ,
uθ
ρ

⟩

and thus

(2⟨ux, uy⟩)2 = 4
x2y2

ρ4

(

|uρ|2 −
|uθ|2
ρ2

)2

+ 4
(x2 − y2)2

ρ4

⟨

uρ,
uθ
ρ

⟩2

+

+8
xy(x2 − y2)

ρ4

(

|uρ|2 −
|uθ|2
ρ2

)⟨

uρ,
uθ
ρ

⟩

.(3.2)

Moreover

|ux|2 − |uy|2 =
x2 − y2

ρ2

(

|uρ|2 −
|uθ|2
ρ2

)

− 4
xy

ρ2

⟨

uρ,
uθ
ρ

⟩

giving

(|ux|2 − |uy|2)2 =
(x2 − y2)2

ρ4

(

|uρ|2 −
|uθ|2
ρ2

)2

+ 16
x2y2

ρ4

⟨

uρ,
uθ
ρ

⟩2

+

−8
xy(x2 − y2)

ρ4

(

|uρ|2 −
|uθ|2
ρ2

)⟨

uρ,
uθ
ρ

⟩

.(3.3)

Putting together (3.2) and (3.3) gives

|ϕ|2 = (|ux|2 − |uy|2)2 + (2⟨ux, uy⟩)2

=
(x2 − y2)2 + 4x2y2

ρ4

(

|uρ|2 −
|uθ|2
ρ2

)2

+
4(x2 − y2)2 + 16x2y2

ρ4

⟨

uρ,
uθ
ρ

⟩2

=

(

|uρ|2 −
|uθ|2
ρ2

)2

+ 4

⟨

uρ,
uθ
ρ

⟩2

≥
(

|uρ|2 −
|uθ|2
ρ2

)2

(3.4)

and this finishes the proof. □
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3.2. Harmonic functions on conformally long cylinders. Next we derive
some estimates for harmonic functions on conformally long cylinders. The im-
portance of these estimates for deriving results similar to Theorem 2.5 was made
clear by Laurain and Rivière [20].

Proposition 3.2. Let h be a harmonic function on B1\Bε for some ε < 1
4 . Then

for any 0 < λ < 1
2 , there exists C = C(λ) such that

∥

∥

∥

∥

d

dr
(rhr)

∥

∥

∥

∥

L2,1(Bλ\Bελ−1 )

+

∥

∥

∥

∥

hθ
r

∥

∥

∥

∥

L2,1(Bλ\Bελ−1 )

+

∥

∥

∥

∥

hθθ
r

∥

∥

∥

∥

L2,1(Bλ\Bελ−1 )

+ ∥hrθ∥L2,1(Bλ\Bελ−1 )

≤C∥∇h∥L2(B1\Bε).(3.5)

Moreover, we have the estimate

∥∇2h∥L1(Bλ\Bελ−1 ) ≤ C(∥hr∥L2,1(Bλ\Bελ−1 ) + ∥∇h∥L2(B1\Bε)).(3.6)

Proof. We write the harmonic function h as

h(r, θ) = c0 + d0 log r +
∑

n∈Z\{0}

(cnr
n + dnr

−n)einθ.

Thus we have
∣

∣

∣

∣

hθ(r, θ)

r

∣

∣

∣

∣

≤
∑

n∈Z\{0}

(

|ncn|rn−1 + |ndn|r−n−1
)

and also
∣

∣

∣

∣

hθθ(r, θ)

r

∣

∣

∣

∣

+ |hrθ(r, θ)| ≤ 2
∑

n∈Z\{0}

(

|n2cn|rn−1 + |n2dn|r−n−1
)

.

Setting

H :=
∑

n∈Z\{0}

(

|n2cn|rn−1 + |n2dn|r−n−1
)

we observe that the estimate

∥H∥L2,1(Bλ\Bελ−1 ) ≤ C∥∇h∥L2(B1\Bε)

would show (3.5) for the last three terms on the left hand side.
We can estimate each term of H in L2,1 and we have, as in the appendix of [20],

∥rn−1∥L2,1(Bλ\Bελ−1 ) ≤
√
πλn

and

∥r−n−1∥L2,1(Bλ\Bελ−1 ) ≤ 2
√
π

(

λ

ε

)n

when n ≥ 1.
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Therefore

∥H∥L2,1(Bλ\Bελ−1 ) ≤2
√
π
(

∑

n≥1

n2λn(|cn|+ |dn|ε−n)

+
∑

n≤−1

n2λ−n(|cn|εn + |dn|)
)

≤





∑

n∈Z\{0}

|n|3(2λ)2|n|




1
2

×

×





∑

n≤−1

|n|ε−2|n|(c2n + d2−n) +
∑

n>0

|n|2−n(c2n + d2−n)





1
2

≤C∥∇h∥L2(B1\Bε).

In order to estimate the first term on the left hand side of (3.5), we note that it
follows from the previous estimate, since

1

r

d

dr
(rhr) = −hθθ

r2

as h is harmonic.
In particular, we can use (3.5) and the duality of the Lorentz spaces L2,1 and

L2,∞, in order to get

∥hrr∥L1(Bλ\Bελ−1 ) ≤c∥r−1∥L2,∞(Bλ\Bελ−1 )∥rhrr∥L2,1(Bλ\Bελ−1 )

≤c(∥hr∥L2,1(Bλ\Bελ−1 ) + ∥∇h∥L2(B1\Bε)).

In order to show (3.6), we note that

hxx = hrr
x2

r2
+ hr

y2

r3
+ hθθ

y2

r4
+ hθ

2xy

r4
− 2hrθ

xy

r3
,

hyy = hrr
y2

r2
+ hr

x2

r3
+ hθθ

x2

r4
− hθ

2xy

r4
+ 2hrθ

xy

r3
,

and

hxy = hrr
xy

r2
− hr

xy

r3
− hθθ

xy

r4
+ hθ

y2 − x2

r4
+ hrθ

x2 − y2

r3
.

Hence we get

|∇2h| ≤ C(|hrr|+
|hr|
r

+
|hθθ|
r2

+
|hθ|
r2

+
|hrθ|
r

)

and using the same duality argument as above, combined with (3.5), we get (3.6).
□

3.3. Wente estimates on annuli. In this subsection we use the above estimates
for harmonic functions to derive new Wente estimates on annuli.

Lemma 3.3. Let r < 1/4, a, b ∈W 1,2(B1) and let ψ ∈W 1,2
0 (B1\Br) be a solution

of
∆ψ = ∇a · ∇⊥b

on B1\Br, where ∇⊥ := (−∂y, ∂x). Then, for every r < λ < 1
2 we have that

∇2ψ ∈W 2,1(Bλ\Brλ−1) and there exists a constant C(λ) so that

∥∇2ψ∥L1(Bλ\Brλ−1 ) + ∥∇ψ∥L2,1(Bλ\Brλ−1 ) ≤ C(λ)∥∇a∥L2(B1)∥∇b∥L2(B1).(3.7)
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Proof. The estimate for the L2,1-norm of ∇ψ can be found in Lemma 2.1 of [20].
Hence it remains to show the L1-estimate for ∇2ψ and for this we first consider the
unique solution φ ∈W 1,2

0 (B1) of

∆φ = ∇a · ∇⊥b.

It follows from the results in [6] that

∥∇φ∥L2(B1) + ∥∇2φ∥L1(B1) ≤ C∥∇a∥L2(B1)∥∇b∥L2(B1).

Next we let w be the harmonic function with w|∂B1 = 0 and w|∂Br = −φ. It was
shown by Laurain and Rivière (see the proof of Lemma 2.1 in [20]) that for every
r < λ < 1

∥∇w∥L2(B1\Br) + ∥∇w∥L2,1(B1\Brλ−1 ) ≤ C(λ)∥∇a∥L2(B1)∥∇b∥L2(B1).

Combining this with Proposition 3.2 we get that for every λ as in the statement of
the Lemma

∥∇2w∥L1(Bλ\Brλ−1 ) ≤ C(λ)∥∇a∥L2(B1)∥∇b∥L2(B1).

Since ψ = φ+ w the above estimates imply the claim. □

4. Proof of the global estimates

In this section we prove Theorems 2.1, 2.3 and 2.5. Central to our argument
will be the following result of Rivière-Laurain [20]. This is not stated as a separate
result in their paper however it can be found as the last estimate in the proof of
Theorem 0.2 in their paper (assuming f ≡ 0 but the general case follows from
standard elliptic theory).

Theorem 4.1 (Laurain-Rivière). There exists ε > 0 such that for all λ, r,R > 0

satisfying 2r < R, λ < 1 and Ω ∈ L2(BR\Br, so(n)⊗
∧1

R
2), f ∈ L logL(BR\Br),

u ∈W 1,2(BR\Br,Rn) with

−∆u = Ω · ∇u+ f and sup
r<ρ<R

2

∫

B2ρ\Bρ

|Ω|2 ≤ ε,

there exists some C = C(λ, n) <∞ such that
∥

∥

∥

∥

1

ρ

∂u

∂θ

∥

∥

∥

∥

L2,1(BλR\B r
λ
)

≤ C
(

1 + ∥Ω∥L2(BR\Rr)

)

(∥∇u∥L2(BR\Br) + ∥f∥L logL(BR\Br)).

Using this Theorem and the previous results from section 3, we are now in a
position to prove Theorem 2.5.

Proof of Theorem 2.5: The estimate for the L2,1-norm of ∇u follows directly by
combining Theorem 4.1 with Proposition 3.1 and we are left with:

∥∇u∥L2,1(Bλ\Br/λ) ≤C∥Ω∥L2(B1\Br)

(

∥∇u∥L2(B1\Br) + ∥f∥L logL(B1\Br)

)

+ C∥|ϕ|1/2∥L2,1(B1\Br).

It remains to show the L1-estimate for ∇2u. We first assume that
∫

B1\Br

|Ω|2 ≤ ε
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and we extend Ω by zero to all of B1. It follows from Theorem I.4 in [36], that for
ε small enough there exists A ∈W 1,2 ∩ L∞(B1, GL(n)) so that

div(∇A−AΩ) = 0

and
∫

B1

|∇A|2 dx+ dist(A,SO(n)) + dist(A−1, SO(n)) ≤ C

∫

B1\Br

|Ω|2.

Moreover, there exists B ∈W 1,2(B1,M(n)) so that

∇A−AΩ = ∇⊥B

and

∥∇B∥2L2(B1)
≤ C

∫

B1\Br

|Ω|2.

Next, we extend u− −
∫

B1\Br
u to ũ : B1 → R

n which satisfies

∥∇ũ∥L2(B1) ≤ C∥∇u∥L2(B1\Br)

and ∇ũ = ∇u in B1\Br.
Consider the Hodge decomposition of A∇ũ by C ∈W 1,2

0 (B1), D ∈W 1,2(B1) of

A∇ũ = ∇C +∇⊥D

with

∥∇C∥L2(B1) + ∥∇D∥L2(B1) = ∥∇ũ∥L2(B1) ≤ C∥∇u∥L2(B1\Br).

The L1-estimate for ∇2D follows since we have on B1

∆D = ∇A · ∇⊥ũ.

Writing D = h+ φ with h harmonic in B1 with h = D on ∂B1 and φ ∈ W 1,2
0 (B1)

satisfies

∆φ = ∇A · ∇⊥ũ,

we get from the results in [6]

∥φ∥W 2,1(B1) ≤C∥∇A∥L2(B1)∥∇u∥L2(B1\Br).

Moreover, we get from standard estimates for harmonic functions and the fact that

∥∇h∥L2(B1) ≤ ∥∇D∥L2(B1),

which follows since h is harmonic and agrees with D on the boundary, the estimate

∥∇2h∥L1(Bλ) ≤C(λ)∥∇h∥L2(B1)

≤C(λ)∥∇D∥L2(B1)

≤C(λ)∥∇u∥L2(B1\Br)

and therefore

∥∇D∥W 1,1(Bλ) ≤ C(λ)∥∇u∥L2(B1\Br)[1 + ∥Ω∥L2(B1\Br)].

By the estimate forD and the L2,1-bound for∇u we see that for any r1/2 < λ < 1/2
we have

∥∇C∥L2,1(Bλ\Brλ−1 ) ≤C(1 + ∥Ω∥L2(B1\Br))(∥∇u∥L2(B1) + ∥f∥L logL(B1\Br))

+ C∥|ϕ|1/2∥L2,1(B1\Br)
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Moreover the function C solves on B1\Br
∆C = ∇⊥B · ∇ũ−Af

We decompose C = ψ1 + ψ2 + v, where ψ1,2 ∈ W 1,2
0 (B1\Br), ∆ψ1 = ∇⊥B · ∇ũ,

∆ψ2 = −Af and v is harmonic in B1\Br with v = 0 on ∂B1, v = C on ∂Br.
Applying Lemma 2.1 in[20], together with Lemma 3.3, we get for every λ as above

∥∇2ψ1∥L1(Bλ\Brλ−1 ) + ∥∇ψ1∥L2,1(Bλ\Brλ−1 ) ≤ C∥∇B∥L2(B1)∥∇ũ∥L2(B1).

Moreover, using standard elliptic theory (by extending f and ψ2 to zero in Br) we
get

∥∇2ψ2∥L1(Bλ\Brλ−1 ) + ∥∇ψ2∥L2,1(Bλ\Brλ−1 ) ≤ C∥f∥L logL(B1\Br).

In particular we also conclude that

∥∇v∥L2,1(Bλ\Brλ−1 ) ≤C(∥∇C∥L2,1(Bλ\Brλ−1 ) + ∥∇ψ1∥L2,1(Bλ\Brλ−1 )

+ ∥∇ψ2∥L2,1(Bλ\Brλ−1 ))

≤C(λ)([1 + ∥Ω∥L2(B1\Br)](∥∇u∥L2(B1\Br) + ∥f∥L logL(B1\Br))

+ ∥|ϕ|1/2∥L2,1(B1\Br)).

Hence we conclude from Proposition 3.2 that

∥∇2v∥L1(Bλ2\Brλ−2 ) ≤C(λ)([1 + ∥Ω∥L2(B1\Br)](∥∇u∥L2(B1\Br) + ∥f∥L logL(B1\Br))

+ ∥|ϕ|1/2∥L2,1(B1\Br)).

Combining the estimates for ψ1, ψ2 and v, we obtain

∥∇2C∥L1(Bλ2\Brλ−2 ) ≤C(λ)([1 + ∥Ω∥L2(B1\Br)](∥∇u∥L2(B1\Br) + ∥f∥L logL(B1\Br))

+ ∥|ϕ|1/2∥L2,1(B1\Br)).

Combining now the estimates for the L1-norms of ∇2C and ∇2D with the formula

∇C +∇⊥D = A∇ũ = A∇u
in Bλ\Br/λ and the L2,1-bound for ∇u, we get the desired L1-estimate for ∇2u.

In the general case we use the same covering argument as Laurain-Rivière in their
proof of Theorem 0.2 in [20] in order to reduce the general case to the previously
considered one. □

Now we are in a position to prove Theorem 2.1 by combining the uniform estimate
on annuli with the bubbling argument from the appendix.

Proof of Theorem 2.1: We argue by contradiction and we assume that there is a
sequence {uk}, {Ωk}, {fk} as in the Theorem with

∥∇uk∥L2(B1) + ∥Ωk∥L2(B1) + ∥fk∥L logL(B1) + ∥|ϕk|
1
2 ∥L2,1(K) ≤ Λ <∞

and
∥∇2uk∥L1(K) + ∥∇uk∥L2,1(K) → ∞.

From a standard bubbling argument (see e.g. the appendix) it follows that one can
decompose B1 into a collection of bubble, neck and body regions for which we can
apply ε-regularity theory (see Theorem 1.6 in [42]), our improved neck results (see
Theorem 2.5) and simple covering arguments to conclude a global estimate for

∥∇2uk∥L1(K) + ∥∇uk∥L2,1(K),

which contradicts the above.
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More precisely, the bubbling argument decomposes B1 into regions where bub-
bles form, regions where we have locally uniformly small L2-norm of ∥Ωk∥L2 and
intermediate annular regions, on which we have smallness of ∥Ωk∥L2 on each dyadic
sub-annlus. On the first two regions it follows from Theorem 1.6 in [42] that the
W 2,1-norm of uk is locally uniformly bounded, and on the intermediate annuli
Theorem 2.5 yields the same conclusion. This yields the desired contradiction. □

In the following Proposition we find a condition under which the square root of
the Hopf differential is bounded in L2,1.

Proposition 4.2. There exists C > 0 such that for all λ ≤ 1
2 , Ω ∈ L2(B1, so(n)⊗

∧1
R

2), f, g ∈ L2(B1,R
n) and u ∈W 1,2(B1,R

n) solving

−∆u =Ω · ∇u+ f and

0 =Ω · ∇⊥u+ g,

we have
∥

∥

∥
|ϕ|1/2

∥

∥

∥

L2,1(Bλ)
≤ Cλ1/2∥∇u∥L2(B1)(∥∇u∥L2(B1) + ∥f∥L2(B1) + ∥g∥L2(B1)).

Proof. We calculate

∂ϕ =2⟨∆u, uz⟩ = −2⟨Ωxux +Ωyuy, ux − iuy⟩ − 2⟨f, uz⟩
=− 2⟨Ωyuy, ux⟩+ 2i⟨Ωxux, uy⟩ − 2⟨f, uz⟩
=− 2⟨f + g, uz⟩,

where we used that
Ω · ∇⊥u = −Ωxuy +Ωyux = −g.

In particular, we conclude that

∥∂ϕ∥L1(B1) ≤ c∥∇u∥L2(B1)(∥f∥L2(B1) + ∥g∥L2(B1))

and hence it follows from elliptic regularity theory that

∥ϕ∥L2,∞(B1/2) ≤ c∥∇u∥L2(B1)(∥∇u∥L2(B1) + ∥f∥L2(B1) + ∥g∥L2(B1)).

From this we get that for every λ ≤ 1
2 we have the estimate

∥|ϕ|1/2∥L2,1(Bλ) ≤cλ1/2∥|ϕ|1/2∥L4,∞(Bλ) ≤ cλ1/2∥ϕ∥L2,∞(Bλ)

≤cλ1/2∥∇u∥L2(B1)(∥∇u∥L2(B1) + ∥f∥L2(B1) + ∥g∥L2(B1))

and this finishes the proof of the Proposition. □

Proof of Theorem 2.3: The result follows from combining Theorem 2.1 and Propo-
sition 4.2. □

It is of course a natural question to ask if there are examples of solutions of the
system

−∆u =Ω · ∇u+ f and

0 =Ω · ∇⊥u+ g,

where Ω, f and g are as in the above Proposition. In the following Lemma we
show that every critical point of a conformally invariant Lagrangian with quadratic
growth in the gradient is a solution of this system with f = g = 0. In particular,
important examples are harmonic maps and surfaces of prescribed mean curvature
H ∈ L∞.
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Lemma 4.3. Let Nk ⊂ R
n be a C2 submanifold and let ω be a C1 two-form on N

with bounded L∞-norm of dω. Then every critical point u ∈W 1,2(B1, N) of

F (u) =
1

2

∫

B1

(

|∇u|2 + u⋆ω
)

dx(4.1)

satisfies

−∆u = Ω(u) · ∇u
with

Ωij(u) =
(

Aijk(u)−Ajik(u)
)

∇uk + 1

4

(

λijk(u)− λjik(u)
)

∇⊥uk,

where A, λ ∈ C0(B1,Mn ⊗∧1
R

2) satisfy for every i, k ∈ {1, . . . , n}
∑

j

Ajik(u)∇uj = 0(4.2)

and for all i, j, k ∈ {1, . . . , n} we have

Aijk(u) = Aikj(u), λ
i
jk(u) = −λikj(u) and λijk(u) = −λjik(u).

Moreover, we have

Ω(u) · ∇⊥u = 0.

Proof. All statements except the last one can be found in Theorem I.2 of [36]. In
order to show the last claim we note that

Ωij(u)∇⊥uj =Aijk(u)
(

−∂xuk∂yuj + ∂yu
k∂xu

j
)

−Ajik(u)
(

−∂xuk∂yuj + ∂yu
k∂xu

j
)

+
1

2
λijk(u)

(

∂yu
k∂yu

j + ∂xu
k∂xu

j
)

and this expression vanishes, since the first term vanishes using the symmetry of
Aijk(u) and the antisymmetry with respect to j and k of the term in brackets. The
same argument applies to the third term, and the second one vanishes because of
(4.2). □

Remark 4.4. 1) In the proof of [20, Theorem 4.2] the crucial observation was
that Ω · ∇u is orthogonal to ∇u, or equivalently that the Hopf differential
is holomorphic, which was used in conjunction with the Pohozaev identity
to convert L2 angular control into L2 radial control. We point out that Ω ·
∇⊥u = 0 implies the former, moreover as stated earlier it can be understood
as the “curl” counterpart to the divergence type equation (1.4) - see Remark
2.4.

2) It was shown by Grüter [11] that every conformally invariant variational
integral with quadratic growth in the gradient can be written in the form
(4.1).

5. Energy identities

In this section we show that using the estimates we derived earlier, one can
deduce various energy identities for sequences of solutions of the systems under
consideration. These results improve the known energy identity results since we
even get that no energy is lost for the gradients in the L2,1-norm.
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Proof of Theorem 2.6: It follows from Theorem 1.6 in [42] that the sequence uk is
uniformly bounded in W 2,1 locally away from at most finitely many points S =
{xi|i ∈ I} at which the L2-norm of Ωk concentrates. Therefore, using Theorem

1.2 in [42], uk converges weakly in W 1,2(B1,R
n) and strongly in W 1,2

loc (B1\S,Rn)
to a limit u which is a weak solution of the limiting system, as described in the
statement of the Theorem. Here we use the strong convergence in W 1,2 away from
S and the fact that S consists of at most fintely many points. It follows again from
Theorem 1.6 in [42] that u ∈W 2,1

loc (B1,R
n).

Using the bubbling argument from the appendix, we see that we can reduce the
analysis to the situation of one bubble forming at the origin. Away from the origin
we have strong W 1,2 convergence of uk to u and therefore we conclude the strong
convergence of the gradients in the L2-norm.

Now it follows from the definiton of a bubble which forms at the origin, that
there exist sequences xk → 0 (wlog we assume xk ≡ 0) and rk → 0 so that

sup
Brk

(y)⊂B1/2

∥Ωk∥L2(Brk
(y)) = ∥Ωk∥L2(Brk

(0)) = η0,

where η0 is as in Theorem 1.2 of [42]. Next we rescale the maps

ũk(x) =uk(rkx),

Ω̃k(x) =rkΩ(rkx) and

f̃k(x) =r
2
kfk(rkx)

and it follows from Theorem 1.2 in [42] that ũk converges strongly in W 1,2(R2,Rn)

to a solution ω ∈W 2,1
loc (R

2,Rn) of

−∆ω =Ω̃ · ∇ω,

where Ω̃ ∈ L2
loc(R

2,Rn) is the weak limit of Ω̃k.
In particular, this shows that the L2-norm of ∇ũk converges to the L2-norm of

∇ω in BR, for every R > 0.
In order to finish the proof of the first part of the Theorem, it therefore remains

to show that the L2-norm of ∇uk on the annulus Aδ,R,k := Bδ\BRrk converges to
zero, as k → ∞, δ → 0 and R→ ∞.

From the bubbling argument, combined with Theorem 2.5, and the estimate for
the L2,∞-norm of ∇uk from Lemma 3.1 in [20] or from Lemma 4.2 in [22], together
with the estimate from Theorem 1.6 in [42] (which is used in order to show that the
L2-norm of ∇uk converges to zero on dyadic annuli), we conclude that the L2-norm
of ∇uk converges to zero on the annulus, as k → ∞, δ → 0 and R→ ∞.

In order to prove the energy identity for the L2,1-norms and the no-neck property,
we note that the additional assumption fk ∈ Lp, with uniform bounds, improves
the above convergence results of uk to the weak limit u, and of ũk to the bubble ω to
local strong convergence in W 1,q

loc (B1\S,Rn) resp. W 1,q
loc (R

2,Rn) by using Theorem
1.1 in [42]. Hence it follows that the L2,1-norms of ∇uk resp. ∇ũk converge to
the corresponding quantities of ∇u resp. ∇ω away from the origin resp. in BR for
every R > 0. Next, using the fact that the L2-norm of ∇uk and the L2,1-norm of
|ϕk|1/2 converge to zero on the annulus, another application of Theorem 2.5 then
yields that also the L2,1-norm of ∇uk converges to zero on the annulus and this
finishes the proof of the second energy identity (2.7).
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Finally, in order to show the no-neck property, we note that one can extend the
map

uk −
∫

−
Aδ/2,2R,k

uk : Aδ/2,2R,k → R
n

to a map ũk with compact support in Aδ,R,k, so that for every p ∈ (1,∞)

∥∇ũk∥Lp(R2) ≤ C∥∇uk∥Lp(Aδ/2,2R,k),

where C doesn’t depend on δ, R and k. From the Marcinkiewicz interpolation
theorem we then conclude the estimate

∥∇ũk∥L2,1(R2) ≤ C∥∇uk∥L2,1(Aδ/2,2R,k).

Next we use the Sobolev embedding theorem (see Theorem 3.3.4 in [14]) to conclude

oscAδ/4,4R,k
uk =oscAδ/4,4R,k

(uk −
∫

−
Aδ/2,2R,k

uk)

≤2∥ũk∥L∞(Bδ/4)

≤C∥∇ũk∥L2,1(R2)

≤C∥∇uk∥L2,1(Aδ/2,2R,k) → 0,

which finishes the proof of the no neck property.
The fact that the bubbles are weakly conformal follows again by the convergence

to zero of the Hopf differential on bubble domains. □

Remark 5.1. It follows from Proposition 4.2 that Theorem 2.6 applies in particular
to sequences of solutions uk of the system

−∆uk =Ωk · ∇uk + fk and

0 =Ωk · ∇⊥uk + gk

under the assumption that there exists a constant Λ > 0 so that for every k ∈ N

∫

B1

(

|∇uk|2 + |Ωk|2 + |fk|2 + |gk|2
)

dx ≤ Λ.

In particular, using Lemma 4.3, we get new energy identites for sequences of ap-
proximate harmonic maps with tension fields bounded in L2 and for sequences of
surfaces with prescribed mean curvatures in L∞.

We also remark that the L2-energy identity (2.6) was previously shown in The-
orem 0.3 of [20] for sequences of critical points of every conformally invariant La-
grangian with quadratic growth in the gradient.

Imposing additional growth conditions on Ωk and its first derivative, which are
for example satisfied by sequences of approximate harmonic maps with tension fields
bounded in W 1,2 and by sequences of immersions with prescribed mean curvature
in W 1,∞, we can additionally conclude an energy identity for the second derivative
in L1.

Theorem 5.2. Let uk ∈W 1,2(B1,R
n) be a sequence of solutions of

−∆uk =Ωk · ∇uk + fk,
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where fk ∈W 1,2(B1,R
n) and we assume that there exists a constant Λ > 0 so that

for every k ∈ N
∫

B1

(

|∇uk|2 + |Ωk|2 + |fk|2 + |∇fk|2
)

dx+ ∥|ϕk|1/2∥L2,1(B1) ≤ Λ.

Moreover, we assume that for every x ∈ B1,

|Ω(x)| ≤C|∇uk(x)|,
|∇Ω(x)| ≤C(|∇uk(x)|2 + |∇2uk(x)|).

and

∥|ϕk|1/2∥L2,1(Z) → 0

for every subset Z ⊂ B1 with |Z| → 0. Then there exists a subsequence, still denoted
by uk, Ωk and fk, so that uk ⇀ u ∈ W 3,p(B1,R

n), for all 1 ≤ p < 2, weakly in
W 1,2(B1,R

n), Ωk ⇀ Ω and fk ⇀ f weakly in W 1,2(B1,R
n) resp. L2(B1,R

n) and
the limits are solutions of

−∆u =Ω · ∇u+ f.

Moreover there exist at most finitely many ω-bubbles ωi,j : R2 → R
n, 1 ≤ i ≤ p,

1 ≤ j ≤ ji, i.e. solutions of

−∆ωi,j = Ωi,j · ∇ωi,j ,
which are conformal (as in Thereom 2.6), sequences of points xi,jk ∈ B1, x

i,j
k → xi,

and sequences of radii ti,jk ∈ R+, t
i,j
k → 0 as in Theorem 2.6, such that for every

r < 1 with {x1, . . . , xp} ∈ Br we additionally have

lim
k→∞

∥∇2uk∥L1(Br,Rn) = ∥∇2u∥L1(Br,Rn) +

p
∑

i=1

ji
∑

j=1

∥∇2ωi,j∥L1(R2,Rn).(5.1)

Proof. Note that under the assumptions on Ω it follows first from Theorem 1.1 in
[42] that ∇uk ∈ Lq and then ∇2uk ∈ Lq, for every 1 < q < ∞, away from at most
finitely many points with uniform bounds depending only on Λ. Differentiating the
equation then yields a uniform bound for ∇3uk ∈ Lp, 1 ≤ p < 2, away from at
most fintely many points. Once this higher regularity result has been obtained, we
can then copy the proof from above Theorem 2.6 since we now have strong W 2,1-
converge of uk to the weak limit u away from the bubbles, and we also have strong
W 2,1-convergence of uk to the bubbles ωi,j . In the intermediate annular regions we
use Theorem 2.5 in order to conclude that the W 2,1-norm of ∇uk converges to zero
in these regions. □

Remark 5.3. As in Remark 5.1 we can replace the condition on the Hopf differ-
ential by imposing that Ωk · ∇⊥uk = gk is uniformly bounded in L2 and we can
make the same conclusion. In particular this applies to solutions of critical points
of conformally invariant integrals, and especially sequences of harmonic mappings.

6. The Equation on surfaces

Here let (Σ, h) denote a Riemann surface equipped with a metric h and we

consider a map F ∈W 1,2(Σ,Rn) and Ω ∈ L2(Σ, so(n)⊗∧1
T∗Σ) solving

∆hF = Ω ·h dF and Ω ∧ dF = 0,
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where ∆h is the Laplace-Beltrami operator on M and ·h denotes the multiplication
of one-forms with respect to the metric h. If we take any isothermal coordinates
ψ : B1 → U on U ⊂ Σ we may consider F ∈ W 1,2(B1,R

n), Ω ∈ L2(B1, so(n) ⊗
∧1

T∗
R

2) solving

−∆F = ∆δF = Ω ·δ dF = Ω · dF and

Ω ∧ dF = 0

where h = e2wδ in these coordinates for some function w : B1 → R. It is not
difficult to check that for any V ⊂ B1, ∥∇F∥L2(V,δ) = ∥∇F∥L2(ψ(V ),h), ∥Ω∥L2(V,δ) =
∥Ω∥L2(ψ(V ),h) and therefore we use either of these norms without ambiguity. We
also have some uniform constant C > 0 such that

∥Hessh(F )∥L1(ψ(V ),h) ≤ C(∥∇2F∥L1(V,δ) + ∥∇F∥L2,1(V,δ)∥∇w∥L2,∞(V.δ)).

Thus, using Theorem 2.1, we may conclude the following:

Theorem 6.1. Let (Σ, h) denote a compact Riemann surface equipped with a metric

h, and maps F ∈W 1,2(Σ,Rn), Ω ∈ L2(Σ, so(n)⊗∧1
T∗Σ) solving

∆hF = Ω ·h dF
Ω ∧ dF = 0

Now suppose that there exists a finite atlas (with K elements, say) of isothermal
coordinates over simply connected domains such that the conformal factors wi ∈
W 1,(2,∞)(B1). Then there exists some

C = C(∥Ω∥L2(Σ), ∥∇F∥L2(Σ),max
i

∥∇wi∥L(2,∞)(B1),K) <∞

such that

∥Hessh(F )∥L1(Σ) ≤ C.

Moreover, using Theorem 2.6, it is easy to check that we have the following:

Theorem 6.2. Let (Σ, hk) be a compact surface equipped with a sequence of smooth

metrics. Let Fk ∈W 1,2(Σ,Rn), Ωk ∈ L2(Σ, so(n)⊗∧1
T∗Σk) solve

∆hk
Fk = Ωk ·hk

dFk

Ωk ∧ dFk = 0.

Assuming that the metrics hk converge smoothly to some limit metric h and that
there exists a constant Λ <∞ so that

∥Ωk∥L2(Σ,hk) + ∥∇Fk∥L2(Σ,hk) ≤ Λ,

there exist limits F∞ : Σ → R
n, Ω∞ ∈ L2(Σ, so(n) ⊗∧1

T∗Σ) and a collection of

Ωi bubbles ωi : (S2, hround) → R
n with Ωi ∈ L2(S2, so(n)⊗∧1

T∗S2), such that:

∆hF∞ = Ω∞ ·h dF∞, ∆ωi = Ωi · dωi,
Ω∞ ∧ dF∞ = 0, Ωi ∧ dωi = 0

lim
k→∞

∥∇Fk∥2L2(Σ,hk)
= ∥∇F∞∥2L2(Σ,h) +

∑

i

∥∇ωi∥2L2(S2)

and the collection F∞(Σ) ∪i ωi(S2) is connected without necks.

Remark 6.3. We could of course have formulated these theorems involving f, g as
in the other parts of the paper, but for the sake of simplicity we stick to this case.
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Examples of such solutions are harmonic maps from surfaces but one other
area of potential interest is in the theory of W 2,2 conformal immersions - see e.g.
[17], [21]. Given an arbitrary Riemann surface equipped with a metric of con-
stant curvature (Σ, h) (where h = −1, 0, 1 and Area(Σ, h) = 1 when h = 0) and
a compact Riemannian manifold isometrically embedded N →֒ R

n then we say
that F ∈ W 2,2

conf ((Σ, h), N) if in any local conformal parameter the induced metric

gij = e2whij = e2ŵδij has w ∈ L∞
loc and F ∈ W 2,2(Σ, N) is an immersion, and

finally
∫

Σ

|A|2dVg ≤ C <∞

where A is the second fundamental form of F (Σ) ⊂ N .
If we let H : Σ → R

m denote the mean curvature vector of F in N then we have

∆gF = 2H +A(F )(∇gF,∇gF )

where A is the second fundamental form of N →֒ R
n, so that on each conformal

chart we have

−∆F = 2He2ŵ +A(F )(∇F,∇F ) = H|∇F |2 +A(F )(∇F,∇F ).

Following [40] if we let Ωij := HidF j − HjdF i + (Aijk(F ) − Ajik(F ))dF
k then we

are in the situation as above for u = F , ∥Ω∥L2(Σ) ≤ C(∥H∥L2(Σ)+∥∇F∥L2(Σ)) and

∥∇F∥2L2(Σ) = Area(F (Σ)).

We note that in a similar setting (and even for sequences of possibly degenerating
surfaces), an energy identity and no-neck result has been obtained previously by
Chen and Li [4].

Here we recover the following which uses the results [21, Theorem 3.1], [29,
Lemma II.2], and the results from this paper.

Theorem 6.4. Let Fk ∈W 2,2
conf ((Σk, hk), N) be such that

∫

Σk

|Ak|2dVgk +Area(Fk(Σk)) ≤ Λ <∞.

Then there exists some C = C(Λ, N) such that

∥Hesshk
(Fk)∥L1(Σk) ≤ C

moreover we get a bubble tree, energy identity, no necks result and a limiting
branched conformal immersion on a stratified Riemann surface.

We end this section with the following remark: we could consider simply F ∈
W 1,2(Σ,Rn) that is weakly conformal with respect to h. We would say that F has
mean curvature in L2 if there exists some function H ∈ L2(Σ,Rn), ⟨H,∇F ⟩ = 0
almost everywhere, and

τg(F ) = ∆gF −A(F )(∇gF,∇gF ) = 2H

weakly. Now letting Ω be as above we are back in the situation of Theorem 6.1.
In this second case we say that F is a weak conformal immersion with bounded
Willmore energy - an open question here is whether the zero set of ∇F consists of
isolated points? Or can we say that F ∈ W 1,∞? If both of these are true then F
would be a branched W 2,2 conformal immersion.
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Appendix A. The bubbling argument

We present a bubbling argument in order to decompose B1 into a collection
of bubble, neck and body regions which are defined below. This decomposition,
together with Theorem 2.5, is the key ingredient in the proof of the global energy
estimate and the enrgy identities. Similar constructions can be found in [8], [32],
[20] and [1].

Here we are interested in a sequence of solutions uk ∈W 1,2(B1,R
n) of

−∆uk = Ωk · ∇uk + fk,

where Ωk ∈ L2(B1, so(n)⊗
∧1

R
2), fk ∈ L logL(B1,R

n) with

∥∇uk∥L2(B1) + ∥Ωk∥L2(B1) + ∥fk∥L logL(B1) + ∥|ϕk|
1
2 ∥L2,1(B1) ≤ Λ <∞.

By the regularity results in [42] (see Theorem 1.6) we know that there is some
uniform ε > 0 such that if the objects above solve the PDE on any domain U ⊂ R

2

whenever

ρk := inf{ρ > 0| sup
Bρ(x)⊂U

∥Ωk∥L2(Bρ(x)) = ε} ≥ α > 0,

independently of k, then we get W 2,1 estimates for uk locally on U , and thus
uk → u ∈W 1,2

loc (U) strongly, where u is a solution of the limit equation

−∆u = Ω · ∇u+ f

as described in the proof of Theorem 2.6.
The basic set-up. We use the following standard bubbling argument:

Define ρk1 and xk1 by

ρk1 := inf{ρ > 0|∥Ωk∥L2(Bρ
k1 (xk1 )) = sup

Bρ(x)⊂B1

∥Ωk∥L2(Bρ(x)) = ε},

and let Uk1 = Bρk1 (xk1).

We assume ρk1 → 0 - if not we have a global W 2,1 estimate and no bubbling
phenomenon occurs. Moreover we pick a subsequence so that xk1 → x1 ∈ B1 and
if x1 ∈ ∂B1 then we discard this sequence.

Now we pick ρk2 and xk2 such that

ρk2 := inf{ρ > 0|∥Ωk∥L2(Bρ
k2 (xk2 )\Uk1 ) = sup

Bρ(x)⊂B1

∥Ωk∥L2(Bρ(x)\Uk1 ) = ε}

and set Uk2 := Bρk2 (xk2) ∪ Uk1 .
First we check if ρk2 → 0 - if not we stop here. Once again we pick a subsequence

so that xk2 → x2 ∈ B1 and if x2 ∈ ∂B1 then we discard this sequence.
Now we ask whether we have

S12
k :=

(

ρk2

ρk1
+

|xk1 − xk2 |
ρk2

)

→ ∞

or not.
If S12

k remains bounded we discard this sequence - since this means that the
energy on Bρk2 (xk2)\Bρk1 (xk1) is contributing to the “first bubble”.

If S12
k becomes unbounded we remember the sequence because it means either

xk1 and xk2 converge to different points, or they converge to the same point at
different scales, or they converge to the same point at the same scale but the scales
go to zero so quickly (compared to their respective rate of convergence) that they
remain conformally very far from each other!
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We now inductively continue to choose such scales and points (ρki+1 , xki+1) such
that

ρki+1 := inf{ρ > 0|∥Ωk∥L2(Bρ
ki+1

(xki+1 )\Uki ) = sup
Bρ(x)⊂B1

∥Ωk∥L2(Bρ(x)\Uki ) = ε}

and Uki+1 := Bρki+1 (xki+1) ∪ij=1 Ukj .
Again, if ρki+1 does not converge to zero we stop. If it does converge to zero,

we take a convergent subsequence for the xki+1 as above and also we check: Does

Sl,i+1
k remain bounded for some 1 ≤ l ≤ i?
If yes, forget the sequence.
If no remember the sequence and carry on. Remember the construction of the

Ui is unaffected by this step - the only thing we do is decide whether to remember
the sequence of scales and points - or not.

This process eventually stops after finitely many iterations since each time we
are taking away a fixed amount of energy and two such domains never overlap by
construction. Let Q denote the total number of distinct point-scale sequences and
we have Q ≤ Λ

ε .

We are left in the following situation: We have finitely many points xj and for
each point we have a maximal set of finitely many point-scale sequences (ρjki , x

j
ki)

with (Sj)
il
k → ∞ when i < l and xjki → xj for every i. Moreover at each scale

we are accounting for a fixed amount of ∥Ω∥L2 - we shall refer to these point-scale
sequences as bubble sequences in the sequel as the below argument shows we end
up with a bubble for each one.

Notice also that if we let ûjki(x) := u(xjki + ρjkix) then this map is defined on

larger and larger regions of R2

Setting Ω̂jki(x) := ρjkiΩ(x
j
ki + ρjkix) and f̂ jki(x) := (ρjki)

2f(xjki + ρjkix) these
objects solve

−∆ûjki = Ω̂jki · ∇û
j
ki + f̂ jki .

Thus by the scaling properties for the L logL - norm and also Ω and u (see e.g.

[42]) we know that ∥Ω̂jki∥L2 only concentrates (if at all) at finitely many points

y1, . . . yl for l < Q; ∥∇ûjki∥L2 , ∥Ω̂jki∥L2 and ∥f̂ jki∥L logL are all uniformly bounded

on their domains of definition, and moreover ∥f̂ jki∥L1(U) → 0 for any compact

domain U ∈ R
2. Thus by the compactness properties of the equation (see [42],

Theorem 1.2) and the singularity removal property (see [20]) we know that there is

some map wji ∈ L∞ with ∇wji ∈ L2 and Ωji ∈ L2 solving

−∆wji = Ωji · ∇w
j
i

and also ûjki → wji strongly in W 1,2
loc (R

2\{y1, . . . yl}) and ûjki → wji is uniformly

bounded in W 2,1
loc (R

2\{y1, . . . yl}) - by Theorem 1.6 in [42]. We also know that

(after a suitable choice of ε) such solutions must have ∥Ωji∥L2 ≥ 2ε in order that

wji is not a trivial (constant) solution - see [20], Theorem 3.2.
At this point we remark on the following improvements:

• If fk ∈ Lp is uniformly bounded then we get ûjki → wji strongly in

W 1,q
loc (R

2\{y1, . . . yl})
for all q < 2p

2−p (since the sequence uk will be uniformly bounded in

W 2,p
loc (R

2\{y1, . . . yl})).
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• If we know Ωk · ∇⊥uk = gk ∈ L logL is uniformly bounded then we get
∥Ω̂jki · ∇⊥ûjki∥L1 → 0 locally in R

2. Thus the limit bubble will satisfy

Ωji ·∇⊥wji = 0 and is thus conformal. To see this notice that this condition

implies the Hopf differential ϕji of w
j
i is holomorphic and also ∥ϕji∥L1(R2) <

∞ giving that ϕji = 0.
• In particular, using the above strong local convergence we end up with

ϕ̂jki → 0 locally strongly on R
2\{y1, . . . yl} in L1 if fk ∈ L logL, and in L

q
2

if fk ∈ Lp (q > 2 as above).

The covering argument. We proceed by induction so first consider a single one
of the xj as above. We know that there are finitely many (Qj , say) point-scale
sequences converging to this xj . The aim of the argument below is to partition the
set of bubble sequences in such a way as to separate different strings of bubbles
forming at a point. In other words we separate out which bubbles are forming
on which in order that the analysis and estimates do not interfere with the other
strings of bubbles and we can reduce to an induction argument.

First of all we re-label and order the ρjki so that ρjk1 ≥ ρjk2 ≥ · · · ≥ ρj
kQ

j . We

partition the set according to the following scheme:
Single out the largest bubble scale (xjk1 , ρ

j
k1) (first re-label it (x

j
ki1
, ρj
ki1

)) and for

the remaining point-scale sequences {(xjki , ρ
j
ki)}

Qj

i=2 we consider

lim
k→∞

|xjki − xj
ki1

|
ρj
ki1

.

Let i be the first scale such that this is infinite - we group this with the first scale
and re-label it i2. Notice that for any i1 = 1 < s < i2 we have

lim
k→∞

|xjks − xjk1 |
ρj
ki1

<∞ and lim
k→∞

ρj
ki1

ρjks
= ∞

therefore there exists some Γ <∞ such that

Bρj
ks
(xjks) ⊂ BΓρj

k1
(xjk1)

for sufficiently large k. Thus we would say that the bubble wjs associated with the

scale (xjks , ρ
j
ks) forms on the bubble associated with (xj

ki1
, ρj
ki1

), wji1 . Now, continue

this procedure: for {(xjki , ρ
j
ki)}

Qj

i=i2+1 we consider

lim
k→∞

|xjki − xj
ki1

|
ρj
ki1

and lim
k→∞

|xjki − xj
ki2

|
ρj
ki2

.

Let i3 be the first scale such that both of these are infinite and again notice that
for i2 < s < i3 the bubble wjs forms on either wji1 or wji2 .

Continue this procedure until we exhaust all the bubble sequences. We are left
with the following strings of bubbles

{(wji1 , {w
j
is1
}J1s=1), (w

j
i2
, {wjis2}

J2
s=1), . . . (w

j
iL
, {wjisL}

JL
s=1)}

where for each il the bubbles {wjisl }
Jl
s=1 all form on wjil and there is some uniform

Γ <∞ such that

∪Jls=1Bρj
k
is
l

(xj
ki

s
l
) ⊂ BΓρj

kil

(xj
kil

)
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for sufficiently large k. Call {wjil}Ll=1 the initial bubbles - the ones closest to the
body map upon which all other bubbles form in the bubble tree.

Now we find a covering argument for the collection of initial bubble domains:

{BΓρj
kil

(xj
kil

)}Ll=1

thus ensuring that all bubble domains are covered. Let

Rjk1 := 2 sup
l,t

|xj
kit

− xj
kil

| → 0

and notice that by construction
Rj

k1

ρj
ki
l

→ ∞ for all il and in particular there exists

some xjk1 → xj such that

∪Ll=1BΓρj
kil

(xj
kil

) ⊂ BRj

k1
(xjk1).

Now we know that there exists some δ > 0 such that

sup
Rj

k1<ρ<
δ
2

∫

B2ρ(x
j

k1 )\Bρ(x
j

k1 )

|Ωk|2 < ε.

If this is not the case then we rescale by the radius ρ0 for which
∫

B2ρ0 (x
j

k1 )\Bρ0 (x
j

k1 )

|Ωk|2 ≥ ε

and standard arguments then show that we have found a new point-scale sequence
which is a contradiction. We call Bδ(x

j
k1)\BRj

k1
(xjk1) a neck domain - a degenerating

annulus on which ∥Ω∥L2 is small on every dyadic sub-annulus.

For two different sequences xj
kil
, xj
kit

we consider

Rj
klt

= lim
k→∞

Rjk1

|xj
kil

− xj
kit

|

and group together those for which Rj
klt

= ∞ and for the rest we have Rj
klt

≤M.

Notice that there is at least one Rj
klt

which falls into the second category. Re-
order so that the former have 1 ≤ l < t ≤ I and the latter I + 1 ≤ t ≤ L. Now,

there is a finite cover of BRj

k1
(xjk1) by balls of radius

Rj

k1

2M for which each ball in the

cover satisfies exactly one of the following conditions:

• It contains a single initial bubble domain, i.e. it equals B
R

j

k1
2M

(xj
kil

) when

I +1 ≤ l ≤ L and it’s Hausdorff distance to any other bubble domain is at

least
Rj

k1

4M .
• It contains finitely many (but more than one - Lb, say) initial bubble se-
quence for 1 ≤ l ≤ I - label these balls B

R
j

k1
2M

(ykb)

• It’s Hausdorff distance from all the bubble domains is at least
Rj

k1

4M , labelled
B

R
j

k1
2M

(ekb) - we call these empty domains as they must have

∥Ωk∥L2(B
3R

j

k1
4M

(e
kb )) < ε

(otherwise it would be a new point-scale sequence).
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For the first option, we are again in the situation where (upon possibly increasing
the value of Γ)

sup

Γρj
kil
<ρ<

R
j

k1
4M

∫

B2ρ(x
j

kil
)\Bρ(x

j

kil
)

|Ωk|2 < ε.

In other words

B
R

j

k1
2M

(xj
kil

)\BΓρj
kil

(xj
kil

)

is a neck domain.
For the middle option suppose there are Lb > 1 bubble sequences in B

R
j

k1
2M

(ykb).

Let

Rjk2 = 2 sup
t<l≤Lb

|xj
kit

− xj
kil

| → 0

and run the argument as above but this time in the ball B
R

j

k1
2M

(ykb). This time

we manage to partition the set of bubbles once again and we can cover the ball
Rj

k1

2M (ykb) by neck domains, empty domains and bubble domains.
If we continue this argument we are eventually in the situation where the second

option above cannot happen. Thus we have managed to cover the ball BRj

k1
(xj) in

a finite number of empty domains, neck domains and initial bubble domains.
On each of the initial bubble domains we can inductively start all over again

from the beginning of the covering argument.
It should be clear now that a simple induction argument allows us to split the

whole ball B1 into a sequence of finitely many bubble domains, neck domains,
empty domains and body domains.

The main body domain is the region B1\{∪jBδ(xjk1)} for some uniform δ - on
which we have uniform control on our maps according to the ε-regularity theory.
The remaining body domains are the bodies of the bubbles which appear as we
continue down our induction argument. On the main body domain we have uniform
convergence to the limit map u (in the appropriate sense), and on the bodies of
the bubbles we have uniform convergence to the bubble (again, in the appropriate
sense).

The empty domains are of the form BRk(xk) for some {xk} ⊂ B1 and Rk → 0,
moreover ∥Ωk∥L2(B

Rk (xk)) < ε and also the point-scale sequence (xk, Rk) is distinct

from all others. We must have on each empty domain that ∥∇uk∥L2(B
Rk (xk)) → 0

- since otherwise we could re-scale to find a new bubble and thus a new point-scale
sequence that must carry away at least ε of ∥Ω∥L2 (this follows from the gap result in
Theorem 3.2 of [20]) - a contradiction. Moreover it is a consequence of the estimates
in [42] that if fk is bounded in Lp for some p > 1 then ∥∇uk∥W 1,1(B

Rk (xk)) → 0.

The neck regions are therefore the only place we can lose track of our convergence
and these are precisely the regions on which our main theorems apply. Moreover,
each dyadic sub-annulus on a neck can be covered by finitely many empty regions,
thus we have ∥∇uk∥L2 → 0 on such domains and if fk is bounded in Lp for some
p > 1 then ∥∇uk∥W 1,1 → 0.
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