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A NOTE ON THE INDEX OF CLOSED MINIMAL HYPERSURFACES

OF FLAT TORI

LUCAS AMBROZIO, ALESSANDRO CARLOTTO AND BEN SHARP

Abstract. Generalizing earlier work by Ros in ambient dimension three, we prove an affine
lower bound for the Morse index of closed minimal hypersurfaces inside a flat torus in terms
of their first Betti number (with purely dimensional coefficients).

1. Introduction

Motivated by a variety of recent constructions of closed minimal hypersurfaces in positively
curved Riemannian manifolds, and by the associated natural classification questions, we
presented in [1] a study of the relation between their Morse index and their Betti numbers,
namely those pieces of data respectively encoding the most basic analytic and topological
information concerning the hypersurface in question. This relation is in fact the object of
a conjecture due to Schoen and Marques-Neves [8, 11] that can be stated as follows: in any
closed manifold of positive Ricci curvature there is a linear lower bound of the Morse index
of a minimal hypersurface Mn in terms of its first Betti number, that is to say

(1.1) index(M) ≥ Cb1(M)

for some constant C only depending on the ambient manifold. We refer the reader to the
introduction of [1] for a broader contextualization of this problem and for a discussion of the
various cases for which we could verify this conjecture.

On the other hand, it is straightforward to observe that inequality (1.1) cannot hold true in
the special but fundamental case of flat manifolds, as is seen by considering totally geodesic
n-dimensional tori inside (n+ 1)-dimensional flat tori (in which case one has index(M) = 0
and b1(M) = n for any n ≥ 2). In such a setting, the best one can hope for is instead
an affine bound with a negative additive constant on the right-hand side. Up to now, an
estimate of that sort was only obtained for n = 2 by A. Ros [12]. The scope of this note is
to prove the following generalization of such a result:

Theorem 1. Let Mn be a closed minimal hypersurface in a (n+ 1)-dimensional flat torus.
Assume there is a point p in Mn where all principal curvatures are distinct. Then

index(M) ≥
2

n(n+ 1)
(b1(M)− (2n− 1)).

If n = 2 or n = 3, then the above inequality holds true without the assumption on the
principal curvatures.

Clearly, there is a natural correspondence between minimal hypersurfaces in flat tori and
(n + 1)-periodic minimal hypersurfaces in the Euclidean space R

n+1, a topic that has been
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thoroughly investigated with several interesting results: we refer the reader to the article by
W. Meeks [9] and to the survey by D. Hoffman [5] as well as references therein for further
details about the classical case n = 2. Remarkably, lots of interesting examples in R

3 are
actually known, the most basic ones being provided by the Schwarz P and D surfaces, the
latter class ensuring that the estimate of Theorem 1 is actually sharp since in that case one
can find, in a fundamental domain, that the Morse index equals one (this follows from the
work of M. Ross [13]) while the topology is that of a genus three orientable surface. By
contrast, the construction of periodic minimal hypersurfaces in ambient dimension at least
four is a fascinating theme of current research: see in particular the recent work by Choe and
Hoppe [4] for certain higher-dimensional analogues of the aforementioned classical surfaces
and related comments therein.

In applying Theorem 1 to obtain classification results, it is also useful to know that non-
trivial minimal hypersurfaces inside a flat torus must have sufficiently large first Betti num-
ber:

Theorem 2. (Cf. Theorem 1 in [6], and Theorem 4.1 in [3]) Let Mn be a closed minimal
hypersurface in a (n + 1)-dimensional flat torus. Then b1(M) ≥ n + 1 unless Mn is a flat
totally geodesic n-dimensional torus.

This fact follows from a more general statement that goes back at least to E. Kelly [6],
but see also Theorem 1 in [10] for an interesting generalization to harmonic maps and The-
orem 4.1 in [3] for a broad analysis of topological restrictions imposed by the existence of
minimal immersions into manifolds of Ricci curvature bounded from below. For the sake of
completeness, a simple and direct proof of Theorem 2 is presented in Subsection 2.2.

In [12], Ros proved that a non-orientable, compact stable minimal surface immersed in a
flat three-torus T 3 has the topology of a Klein bottle with a handle (cf. Theorem 7 therein).
Analogously, as a simple combined application of the two theorems above one can prove that
if M3 ⊂ T 4 is stable (but not totally geodesic) then either b1 = 4 or b1 = 5 and M3 is non-
orientable as can be checked directly by means of the second variation formula. The question
of classifying all such stable minimal hypersurfaces remains a challenging open problem.

Acknowledgments. The authors wish to express their gratitude to André Neves for his
interest in this work and for a number of enlightening conversations. During the preparation
of this article, L.A. was supported by prof. Neves’ ERC Start Grant PSC and LMCF 278940.

2. Proofs

2.1. Notations and ancillary results.

Throughout this note, we consider the ambient manifold T n+1 := R
n+1/Γ, where Γ is

a lattice group of maximal rank, endowed with its (flat) Riemannian metric 〈·, ·〉 and the
associated Levi-Civita connection D. Furthermore, we let Mn denote a closed, embedded
minimal hypersurface in T n+1, that is to say a smooth, closed hypersurface of vanishing
mean curvature. For the sake of simplicity, and in order to streamline our arguments, we
shall assume that Mn is orientable or, equivalently, two-sided and we let N denote a choice
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of its unit normal vector field. The case when Mn is one-sided, for which the statement
of Theorem 1 still holds, is discussed in Remark 6. The induced Levi-Civita connection on
the submanifold Mn will always be denoted by ∇, while ∆ stands for the Laplace-Beltrami
operator. Lastly, we convene that the second fundamental form of Mn ⊂ T n+1 is defined by
the formula A(X, Y ) = 〈DXY,N〉 for any pair of smooth vector fields X, Y along Mn.

In our setting the Morse index can be defined as follows: the sections of the normal bundle
of Mn ⊂ T n+1 can be identified with the set of smooth functions φ on Mn, and the second
variation of the area functional is given by the quadratic form

Q(φ, φ) =

∫

M

(|∇φ|2 − |A|2φ2)dM,

so that the number of negative variations is encoded in the spectrum of the Jacobi operator

JMφ = ∆φ+ |A|2φ

and the index of Mn is by definition the number of (strictly) negative eigenvalues of JM .

In a closed Riemannian manifold (Mn, g), the Hodge-Laplace operator is the second order
differential operator ∆p acting on p-forms defined by

∆p = dd∗ + d∗d

where d : Ωp(M) → Ωp+1(M) is the exterior differential and d∗ : Ωp(M) → Ωp−1(M) is the
formal adjoint of d, defined with respect to the metric g. A p-form ω is called harmonic
when ∆pω = 0 and we let Hp(M, g) denote the vector space of harmonic p-forms on (Mn, g).
When Mn is closed, ω is harmonic if and only if it is closed and co-closed, that is to say when
both dω = 0 and d∗ω = 0 hold true. Hodge’s Theorem asserts that in a closed Riemannian
manifold one has the isomorphism H1(M, g) ≃ H1(M ;R) so that the dimension of the space
of harmonic 1-forms coincides with the first Betti number of the manifold. Also, we will use
the (special) Bochner-Weitzenböck formula relating the Hodge-Laplace operator with the
usual (rough) Laplacian on 1-forms:

(2.1) ∆1ω = −∆ω +RicM(ω♯, ·).

In this note we employ the usual musical isomorphisms to pass from vectors to 1-forms,
see Remark 2.1 in [1] for further details.

The proof of our main result relies on the following proposition:

Proposition 3. Let Mn be a closed, orientable, minimal hypersurface in T n+1 and let ω be
a harmonic 1-form on Mn. For every parallel 2-form θ on T n+1 one has the identity

(2.2) ∆〈N ♭ ∧ ω, θ〉+ |A|2〈N ♭ ∧ ω, θ〉 = −2
n

∑

i,j=1

A(Ei, Ej)〈E
♭
j ∧∇Ei

ω, θ〉,

where the expression on the right-hand side is globally defined as it does not depend on the
particular choice of local orthonormal frame {Ei} on Mn.



4 LUCAS AMBROZIO, ALESSANDRO CARLOTTO AND BEN SHARP

Remark 4. The reader may want to compare this assertion with Lemma 1 in [12], where
similar computations were performed for the coordinates of ω rather than N ♭ ∧ ω (the two
choices being essentially equivalent only if n = 2).

Proof. Let {Ei} be a local orthonormal frame on Mn, which is geodesic at a point p in Mn

(that is to say (∇Ei
Ej)(p) = 0 for all i, j). We have

DEi
(N ♭ ∧ ω) = DEi

N ♭ ∧ ω +N ♭ ∧DEi
ω = −

n
∑

j=1

A(Ei, Ej)E
♭
j ∧ ω +N ♭ ∧∇Ei

ω.

Hence, exploiting the fact that θ is parallel, one has at the point p

∆〈N ♭ ∧ ω, θ〉 =
n

∑

i=1

EiEi〈N
♭ ∧ ω, θ〉 =

n
∑

i=1

Ei〈DEi
(N ♭ ∧ ω), θ〉

=
n

∑

i=1

Ei〈−

n
∑

j=1

A(Ei, Ej)E
♭
j ∧ ω +N ♭ ∧∇Ei

ω, θ〉

= −

n
∑

i,j=1

Ei(A(Ei, Ej))〈E
♭
j ∧ ω, θ〉 −

n
∑

i,j=1

A(Ei, Ej)〈DEi
E♭

j ∧ ω, θ〉

−

n
∑

i,j=1

A(Ei, Ej)〈E
♭
j ∧DEi

ω, θ〉+
n

∑

i=1

〈DEi
(N ♭ ∧∇Ei

ω), θ〉.

Since Mn is minimal, by the Codazzi equation for flat ambient manifolds (evaluating, once
again, at p)

n
∑

j=1

Ej(A(Ei, Ej)) =
n

∑

j=1

Ei(A(Ej, Ej)) = EiH = 0.

Thus, we can deduce

∆〈N ♭ ∧ ω, θ〉 =−

n
∑

i,j=1

A(Ei, Ej)A(Ei, Ej)〈N
♭ ∧ ω, θ〉 −

n
∑

i,j=1

A(Ei, Ej)〈E
♭
j ∧∇Ei

ω, θ〉

−

n
∑

i,j=1

A(Ei, Ej)A(Ei, ω
♯)〈E♭

j ∧N ♭, θ〉 −

n
∑

i,j=1

A(Ei, Ej)〈E
♭
j ∧∇Ei

ω, θ〉

+
n

∑

i=1

〈N ♭ ∧∇Ei
∇Ei

ω, θ〉.

We can rewrite the above as

∆〈N ♭∧ω, θ〉+|A|2〈N ♭∧ω, θ〉 = 〈∆ω, iNθ〉+〈A◦A(ω♯), (iNθ)
♯〉−2

n
∑

i,j=1

A(Ei, Ej)〈E
♭
j∧∇Ei

ω, θ〉.

Now, the Gauss equation for a minimal hypersurface in flat ambient manifolds yields

RicM(ω♯, (iNθ)
♯) = −〈A ◦ A(ω♯), (iNθ)

♯〉,

while, on the other hand, the Bochner formula (2.1) for harmonic 1-forms on Mn reads

〈∆ω, iNθ〉 = RicM(ω♯, (iNθ)
♯)
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so that formula (2.2) follows at once. �

Inspired by Chao Li (see [7], Proposition 5.1), we prove the following result.

Proposition 5. Let Mn be a closed minimal hypersurface in a (n+1)-dimensional flat torus.
Assume there is a point p in Mn where all the principal curvatures are distinct. The set of
all harmonic 1-forms ω on Mn such that

(2.3)
n

∑

i,j=1

A(Ei, Ej)E
♭
j ∧∇Ei

ω = 0

has dimension at most 2n− 1.

Before proceeding with its proof, we want to remind the reader of a general fact about
harmonic forms: in a Riemannian manifold (Mn, g) a 1-form ω ∈ Ω1(Mn) is closed and

co-closed if and only if ∇ω is a symmetric trace-free tensor.

Proof. By virtue of our assumption onMn, we can certainly find a positive number ρ (smaller
than the injectivity radius of Mn at p) such that the principal curvatures of Mn are all dis-
tinct in the geodesic ball Bρ(p) and, furthermore, there exists a local orthonormal frame
{E1, . . . , En} diagonalizing the second fundamental form A at every point of such ball
(namely: A(Ei, Ej) = kiδij for all i, j = 1, . . . , n with k1 < k2 < . . . < kn). Now, given
a harmonic 1-form ω, equation (2.3) and the fact that the tensor ∇ω is symmetric imply

(ki − kj)(∇Ei
ω)(Ej) = 0 for all i, j = 1, . . . , n,

so that

(2.4) (∇Ei
ω)(Ej) = 0 for all i 6= j

on the whole geodesic ball in question. In particular, since ∇ω is also trace-free we deduce
that the functions ∇ω(E1, E1), . . . ,∇ω(En−1, En−1) completely determine the tensor ∇ω on
Bρ(p).

Now, let us consider the functions defined on Bρ(p) by

φi(q) =

{

ω(Ei)(q) for 1 ≤ i ≤ n

∇ω(Ei−n, Ei−n)(q) for n+ 1 ≤ i ≤ 2n− 1.

We claim that if ω satisfies (2.3) then for every q ∈ Bρ(p) the values (φ1, . . . , φ2n−1)(q)
are uniquely determined by (φ1, . . . , φ2n−1)(p), hence the space of harmonic forms in Bρ(p)
satisfying (2.3) has dimension at most 2n− 1 and the general statement over Mn follows by
unique continuation.
To check the claim, we proceed as follows: given q ∈ Bρ(p) let γ : [0, τ ] → Mn be the

only geodesic connecting p to q in Bρ(p) and consider the functions (of one real variable)
obtained by restriction of (φ1, . . . , φ2n−1) along γ, namely set

fi(t) = φi(γ(t)), for i = 1, . . . , 2n− 1.

Then, we claim that (f1, ..., f2n−1) solves a linear ODE system (in normal form) so that (by
Cauchy-Lipschitz) the value at p uniquely determines the value along the curve γ, which is
enough to check the claim above.
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Notice that γ′(t) =
∑n

j=1 α
j(t)Ej(γ(t)) where the coefficients αj, j = 1, . . . , n are smooth

and bounded (since the frame {E1, . . . , En} is orthonormal) hence by linearity

(2.5)
d

dt
fi(t) = ∇γ′(t)φi(γ(t)) =

n
∑

j=1

αj(t)∇Ej
φi(γ(t))

so that it suffices for our scopes to check that for every choice of the indices 1 ≤ i ≤ 2n− 1
and 1 ≤ j ≤ n the function ∇Ej

φi can be expressed as a linear combination of φ1, . . . , φ2n−1,
with smooth coefficients.

First of all, for i ≤ n we have

(2.6) ∇Ej
φi = δijφn+i +

n
∑

k=1

Γk
jiφk.

This can be justified as follows:

∇Ej
(ω(Ei)) = (∇Ej

ω)(Ei) + ω(∇Ej
Ei) = ∇ω(Ei, Ej) +

n
∑

k=1

Γk
jiω(Ek) = δijφn+i +

n
∑

k=1

Γk
jiφk

where the last steps relies on equation (2.4). Also, observe that for i = n the RHS of (2.6)
needs to be suitably interpreted, namely with −

∑n−1
l=1 φn+l in lieu of φ2n.

On the other hand, the differential equation for φn+i takes for 1 ≤ i ≤ n − 1 one of the
following three forms:

Case 1: 1 ≤ j ≤ n− 1, i 6= j

∇Ej
φn+i = (2Γi

ji − Γi
ij)φn+i − Γj

iiφn+j −

n
∑

k=1

Rikijφk.

Case 2: j = n

∇Ej
φn+i = (2Γi

ni − Γi
in)φn+i +

n−1
∑

k=1

Γk
iiφn+k −

n
∑

k=1

Rikinφk.

Case 3: j = i

∇Ej
φn+i =

n
∑

k=1,k 6=i

Γi
kkφn+i −

n−1
∑

k=1,k 6=i

(2Γk
ik − Γk

ki)φn+k + (2Γn
in − Γn

ni)
n−1
∑

k=1

φn+k +
n

∑

k=1

Rkiφk.
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Indeed, for all j 6= i by the Ricci formula for commuting covariant derivatives (no sum-
mation on repeated indexes i and j) we obtain

∇Ej
(∇ω(Ei, Ei)) = ∇2ω(Ei, Ei, Ej) + 2∇ω(∇Ej

Ei, Ei)

=∇2ω(Ei, Ej, Ei)−
n

∑

k=1

Rikijω(Ek) + 2Γi
ji∇ω(Ei, Ei)

=∇Ei
(∇ω(Ei, Ej))−∇ω(∇Ei

Ei, Ej)−∇ω(Ei,∇Ei
Ej)−

n
∑

k=1

Rikijω(Ek) + 2Γi
ji∇ω(Ei, Ei)

=− Γj
iiφn+j + (2Γi

ji − Γi
ij)φn+i −

n
∑

k=1

Rikijφk

where the very last equality was implied by (2.4). Thereby, the first equation is verified and
the second one follows along similar lines exploiting the fact that the tensor ∇ω is trace free.
Lastly, following the same pattern, one has for all i = 1, . . . , n− 1

∇Ei
(∇ω(Ei, Ei)) =

n
∑

k=1,k 6=i

−Ei(∇ω(Ek, Ek)) =
n−1
∑

k=1,k 6=i

Γi
kk∇ω(Ei, Ei)− (2Γk

ik − Γk
ki)∇ω(Ek, Ek)

+ Γi
nn∇ω(Ei, Ei)− (2Γn

in − Γn
ni)∇ω(En, En) +

n−1
∑

k=1,k 6=i

n
∑

l=1

Rklkiω(El) +
n

∑

k=1

Rnkniω(Ek)

=
n

∑

k=1,k 6=i

Γi
kkφn+i −

n−1
∑

k=1,k 6=i

(2Γk
ik − Γk

ki)φn+k + (2Γn
in − Γn

ni)
n−1
∑

k=1

φn+k +
n

∑

k=1

Rkiφk.

This finishes the proof of the claim and thus the whole argument. �

2.2. Proofs of Theorem 1 and Theorem 2.

As stated in the introduction, we first present a short proof of Theorem 2.

Proof. Let V be the space of all parallel 1-forms on the flat (n+ 1)-dimensional torus. This
space consists precisely of the forms df , where f is a linear function on the universal cover
of the flat torus (viz. (n + 1)-dimensional Euclidean space). In particular, its dimension is
n+ 1.

Since Mn is minimal and the elements of V are parallel, the restriction of any df ∈ V is
a harmonic 1-form. Moreover, df = 0 on Mn if and only if Mn is contained in the quotient
of level sets of the linear map f by the action of the lattice subgroup of translations of the
Euclidean space that generates the flat torus in question. Our assertion follows at once. �

We then deduce from Proposition 3 and Proposition 5 our main result, Theorem 1. To that
scope, we need to recall a rigidity theorem proved by Do Carmo and Dajczer [2] for minimal
hypersurfaces Mn in R

n+1 such that some principal curvature has multiplicity at least n− 1
at all points: any such hypersurface must be part of a higher-dimensional catenoid, or flat
(see Corollary 4.4 in their paper). In particular, in a four dimensional torus (n = 3), the
assumption on the principal curvatures given in the statement of Theorem 1 (namely the
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assumption that all principal curvatures are pairwise distinct) holds for all closed minimal
hypersurfaces that are not totally geodesic.

Proof. Given an orthonormal basis {θ1, . . . , θn+1} of parallel 1-forms on T n+1, let Mn be a
closed, orientable minimal hypersurface of a flat (n + 1)-dimensional torus whose principal
curvatures are all distinct at least at one point. Let us denote by k its Morse index, and
by {φq}

k
q=1 an L2-orthonormal basis of eigenfunctions of the Jacobi operator JM = ∆+ |A|2

of Mn generating the eigenspace where the operator is negative definite. Let then Φ denote
the linear map defined by

Φ : H1(Mn) → R
n(n+1)k/2

ω 7→
[∫

M
〈N ♭ ∧ ω, θi ∧ θj〉φqdµ

]

,

where 1 ≤ i < j ≤ n+ 1 and q varies from 1 to k. Clearly,

dimH1(M, g) ≤ dimKer(Φ) +
n(n+ 1)

2
k.

Since H1(M, g) ≃ H1(M ;R), Theorem 1 will follow once we analyse the dimension of the
kernel of the map Φ and show that indeed dimKer(Φ) ≤ 2n− 1.
Let ω be an element of the kernel of the map Φ. This precisely means that every function

uij = 〈N ♭ ∧ ω, θi ∧ θj〉 is L2-orthogonal to each of the first k eigenfunctions of JM . Since
index(M) = k, we must have

Q(uij, uij) ≥ λk+1

∫

M

u2
ijdµ ≥ 0 for all 1 ≤ i < j ≤ n+ 1,

by the standard variational characterization of eigenvalues. Hence, thanks to Proposition 3
we have

0 ≤
∑

1≤i<j≤n+1

Q(uij, uij) = −
∑

1≤i<j≤n+1

∫

M

uijJM(uij)dµ

= 2

∫

M

∑

1≤i<j≤n+1

〈N ♭ ∧ ω, θi ∧ θj〉〈

n
∑

k,l=1

A(Ek, El)E
♭
l ∧∇Ek

ω, θi ∧ θj〉 dµ

= 2

∫

M

n
∑

k,l=1

A(Ek, El)〈E
♭
l ∧∇Ek

ω,N ♭ ∧ ω〉dµ = 0,

the last equality relying on the fact that trivially, by orthogonality, iN(E
♭
l ∧ ∇Ek

ω) = 0 for
any choice of the indices k and l. It follows that 〈N ♭ ∧ ω, θi ∧ θj〉 are all eigenfunctions
of the Jacobi operator JM , associated to the eigenvalue λk+1 = 0. By Proposition 3, this
implies that ω satisfies equation (2.3). Thus, to complete the proof, it is enough to invoke
Proposition 5, which ensures that the dimension of Ker(Φ) cannot exceed 2n− 1.

Lastly, to obtain an unconditional result when n = 2, 3, we need to observe that when the
condition on the principal curvatures of Mn is not fulfilled, then Mn is totally geodesic and
therefore a stable n-dimensional torus, in which case our inequality is also satisfied. This
claim is clear when n = 2 and is a consequence of the result by do Carmo and Dajczer when
n = 3. Thereby the proof is complete. �
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Remark 6. Let us discuss the modifications needed to obtain this index bound for non-
orientable minimal hypersurfaces inside T n+1. First of all, by orientability of T n+1 we know
that any such Mn is also one-sided. In this case, it is customary to introduce the two-sheeted
covering π : M̂n → Mn (given by couples (x,N) where x ∈ Mn and N attains one of the
two possible choices for the unit normal of Mn at x) and the associated two-sided immersion

ι : M̂n → T n+1 (with a well-defined unit normal field N̂ given by N̂(x,N) = N). As
discussed (for instance) in Subsection 2.3 of [1] one can then consider the restriction of the

Jacobi operator of M̂n to the space of odd functions, namely to all u : M̂n → R satisfying
u ◦ τ = −u for τ : M̂n → M̂n the natural deck transformation of the covering in question.
Hence, the Morse index of Mn is defined to be the number of negative eigenvalues of JM̂
acting on odd functions, in the sense above.

These comments being made, our arguments go through in the non-orientable case as
well without any substantial modification once it is checked that for any harmonic form
ω ∈ H1(M, g) one has that the test functions uij = 〈N̂ ♭ ∧ π∗(ω), ι∗(θi) ∧ ι∗(θj)〉 are indeed
odd, which is done in the proof of Theorem A of [1].
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