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Quaternion-valued single-phase model for three-phase power system
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, Yougen Xu
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In this work, a quaternion-valued model is proposed in lieu of the Clarke’s α, β transformation to convert three-phase
quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection
in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the
quaternion domain, while the Clarke’s transformation-based methods will fail to detect the zero sequence voltages. Based on
the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and
the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations
are provided to demonstrate the potentials of this new modeling method.

K e y w o r d s: harmonics detection, Fourier transform, minimum variance distortionless response, multiple signal clas-
sification, quaternion, three-phase power system

1 Introduction

Power quality control is one of the major concerns
for power delivery systems to function reliably, and it
requires measurements of voltage characteristics, among
which the frequency measurement is a non-trivial task
due to the presence of voltage sags and voltage har-
monics mostly caused by nonlinear loads [1]. In the par-
ticular case of three-phase power systems, the Clarke’s
α, β transformation is widely used as the preprocessing
method to create a complex-valued single-phase signal
from the real-valued three-phase signals [2], so that tradi-
tional complex-valued spectrum estimation methods can
be applied, such as the MVDR method or the recently
proposed Iterative MVDR (I-MVDR) method [3, 4]. To
improve the resolution, we can further apply the subspace
methods and one representative example is the MUSIC
method [5].

However, all the zero sequence voltages will be can-
celled out in the complex-valued signal and hence can
not be detected. Although these harmonic voltages would
simply be blocked by a delta transformer, they will add
up in the neutral, leading to overheating in the trans-
former and potential fire hazards [6]. To detect these har-
monics, as well as harmonics of other orders, we propose a
quaternion-valued model and all the traditional spectrum
estimation methods can be extended to this domain, such
as MVDR and MUSIC. We will show that harmonics of all
orders will be reserved in the resulting quaternion-valued
signal and will be detected by relevant estimation meth-
ods. This quaternion-valued model has been previously
presented for the tracking of the fundamental frequency
in the presence of voltage sags using the Kalman filter

algorithm [7]. In this paper, we demonstrate a comple-
mentary merit of this model when dealing with harmonic
voltages.

2 Complex-valued frequency estimation

for three-phase power systems

2.1 A brief review

We consider the following discrete-time balanced three-
phase power system in the presence of H − 1 harmonic
distortions

va(n) =
H
∑

h=1

Vh cos
(

h(ΩnTs + φ)
)

+εa(n) ,

vb(n) =

H
∑

h=1

Vh cos
(

h
(

ΩnTs + φ− 2π

3

))

+ εb(n) ,

vc(n) =
H
∑

h=1

Vh cos
(

h
(

ΩnTs + φ+
2π

3

))

+ εc(n)

(1)

where {Vh}Hh=1 are the amplitudes of the harmonic
signals, Ω is the fundamental (angular) frequency, Ts

is the sampling interval, φ is the signal phase, and
εa(n), εb(n), εc(n) are the measurement noise.

Traditionally, the three-phase signals will be converted
to a complex-valued single-phase signal via the Clarke’s
α, β transformation. Firstly, the three-phase signals are
mixed into two parts, namely vα(n) and vβ(n), where

[

vα(n)
vβ(n)

]

= T





va(n)
vb(n)
vc(n)



 , (2)
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T =
2

3

[

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

]

. (3)

Then these two parts will be merged as a complex-valued
signal vcv(n) = vα(n) + ivβ(n).

With this complex-valued signal, we can exploit the
MVDR spectrum to locate the frequencies, and it is given
by

SMVDR(Ω) =
1

sH(Ω)R−1
s(Ω)

(4)

where (·)H is the Hermitian-transpose operation, R is the
covariance matrix of dimension M ×M , and

s(Ω) =
[

1 , eiΩTs , . . . , e−iΩTa(M−1)
]⊤

(5)

is the frequency sweeping vector.

We can also use the MUSIC spectrum which is ex-
pressed as

SMUSIC(Ω) =
1

‖sH(Ω)UN‖2 (6)

where ‖ · ‖ denotes the Euclidean norm, UN represents
the noise subspace and comprises the eigenvectors of the
covariance matrix R which are corresponding to the M0

smallest eigenvalues, where M0 is assumed to be known
or can be estimated using the information theory meth-
ods [9].

In practice, the covariance R needs to be updated and
estimated from the average of samples

R̂(n) =
1

K
Vcv(n)V

H
cv(n) (7)

where

Vcv(n)=







vcv(n) . . . vcv(n−K + 1)
...

. . .
...

vcv(n−M + 1) . . . vcv(n−K −M + 2)







(8)
and K is the number of observations.

2.2 Missing harmonic signals in the complex-valued

signal

In detail, vcv(n) is composed of complex-domain har-
monic signals that can be divided into two categories plus
noise,

vcv(n) = vcv1(n) + vcv2(n) + εcv(n) (9)

where vcv1(n) is the summation of all positive sequence
voltages,

vcv1(n) =

⌊

H+2
3

⌋

∑

p=1

V3p−2 e
i(3p−2)(ΩnTs+φ) (10)

and vcv2(n) is the summation of all negative sequence

voltages,

vcv2(n) =

⌊

H+1
3

⌋

∑

p=1

V3p−1e
−i(3p−1)(ΩnTs+φ) (11)

and ⌊x⌋ denotes the largest integer not greater than x .

All the zero sequence voltages have been cancelled out.

Zero sequence voltages of the same order are cophasial in
the three voltage channels and will be eliminated since

both rows of the transformation matrix T are zero-mean
vectors.

To solve this problem, we propose our quaternion-
valued approach in the next section.

3 Quaternion-valued frequency

estimation for three-phase power systems

We construct a quaternion-valued signal from the
three-phase signals as [7]

vqv(n) = iva(n) + j vb(n) + kvc(n) (12)

where i, j, k are the three imaginary units of the quater-

nion algebra which are constrained by [8]

i2 = j2 = k2 = ijk = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

(13)

This quaternion-valued signal contains quaternion-do-
main harmonic signals that belong to three categories

vqv1(n), vqv2(n), vqv3(n) plus noise,

vq(n) = iva(n) + jvb(n) + kvc(n) =

vqv1(n) + vqv2(n) + vqv3(n) + εqv(n) (14)

where vqv1(n) is the summation of all the positive se-
quence voltages

vqv1(n) =

⌊

H+2
3

⌋

∑

p=1

2i− j − k

2
V3p−2

{

cos[(3p−2)(ΩnTs+φ)]

− i+ j + k√
3

sin[(3p− 2)(ΩnTs + φ)]
}

=

⌊

H+2
3

⌋

∑

p=1

2i− j − k

2
V3p−2 e

− i+j+k√
3

(3p−2)(ΩnTs+φ)
, (15)
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Fig. 1. MVDR and MUSIC spectra of quaternion-and complex-valued models

vqv2(n) is the summation of all the negative sequence
voltages

vqv2(n) =

⌊

H+1
3

⌋

∑

p=1

2i− j − k

2
V3p−1

{

cos[(3p−1)(ΩnTs+φ)]

+
i+ j + k√

3
sin[(3p− 1)(ΩnTs + φ)]

}

=

⌊

H+1
3

⌋

∑

p=1

2i− j − k

2
V3p−1e

i+j+k√
3

(3p−1)(ΩnTs+φ)
(16)

and vqv3(n) is the summation of all the zero sequence
voltages

vqv3(n) =

⌊

H
3

⌋

∑

p=1

V3p(i+ j + k) cos[3p(ΩnTs + φ)]

=

⌊

H
3

⌋

∑

p=1

V3p
i+ j + k

2

[

e
i+j+k√

3
3p(ΩnTs+φ)

+ e
− i+j+k

√

3
3p(ΩnTs+φ)

]

. (17)

Hence all the harmonic signals will be reserved in the
quaternion-valued signal. We may observe from (15)–(17)
that the frequencies of the harmonic signals have been
mapped into the frequencies of the quaternion-valued sig-

nal associated with the i+j+k√
3

axis.

The frequency estimation problem from a sum of
quaternion-valued exponentials is similar to the problem
in the complex domain. Then we can adopt the MVDR
spectrum in (4) and the MUSIC spectrum in (6) by sub-
stituting the frequency sweeping vector as

s(Ω) =
[

1, e
− 1

√

3
(i+j+k)ΩTs , . . . , e

−M−1
√

3
(i+j+k)ΩTs

]⊤
.

(18)

NOTE-1: Not to be confused with the Quaternion-MVDR

(Q-MVDR) algorithm [10] for the adaptive beamforming

with vector-sensor array beamforming or the Quaternion-

MUSIC (Q-MUSIC) algorithm [11] for the direction-of-arrival

estimation with vector-sensor arrays. Their steering vec-

tors are complex-valued vectors multiplied by quaternion-

valued scalars, which are conceptionally different from the

quaternion-valued frequency sweeping vector defined in this

paper. We marked our algorithms by QV-MVDR and QV-

MUSIC for clarification.

The frequencies detected in the spectrum are either the
original real-domain angular frequencies or their additive
inverses, namely

(1) If a peak is detected in the spectrum in the absence
of its additive inverse, it corresponds to a positive or
negative sequence voltage signal and this spectrum
peak indicates its angular frequency or its additive
inverse.

(2) If two ”mirrored” peaks are detected in the spectrum,
they correspond to a zero sequence voltage signal and
they indicate the signal’s angular frequency and its
additive inverse, respectively.

4 Simulations

In this section, we provide a numerical example to
illustrate the performance of the proposed quaternion
model. The fundamental frequency is 50 Hz, the sampling
frequency is fs = 1/Ts = 20 kHz, the initial phase is
φ = π/7, and K = 80, M = 32. There exist a second-
order and a third-order harmonic signals, both set to be
6% in amplitude.

We test the capability of the two modelings. The
MVDR and MUSIC spectra of the quaternion- and
complex-valued models are plotted in Fig. 1, where
SNR = 40 dB. It can be observed that the proposed
model is able to detect all the harmonic signals, namely
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50 Hz (the fundamental frequency), −100 Hz (the second-
order harmonic), and ±150 Hz (the third-order har-
monic), while the complex-valued model fails at the thir-
dorder harmonic frequency.

5 Conclusion

We have presented a quaternion-valued model as an
alternative preprocessing approach to convert the three-
phase signals into a single-phase system. Compared with
the Clarke’s transformation, the proposed model can ad-
ditionally detect the zero sequence voltages. Simulated
results show that the proposed model can detect all-order
voltage harmonics effectively.
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