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Abstract

We study the interaction between constraint release and contour length fluctuations in well entangled polymers, by means of a set of slip-

spring simulations in which the rate of constraint release is precisely controlled. In the present simulations, a fraction f¼ 0.9 of the slip-

springs undergo constraint release, while the remaining slip-springs do not, as an idealized model to mimic the constraint release environ-

ment of a bidisperse polymer melt. Both populations of slip-springs allow reptation of the chain. Our analysis of the data indicates the

time and parameter regions in which contour length fluctuations occur effectively along a thin tube, or along a diluted fat tube. We predict

the parameters for which case each is observed and the rate of relaxation due to contour length fluctuations in each region. Finally, we

draw the implications of the simulations for bidisperse blend rheology, by revisiting the classic “Viovy diagram” for such melts. We relo-

cate some of the lines on the original diagram, and identify new regimes, based on the physics and quantitative information supplied by

the simulation data. In particular, we identify a new region in the diagram in which along-tube motion of the long chains is predominantly

along the contour of the thin tube, yet contour length fluctuations occur in the fat tube, resulting in an acceleration of the terminal relaxa-

tion. We successfully and quantitatively locate a wide range of literature data on our redrawn diagram. VC 2018 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creative-
commons.org/licenses/by/4.0/). https://doi.org/10.1122/1.5031072

I. INTRODUCTION

The dynamics of entangled polymers have intrigued soft

matter scientists for at least half a century. Entanglements

between the long molecules severely impede the Brownian

dynamics of the molecules, giving extremely long times

for molecular relaxation, manifest in the viscoelastic

nature of polymeric liquids. The dominant theoretical pic-

ture remains the “tube model” of de Gennes [1] and Doi

and Edwards [2]: Entanglements restrict the molecules to a

tubelike region of space surrounding the polymer (though

alternative pictures such as “slip-link” models [3–7] pro-

vide useful computational schemes). Whichever model is

used, the primary chain motion for monodisperse linear

polymers is considered to be “reptation”—chain diffusion

along a contour defined by the entanglements (the “tube

contour,” in the tube model). Quantitative description of

these dynamics is possible, but requires the inclusion of

two additional processes to the theory: “Contour length

fluctuation” (CLF) occurs because flexible polymers have

the freedom to vary their projected length along the tube

contour, allowing chain ends to rapidly relax; “Constraint

release” (CR) occurs because the surrounding molecules

are also in constant random motion, and so are able to release

and renew their entanglement constraints [8]. Likhtman and

McLeish [9] presented a very successful theory describing

the linear rheology of monodisperse linear polymers, which

combines all of the above modes of motion. For such mono-

disperse polymers, CR provides only a relatively small pertur-

bation because CR is slow, occurring only on a timescale of

terminal chain relaxation (CR relaxes stress, and so gives

roughly a factor of two change in the dominant stress relaxa-

tion time, but virtually no change in diffusion rate or end-to-

end relaxation time).

Given the above (extremely complete) picture, it is per-

haps surprising that the second simplest polymeric liquid, a

binary mixture of polymer chains of two lengths, remains a

topic for active research. Complications arise because CR

from the shorter chains is fast, and no longer a small pertur-

bation for the slower, longer chain dynamics. This is of cru-

cial and practical importance, since all industrial plastic

materials are polydisperse, containing a broad mixture of

polymer lengths, giving a spectrum of CR times. For predict-

ing linear viscoelasticity of these materials, researchers have

used variants on the “double reptation” scheme [10], but this

usually makes the bold assumption that the viscoelastic

response can be calculated from the relaxation of the sepa-

rate components considered on their own. This implies that

the terminal relaxation time of long chains is entirely unaf-

fected by the shorter ones. Although this seems to work for
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some materials, it is demonstrably false for many binary

polymer mixtures, see, e.g., [8,11–17]. This suggests a criti-

cal question to be addressed in this paper by means of slip-

link simulations: Does faster CR from short chains affect the

motion via reptation or CLF of longer chains, and how does

this occur?

One way to think of the long chains in a binary mixture is

to consider them as being trapped within two tubes: A thin

tube representing entanglements with all chains, and a fat

tube representing entanglements with long chains only (see

the cartoons in Fig. 1). Fast CR from the short chains allows

the thin tube to reconfigure and relax. Considering only

reptation and CR (but ignoring CLF) Viovy et al. [18] pre-

sented an appealing diagram (Fig. 1) illustrating the rich set

of dynamical regimes for the long chains. The horizontal

axis is the number of entanglements along the fat tube—to

the left of the diagram the long chains are too short, or too

dilute, to entangle with other long chains. The vertical axis is

the “Graessley” parameter, Gr ¼ ZL=Z3
S , where ZL and ZS are

the number of entanglements along the long and short

chains, respectively [19,20]. Gr measures the relative rates

of relaxation by CR or by reptation. In region 1 of the Viovy

diagram, dilute long chains relax terminally through CR; in

region 2 they relax by reptation. In regions 3 and 4, long

chains are self-entangled; in region 3, reptation along the

thin tube dominates, while in region 4 motion along the fat

tube, occurring due to CR of the thin tube, is predicted to

accelerate the terminal reptation of the long chains. In region

3, the relaxation time of the long chains is therefore pre-

dicted to be completely independent of the short chain con-

centration or length; but experiments contradict this, and

dilution with short chains does speed up (e.g., by a factor of

FIG. 1. Schematic Viovy diagram [18] indicating, in each region, the process governing terminal relaxation and how the terminal modulus scales with fraction

/ of long chains. In region 1, dilute long chains relax terminally through CR; in region 2 they relax by reptation. In regions 3 and 4, long chains are self-

entangled; hence the terminal modulus scales as /2; in region 3, reptation along the thin tube dominates, while in region 4 motion along the fat tube, occurring

due to CR of the thin tube, is predicted to accelerate the terminal reptation of the long chains. Also shown are cartoons depicting the processes that compete at

the boundaries between regions. Line (a): at ~Z ¼ 1 is the boundary between long chains entangled with only short chains (so only a thin tube is needed), or

long chains also entangled with other long chains (giving the fat tube). Line (b): at Gr � 1, CR Rouse relaxation (top) competes with reptation along the thin

tube (bottom). Line (c): Reptation along the thin tube (left) competes with local CR-induced equilibration of thin tube in one fat tube segment (right). Line (d):

Reptation along the thin tube (bottom) competes with reptation along the fat tube driven by CR (top).
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5) the long chain relaxation across blends found in region 3

of the diagram. Specific examples of such blends, clearly in

region 3, which exhibit this speeding up include mixtures of

480k and 34k Polyisoprene [11], mixtures of 550 000 and

20 000 polybutadiene [14,15], and mixtures of 294 000 and

83 000 or 161 000 polystyrene [16].

In considering this problem, Park and Larson [14,15] pre-

sented a theory in which they considered reptation to occur

either along the thin tube (at low values of the Graessley

parameter) or along the fat tube (at high values of the

Graessley parameter), with the critical value of the Graessley

parameter found to be in the region of 0.1. This work contra-

dicts the physical picture proposed by Viovy et al. because

Park and Larson assume that motion along the fat tube pro-

ceeds at a rate determined by monomeric friction only, rather

than at a rate dictated by CR events. They also do not have a

means to transition smoothly between the two different repta-

tion regimes. Nevertheless, the work of Park and Larson

[14,15] is useful because it highlights that there is a speeding

up of long chains upon dilution with shorter chains, and that it

is impossible to account for this when considering only repta-

tion along the thin tube.

A possible solution to the problem, proposed recently

[11,12], is to include the effects of CLFs. In particular, we

note that CLF modes in the fat tube are possible even in

region 3 of the Viovy diagram, and that these provide a can-

didate mechanism for short chains to speed up the relaxation

of long chains. Slip-link simulations [3] present an ideal plat-

form to test some of these ideas and can be mapped onto the

tube model as demonstrated in our earlier paper [21]. Here

we focus specifically on the effect of CR on the CLF process,

using a set of simulations designed for this purpose.

We present first the simulations, their results, and our

analysis of them in terms of tube theory. We then seek to

draw out the implications of the simulations for experimental

studies of binary blends. In particular, we will re-examine

the Viovy diagram in the light of CLFs of both short and

long chains. This will result in a redrawn Viovy diagram, in

which existing lines are repositioned based on the numerical

results from simulations, and in which new lines are added

to delineate regions with different CLF behavior. We will

demonstrate that literature data for binary blends can be suc-

cessfully mapped on to our redrawn diagram.

Throughout the paper, we shall assume a dilution expo-

nent of a¼ 1. This is the natural assumption in slip-link

models, where entanglements are considered as binary

events. It also appears to be a reasonable assumption for real

polymeric liquids (see, e.g., [22]).

We briefly note, here, that it is not a priori obvious that it

is possible to perform the mapping between the slip-spring

model and the tube model, alluded to above and used in our

earlier paper [21]. Certainly, chain motions in a fixed tube (or

fixed array of slip-spring constraints), i.e., reptation and CLF,

should be similar in both models. However, it is not clear that

all the chain motions induced by CR, as envisaged in the

physics of fat and thin tubes, should have a direct analog in

the slip-spring model. To some extent, the proof of the map-

ping is in its success in the previous work [21] and the results

described below. We shall return to a brief discussion of why
this mapping might be successful in the concluding section.

II. SIMULATIONS

Our simulations are based on the “slip-spring” model of

Likhtman [3], illustrated in Fig. 2. The simulations comprise

Rouse chains with N¼ 512 frictional beads (with associated

fluctuating thermal force) connected by N – 1 springs.

Entanglements are modeled by slip-links randomly distrib-

uted along the chain. Every slip-link is connected by a virtual

spring to an anchoring point, and so are given the name slip-

springs. The positions of the anchoring points are determined

to preserve, on average, the unperturbed Gaussian statistics

of the chain conformations at all length scales. Slip-springs

move between neighboring beads through Metropolis Monte

Carlo moves (such that two slip-springs are not permitted to

attach to the same bead): This allows both reptation and CLF

to occur. Setting the friction constant per bead f¼ 1, the

polymeric spring step length b¼ 1 and the thermal energy

kBT¼ 1 give a simulation time unit fb2/kBT¼ 1, which

is proportional to the local bead relaxation time. We use a

time step dt¼ 0.05. The spring constant between beads is

then k¼ 3kBT/b2¼ 3. We employ the “standard” Likhtman

parameters of Ne,ss¼ 4 chain beads per slip-spring (on aver-

age) and slip-spring constant ks¼ 3kBT/Nsb
2 with Ns¼ 0.5

(Ns is the effective “number of beads” in a slip-spring).

These values of Ne,ss and Ns were used in the original

Likhtman slip-spring paper [3] (where they were shown to

give good representation of rheology, neutron spin echo, and

diffusion data) and have since been used in many publica-

tions using the slip-spring model (see, e.g., [21,23,24]).

Since the slip-springs are not pointlike, but rather allow

the chain to fluctuate about the slip-spring anchor point, this

smooths out the contour of the equivalent tube model (so

that the tube contour is smoother than the set of vectors

between slip-links). This means that the effective number of

beads per entanglement in the equivalent tube model is

Ne>Ne,ss, which we previously estimated as Ne¼ 4.89 for

the standard Likhtman parameters above [21] (as detailed in

FIG. 2. Schematic diagram of the slip-spring model employed in this work.

The simulations use Rouse chains comprising frictional beads (with stochas-

tic thermal noise) connected by springs. Entanglements are modeled using

slip-springs, which attach beads to anchoring points, and which hop stochas-

tically between beads.
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Appendix A), giving the number of tube model entangle-

ments per chain Z� 105.

We control the CR process in our simulations by random

insertion and deletion of slip-springs with specified average

lifetime sCR (which we change from one simulation to the

next). To approximate a binary blend, a fraction f¼ 0.1 of

the slip-springs are not deleted unless passed by the chain

end; there is thus no CR for this fraction of slip-springs,

which approximates the “slow” CR expected for entangle-

ments between long chains. The remaining 90% of slip-

springs are randomly inserted and deleted, representing (fast)

CR from the short chains. In order to preserve the fractions

of these two populations of slip-springs, if a slip-spring is

deleted when passed by a chain end, another slip-spring of

the same type is immediately added to a randomly selected

chain end. The value of f was chosen to be large enough so

as to retain a reasonable number of slow slip-springs per

chain (that do not undergo CR), but also to be small enough

to resolve some of the intermediate CR Rouse region

between thin and fat tubes.

When the CR is fast, the rapidly moving 90% of slip-

springs effectively dilute the entanglement constraints,

giving a dilution of the equivalent tube. As noted above,

slip-springs are not pointlike objects, but allow fluctuations

around their anchor point, and this in general gives

Ne>Ne,ss. However, if Ne,ss is increased (i.e., the slip-

springs are diluted), while the slip spring strength Ns¼ 0.5 is

held constant, then the ratio Ne/Ne,ss tends toward 1. This is

because the ratio of slip-spring fluctuation length to diluted

tube diameter decreases as the dilution increases, i.e., the

slip-springs become effectively more “pointlike” with

respect to the tube diameter with increasing dilution. For this

reason, a dilution to f¼ 0.1 of slip-springs does not exactly

correspond to the same dilution of entanglements in the

equivalent tube model. This point was considered in [21],

and based on these considerations (as detailed in Appendix

A), we find that a dilution f¼ 0.1 corresponds to a dilution

/f¼ 0.12 of entanglements in the equivalent tube model

[21]; hence, the number of entanglements along the “fat”

tube is ~Z ¼ /f Z ¼ 12:5.

To assess the effect of this CR environment on chain

relaxation, we examine the correlation function of the end to

end vector R(t) of the chains

UðtÞ ¼ hRðtÞ � Rð0Þi=hR � Ri; (1)

which we calculate in the simulations using the multitau cor-

relator of Ramirez et al. [25]. U(t) is, to first approximation,

a measure of the “tube survival fraction” l(t) since the end-

to-end vector of the chain at R(t) at time t is correlated with

R(0) only by the section of initial tube which remains occu-

pied at time t. In fact, the quantity U(t) also determines the

dielectric relaxation function of polymers (such as polyiso-

prene) with type-A dipoles, and this has been exploited to

measure l(t) for many entangled polymers [26,27]. The only

difference between U(t) and l(t) is an additional relaxation

due to local fluctuations of the chain ends within the tube,

whose contribution we consider below.

III. PRESENTATION AND ANALYSIS
OF SIMULATION DATA

A. Scaling analysis of the data

In the absence of CR, CLF occurs via Rouse motion of

the chain along the thin tube contour, relaxing a fraction of

the chain Z�1=2 in the Rouse time sR ¼ N2fb2=3p2kBT.

Hence, in the time regime where CLF dominates we expect

UðtÞ � 1� ClZ�1=2ðt=sRÞ1=4
. Likhtman and McLeish [9]

found that the constant Cl¼ 1.5. The quarter power of time

in this expression arises from the expected sub-Fickian scal-

ing of chain end displacement within the Rouse model, as

discussed in more detail in Sec. III B. Within our stochastic

simulations, the constant first term of U(t) is subject to sam-

pling fluctuations, which can be eliminated by examining

the time derivative dU=dt. In Fig. 3, we present the simula-

tion data by plotting �t3=4ðdU=dtÞ versus simulation time, t,
on a double logarithmic plot for a range of simulations,

specifically:

(1) a simulation in which all CR is switched off,

(2) a simulation in which all the “fast” constraints (90% of

the total) are simply deleted (equivalent to sCR¼ 0), and

(3) simulations for a range of intermediate CR times, 3

� sCR � 30 000 applied to the 90% of the slip-springs

undergoing CR.

Plotting the quantity �t3=4ðdU=dtÞ conveniently collapses

the data across 7 orders of magnitude of time to a vertical

range within a factor of 4. It also ensures that regions of the

data with the expected quarter-power time scaling for CLF

appear as horizontal lines on the graph. CLF in the thin-tube

FIG. 3. �t
3
4ðdU=dtÞ versus simulation time, t, for f¼ 0.1 and for a range of CR

times, sCR. All other simulation parameters given in the main text. Data for no

CR correspond to motion purely in the thin tube, while data for sCR¼ 0 corre-

spond to motion purely in the fat tube. Also shown are horizontal lines corre-

sponding to predicted CLF plateaus [as given by Eq. (A7)], and short vertical

lines corresponding to predicted effective CLF times [as given by Eq. (A8)].

The lower solid horizontal line shows the CLF plateau for motion along the

thin tube without CR. The horizontal dashed line corresponds to CLF along

the fat tube in the limit of slow CR, with CLF time sR=/f giving

UðtÞ � a� Cl/
�1=4
f Z�1=2ðt=sRÞ1=4

, i.e., a CLF plateau a factor /�1=4 higher

than the thin tube CLF plateau. The full vertical line is the chain Rouse time,

sR. The dash-dot line has a slope of 1
8
, as a guide to the eye, indicating the scal-

ing predicted by Read et al. [11] when both CR and CLF are active

concurrently.
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is therefore visible as the lower plateau between t¼ 102 and

t¼ 104 for the simulation with no CR. A similar representa-

tion of the data, for the tube survival probability l(t), was

used previously by Likhtman and McLeish [9]. We note in

passing that, at the very earliest times (not shown in Fig. 3),

all the simulation data collapse onto the same curve for local

diffusive motion of the connected beads. Here, we focus on

the later time data relevant to entanglement effects.

In fact, the data for “no-CR” in Fig. 3 are extremely similar

to the tube survival function from a one dimensional simula-

tion presented by Likhtman and McLeish [9]. The CLF pla-

teau begins at t¼ 102, after a significant transient related to

the establishment of effectively 1D motion along the tube con-

tour in our 3D simulation. The CLF plateau ends at roughly

the chain Rouse time sR (indicated by the vertical line close to

at t¼ 104) after which there is a strong peak due to reptation

of well-entangled chains. So, for t > sR, the data grow with a

slope of 1=4 in Fig. 3, corresponding to one dimensional

Fickian diffusion (in which distance traveled by the chain cen-

ter of mass scales as �t1=2, so that UðtÞ � 1� Bt1=2). The

data, as plotted in Fig. 3, then reach a peak just prior to the ter-

minal reptation time.

A complication in analysing these data arises from the dis-

covery [21] that the slip-springs themselves add significant

friction to the along tube motion. This friction contribution is

only partially mitigated by increasing the rate of slip-spring

hopping between beads, because part of the time for a slip-

spring “hop” arises from waiting for an adjacent bead to enter

the local vicinity of the slip-spring. The slip-spring friction

should most likely be viewed as an artifact of the model,

rather than something which corresponds to a physical phe-

nomenon in real polymers. It is, however, necessary to

account for the effect of this friction in understanding the

results of the slip-spring model, and especially in mapping

from the slip-spring model to the tube model. To fit the

CLF plateau, we may assume the relation [9]

UðtÞ � 1� ClZ�1=2ðt=sRÞ1=4
with Cl ¼ 1:5 and then adjust

the assumed friction constant as sR ¼ N2ðfþ fSLÞb2=3p2kBT,

where fSL is the effective friction for along-tube motion per

polymer bead coming from the slip-spring friction. Using a

value fSL¼ 0.93 in the no-CR simulations gives the horizontal

black line in Fig. 3. We use this value in all subsequent analy-

sis. However, for clarity of presentation we detail the effect of

slip-spring friction on the presented equations in Appendix A,

following the derivations in [21]. We note that it is also possi-

ble to fix fSL and adjust Cl within a small range to fit the data;

this makes little difference to our present analysis since the

effects of adjusting fSL and Cl largely cancel. The Rouse time

sR indicated in Fig. 3 includes the slip-spring friction. Overall,

the no-CR data are exactly as expected for monodisperse pol-

ymers in the absence of CR.

In Fig. 3, we observe that CR produces an acceleration of

CLF, due to the increased freedom of the chain, and acceler-

ation of the terminal relaxation. After sufficient CR has taken

place, the chain explores a fat tube defined by only the slow

slip-spring constraints. The extreme case of sCR¼ 0 (i.e.,

free, unimpeded chain motion along the fat tube) exhibits a

short CLF plateau, visible at times of order 104, followed by

a much weaker reptation peak associated with a smaller

number of entanglements ( ~Z ¼ /f Z ¼ 12:5). In their equiva-

lent plots for tube survival fraction l(t) of monodisperse

chains, Likhtman and McLeish [9] observed a weakening of

the peak for final reptation as the number of entanglements

was reduced. Comparing the plots for sCR¼ 0 and the data

with no CR, we note that the end of the CLF plateau is at a

comparable simulation time for both sets of data, i.e., around

the chain Rouse time indicated by the long vertical line. (The

apparent end of the CLF plateau for the sCR¼ 0 data appears

to be a factor of 3 later than the Rouse time, most likely due

to the terminal peak being weak for the small number of

slow fat tube entanglements.) We estimate the height of the

CLF plateau for the sCR¼ 0 data by noting that a fraction of

the chain ~Z
�1=2 ¼ ð/f ZÞ�1=2

relaxes in the Rouse time sR.

Hence, we expect UðtÞ � a� Cl/
�1=2
f Z�1=2ðt=sRÞ1=4

, i.e.,

we expect the plateau to be a factor /�1=2
f higher than for the

thin tube. We show the expected plateau value via the upper

red horizontal line in Fig. 3 (which has been corrected to

account for slip-spring friction). The predicted value is

within 5% of the plateau in the data.

Nonzero CR times produce intermediate behavior between

the no-CR and sCR¼ 0 data. At times of order sCR the data

depart from the no-CR data and increase toward an upper

CLF plateau which is visibly established for sCR¼ 3 and 30,

and approached for sCR¼ 300 and 3000. We interpret this pla-

teau as indicating CLF in the fat tube, but at a slower rate than

for sCR¼ 0. The plateau also persists to later times than for

the sCR¼ 0 data, before exhibiting a reptation peak. This peak

is similar in shape to the sCR¼ 0 data, but also at a delayed

time. These observations suggest that the chain is effectively

moving as though along the fat tube for both CLF and repta-

tion, but with an increased effective friction. Before attempt-

ing to predict this effective friction theoretically, we can test

whether such a description is plausible by manually rescaling

time, t, in both axes of the plot, where the scaling factor a is

chosen for each sCR so as to overlap the data. Here, we are

testing whether a single rescaling factor, a, can achieve a data

overlap in the two separate (independent) dimensions of the

plot. This rescaling is done in Fig. 4. The rescaling of time

gives an excellent overlap of the data for sCR¼ 0, 3, and 30,

matching the CLF plateau and terminal peak to within simula-

tion noise. It also gives a close overlap for sCR¼ 300 and

3000. This overlap of data confirms that the effective chain

motion on large length scales is self-similar across the range

of CR times, which implies that the motion can be coarse-

grained to an effective chain motion along the fat tube.

In the limit of slow sCR (while CR remains fast enough to

locally explore the fat tube), Read et al. [11,28] predict that

the chain transport along the thin tube alone is sufficient to

give a renormalized reptation and CLF along the fat tube.

The tortuous path of the thin tube gives rise to a larger effec-

tive friction along the smoother fat tube, resulting in an

enhanced CLF time of sR=/f . We expect a fraction of the

chain ~Z�1=2 ¼ ð/f ZÞ�1=2
to relax in this time, so that

UðtÞ � a� Cl/
�1=4
f Z�1=2ðt=sRÞ1=4

, i.e., for slow CR we

expect a CLF plateau a factor /�1=4 higher than the thin tube

CLF plateau: This value is represented by the dashed hori-

zontal line in Fig. 3. In practice, all the data which exhibit a

fat tube CLF plateau lie between the red and the dashed
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horizontal lines. This is because CR itself provides an addi-

tional, and accelerating, mechanism for chain motion (both

CLF and reptation) along the fat tube, which should be added

to diffusion along the thin tube. Read et al. [11] predict the

effective friction per bead for motion along the fat tube to be

1

ffat

¼
/f

f
þ 1

fCR þ
f

1� /f

: (2)

The first term on the right accounts for chain motion along

the thin tube, projected onto the fat tube contour, and is the

only contribution in the limit of slow CR (fCR !1). The

second term accounts for motion along the fat tube due to

CR, where fCR / sCR is the effective friction per bead from

CR events. In the limit fCR ! 0, monomer friction again

dominates and ffat ! f. We note that the prediction by Read

et al. [11,28] of an enhanced CLF time of sR=/f applies only

in the regime of slow CR, where fCR is large and the first

term on the right hand side of Eq. (2) is the dominant one.

For faster CR, the second term starts to contribute, and the

CLF time is accelerated.

Shivokhin et al. [21] present corrections to Eq. (2) for the

slip-spring model, including the slip-spring friction, dilution

effects, and an improved crossover to monomeric friction for

fast CR. We summarize their results in Appendix A and

show how they may be used to predict the expected CLF pla-

teau [Eq. (A7)], and CLF relaxation time for each simulation

[Eq. (A8)]. These results are indicated by the horizontal and

vertical lines, respectively, in Fig. 3 for each value of sCR.

The plateau levels are accurately predicted. As with the data

for sCR¼ 0 described above, for each nonzero CR time the

apparent end of the CLF plateau is consistently a factor of 3

later than the predicted CLF time. Consequently, the hori-

zontal shift of the data, and in particular, the crossover to ter-

minal reptation dynamics, follows the horizontal shift in the

predicted CLF relaxation time as sCR is varied.

In between the early time plateau (CLF in thin tube) and

late time plateau (CLF in fat tube) is a regime where both

CR and CLF are active concurrently. In this case, the chain

may be expected to explore an effective supertube repre-

sented by dilution / � t�1=2 from CR Rouse motion. In this

regime, Read et al. [11] predict UðtÞ � a� Ct�3=8, a scaling

which is indicated by the dash-dot line of slope 1
8

in Fig. 3.

While this initially appears to give a plausible prediction of

the slope in this intermediate region, especially for the slow-

est sCR, there is actually not enough separation between the

different time regimes to establish this intermediate scaling.

In particular, contributions to U(t) from tube dilution contrib-

ute significantly to the data, and it is likely that the / � t�1=2

scaling for CR Rouse motion is not fully established, as we

now discuss.

B. Calculation of full time dependence of the data

We now aim to describe the full time-dependence of the

simulation data. The sub-Fickian monomer displacement

x � t�1=4 within the Rouse model can be understood from a

simple scaling argument [29,30] assuming an effective drag

constant based on how many beads in a subsection of chain

move coherently at a given timescale. The number, n, of

beads moving coherently can be obtained by equating cur-

rent timescale t with the Rouse time sR � n2fb2=kBT for

those n monomers, giving nðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tkBT=fb2

p
. These beads

then move with diffusion constant D � kBT=nf, so that on

timescale t they are expected to diffuse a mean square dis-

tance x2 � Dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tkBTb2=f

p
, which is also (self consis-

tently) equal to the typical chain size x2 � nb2 for a chain

with n beads. Hence, the sub-Fickian diffusion is understood

to arise from an effective drag coefficient which increases on

increasing length- or time-scales for the chain motion.

We may specialize the above scaling argument to deal

with the particular case of a chain end undergoing CLFs in a

fat tube (whose effective diameter may increase with time

due to CR). We are required to obtain the effective diffusion

distance lfat of the chain end along the diluted fat tube, and

we note that the friction constant per monomer for this

motion is ffat, as obtained from Eq. (2). Hence, we anticipate

ðdl2fat=dtÞ / 1=nðtÞffat where n(t) is the number of monomers

moving coherently with the chain end by Rouse motion,

obtained by inverting the Rouse relaxation time, t �
n2ffatb

2=kBT for n beads, to give nðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tkBT=ffatb2

p
. We

then note that moving a distance lfat along the fat tube corre-

sponds to relaxing a fraction ~UCLF ¼ lfat=afatZfat ¼
lfat=aZ/1=2 of the total tube length by CLFs (the factor /1=2

assumes a dilution exponent of 1). We would anticipate

UðtÞ ¼ 1� ~UCLF. We may write d~U
2

CLF ¼ dl2
fat=a2Z2/,

which yields

d~U
2

CLF

dt
¼

C2
l

2Z2

3p2kBT

/2N2
e b2ffatt

 !1
2

: (3)

In the limit of pure CLF in the thin tube, /¼ 1 and ffat¼ f,

so Eq. (3) can be written as

d~U
2

CLF

dt
¼

C2
l

2Z2

1

set

� �1
2

¼
C2

l

2Z

1

sRt

� �1
2

; (4)

FIG. 4. Selected data from Fig. 3 replotted with the time rescaled by a factor

a, i.e., we plot �t3=4ðdU=dtÞa1=4 versus t/a. Values of a used are 1, 1.85, 3.0,

5.0, and 6.5 for CR times sCR ¼ 0, 3, 30, 300, and 3000, respectively.
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which has solution ~UCLF ¼ ClZ�1=2ðt=sRÞ1=4
, consistent

with the formula UðtÞ � 1� ClZ�1=2ðt=sRÞ1=4
used to

determine the thin tube CLF plateau in Fig. 3, discussed

above. The proportionality constant in Eq. (3) has been

fixed to ensure this consistency, and the equation then auto-

matically predicts the corresponding fat tube plateaus

obtained in Eq. (A7).

The chain is initially constrained in the thin tube with

dilution /¼ 1, but CR allows the chain to explore a gradu-

ally widening volume, parameterized by a Rouse scaling

/ ¼ ðt=shopÞ�1=2
with CR hop time shop ¼ c/ðN2

e b2fCR=kBTÞ
until the effective dilution approaches the fat tube / ¼ /f

(here, c/ is a scaling constant related to the rate of local

equilibration due to CR events). To ensure smooth transi-

tions between these three regimes, we employ a crossover

function

/ ¼ /b
f þ

1

1� /b
f

� ��a
b þ t=shop

� �a
2

	 
b
a

0
B@

1
CA

1
b

; (5)

where a controls the smoothness of the early time crossover,

and b the late time crossover. Employing this in Eq. (3), and

in Eq. (2) with /f replaced by /, allows ~UCLFðtÞ to be

obtained by numerical integration. In practice, we use a mod-

ified expression for ffat, which includes the effects of slip-

spring friction, as detailed in Appendix A.

Finally, we note that since the function U(t) [as given in

Eq. (1)] is based on correlations in fluctuations of the end-to-

end vector of the chain, it is not exactly equal to the tube sur-

vival function, l(t), but is additionally affected by fluctua-

tions of the chain about the tube axis at the ends of the

surviving tube. Watanabe et al. [27] noted a similar issue in

discussing dielectric relaxation of star chains. It is therefore

necessary to include a further correction for this effect. A

fluctuation of mean square amplitude hDr2
e i of the chain,

independently applied at both ends of a tube section, gives

rise to correlations in the end to end vector of form

hRðtÞ � Rð0Þi ¼ hRð0Þ � Rð0Þi � hDr2
e i: (6)

Assuming hDr2
e i ¼ cendsNeb2=/ (i.e., fluctuations of order

the diluted tube diameter with proportionality constant cends),

and including also the effects on the tube survival function

due to CLFs in Eq. (1), gives

UðtÞ ¼ 1� ~UCLFðtÞ � ~Uends; (7)

where ~Uends ¼ cends=/Z.

Evidently, in the above discussion, there are several, in

principle model-dependent, fitting parameters, yet reasonable

choices c/ ¼ cends ¼ 1, a¼ 2, and b¼ 1 give an excellent

description of the data for slow CR, 300 � sCR � 30 000, as

shown in Fig. 5. These predictions use the above expressions,

modified for inclusion of slip-spring friction as detailed in

Appendix A. The data for faster CR are affected by the early

time transient exhibited by all the data for t � 102, so it was

not possible to match those data using the same parameters:

This evidently affects our ability to predict the data for sCR

� 30 for which the theory does not match the data quantita-

tively. Figure 5 also illustrates the non-negligible contribution

from fluctuations of the chain about the tube axis, as parame-

terized by ~Uends: The dashed lines indicate the predictions if

this component is not included (it is possible to match the data

by setting ~Uends ¼ 0 and adjusting other parameters to com-

pensate, but we consider the parameters chosen are physically

reasonable). With the same set of parameters, we are also able

to match with similar accuracy simulation data for f¼ 0, i.e.,

in which CR is applied to all slip-springs, as shown on the

right of Fig. 5. Again prediction of the data is excellent for

300 � sCR � 30 000, while data for sCR � 30 are not quanti-

tatively predicted by the model.

In summary, in this section we have constructed a model,

based on a scaling argument for Rouse dynamics of the chain

ends, for CLFs in a tube which is gradually widening (being

diluted) due to CR events. For sufficiently slow CR, the result-

ing predictions (using reasonable parameterization) are in close

agreement with the simulation data as shown in Fig. 5. It seems

possible that a theoretical treatment along the lines developed

in this section could provide the basis for a description of CLF

in more general CR environments with multiple CR times.

IV. IMPLICATIONS FOR RHEOLOGY OF BINARY
POLYMER MIXTURES: REDRAWING THE VIOVY
DIAGRAM

To the extent that the slip-spring model is a realistic predic-

tor of the dynamics of entangled polymers, the above analysis

indicates the following conclusions: (i) That CR in a binary

mixture provides a mechanism for accelerated CLFs; (ii) that

this can be considered in terms of motion along a diluted fat

tube, with an appropriately rescaled effective friction constant;

and (iii) that this effective friction arises from a combination

of chain motion along the thin tube and CR-activated motion

along the fatter tube. The expressions for friction derived by

Read et al. [11], as given in Eq. (2), appropriately combine

these two contributions, so that we are able to account for the

observed plateaus for CLF in the fat tube as observed in our

slip-spring simulations. We are also able to describe the tran-

sient behavior as described in Sec. III B.

It is also the case that CLF in the fat tube, when it occurs,

provides a mechanism for accelerating the terminal relaxa-

tion of the chains, because it shortens the distance required

for the chain to reptate in order to complete the relaxation

process. This has practical implications for the rheology of

both binary and polydisperse polymer mixtures. In order to

illustrate this, we now revisit the diagram created by Viovy

et al. for binary blends [18], but reconsider it in the light of

CLFs of both short and long polymers.

A. Construction of the diagram

1. General description of the modified diagram

For monodisperse entangled polymers, with Z entangle-

ments, the reptation relaxation time including the effect of

CLF can in general be written in the form
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sd ¼ 3Z3f Zð Þse; (8)

where se is the entanglement time, and the function f ðZÞ
incorporates the correction to pure reptation from CLF.

Various functional forms for f ðZÞ have been proposed (for

example, the apparent 3.4 power law for viscosity versus

molecular weight could be incorporated using f ðZÞ � Z0:4).

From fits to their simulation data, McLeish and Likhtman

obtained the functional form

f Zð Þ ¼ 1� 3:38ffiffiffi
Z
p þ 4:17

Z
� 1:55

Z1:5
; (9)

which we shall use in this work (in fitting to slip-spring data

in a previous publication [21], we found that replacing 1.55

with 1.4 in the last term gave a better representation of the

data, but the difference is marginal for the present discus-

sion). The typical CR time from the short chains with ZS

entanglements in a binary mixture is therefore equal to the

reptation time of the short chains, corrected for CLF

sCR ¼ sdS ¼ 3Z3
Sf ZSð Þse: (10)

The form of this suggests that, instead of the usual Graessley

parameter, Gr ¼ ZL=Z3
S, in which the Z3

S indicates the scaling

of CR time with ZS, we should use a modified Graessley

parameter which we propose should take the form

Gr� ¼ ZL

3Z3
Sf ZSð Þ

¼ ZLse

sCR

: (11)

There is an argument for also considering CLF of the long

chains directly in our definition of a modified Graessley

parameter, but since the degree of long chain CLF is strongly

dependent on composition (with potential for CLF in thin or

fat tubes), it turns out to be better to consider the effects of

long chain CLF separately, during the construction of the

diagram, as we do below.

For the horizontal axis of our modified Viovy diagram, we

retain the variable ~ZL ¼ /f ZL, the number of entanglements

along the diluted “fat tube” for the long chains, under the

assumption of dilution exponent of 1. Hence, our modified

diagram takes the form of a “map” in the two-dimensional

plane of co-ordinates ð ~ZL;Gr�Þ and is presented in Fig. 6.

As with the original Viovy diagram, shown schematically

in Fig. 1, there are numerous lines which divide the diagram

into a number of regions of the parameter space, where the

qualitatively different binary blend behavior may be

expected. These lines follow the overall geometry of the

original diagram deduced by Viovy et al., but augment it

with the effects of CLF. Some lines are also shifted in posi-

tion from the original diagram, by consideration of the

numerical results from our slip-spring simulations.

We first discuss the various numbered regions labeled in

Fig. 6, before detailing the construction of the lines in Sec.

IV A 2. The numbers 1–4 refer to regions of the original

Viovy diagram as shown in Fig. 1, while the letters a, b, c

refer to subdivisions of those regions due to CLF effects.

• In region 1 of the diagram, the dilute long chains fully

relax via CR Rouse motion.
• In region 2 of the diagram, the CR Rouse motion is termi-

nated by reptation of the long chains. In region 2a, repta-

tion is not at all accelerated by CR, while in region 2b, CR

leads to enhanced CLF in a partially dilated tube speeding

up the terminal reptation.
• In region 3 of the diagram, the chain is locally able to

explore the fat tube before terminal reptation, so the

FIG. 5. Left: simulation data from Fig. 3 together with theoretical predictions of the data using the model described in Sec. III B. Solid lines present predictions

including fluctuations of the chain around the tube axis, while dashed lines indicate predictions with ~Uends ¼ 0 and other parameters fixed. Right: simulation

data and theoretical predictions for f¼ 0, i.e., in which CR is applied to all slip-springs, with all other parameters identical to those in Fig. 3. Data for no CR

correspond to motion purely in the thin tube; these data are identical for both plots. Data for sCR ¼ 0 correspond to motion purely in the fat tube.
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terminal modulus is set by entanglements between long

chains. However, the dominant process governing chain

transport along the fat tube is via chain motion along the

(more tortuous) thin tube. In region 3a, reptation is not at

all accelerated by CR [giving Eq. (19) below]; in region

3b, CR leads to enhanced CLF in a partially dilated tube

[accelerating the terminal relaxation as in Eq. (21)]; in

region 3c, CR leads to enhanced CLF in a fully dilated

fat tube [accelerating the terminal relaxation as in Eq.

(20)].
• In region 4 of the diagram, CR of the thin tube along the

fat tube is faster than chain motion along the thin tube.

Hence, the chain undergoes both CLF and reptation in

the fat tube at an accelerated rate set by the CR motion

with effective friction constant per monomer given by

Eq. (2).

Importantly, we have identified new regions of the dia-

gram (3b and 3c) in which CLF in a partially or fully

dilated tube may be expected to lead to accelerated relaxa-

tion of the long chains, even when the dominant chain

transport is along the thin tube. In these regions, Viovy

et al. [18] predicted no acceleration of the terminal

relaxation, in contrast to our predictions, so this result is an

important correction.

Before moving on to a discussion of how the lines on the

diagram are constructed, we note one additional relevant fac-

tor for real polymeric liquids. It is often assumed that the

effective friction for CR motion is simply proportional to the

relaxation time of the short chains. This is certainly the case

for slow CR, but as the CR time from short chains becomes

faster, the local Rouse friction of the long chains becomes an

additional factor which slows their CR Rouse relaxation.

There is thus, toward the top of the Viovy diagram (in

regions 1 and 4), a further crossover to motion dominated by

local monomer friction rather than friction from CR events.

However, as noted by Shivokhin et al. [21], this crossover is

surprisingly broad. We discuss this feature in Subsection 1

of Appendix C, noting that in practice the crossover region

extends to short chain lengths as long at 10 entanglements.

Figure 6 is constructed without including the effects of this

broad crossover; it is possible that the breadth of this cross-

over region may, in some practical cases, extend out toward

the lines at the boundaries of regions 1 and 4, shifting their

positions.

FIG. 6. Left: construction of the modified Viovy diagram, with regions of the diagram labeled as described in the main text. The blue squares, and vertical

dashed line, indicate the location of our slip-spring simulations on the modified diagram for different values of sCR. Right: Location of a substantial set of liter-

ature blends on the diagram. Arrows indicate the range covered by the blends for these data, but do not extend to the value of ZL for the pure long chain compo-

nent. Green arrows indicate blends where it is very clear that relaxation of long chains is accelerated by dilution with shorter chains. Blue arrows indicate

blends where the long chain relaxation is clearly not accelerated by shorter chains. Purple arrows indicate data where there may be some acceleration of termi-

nal relaxation when long chains are diluted by shorter ones. To the left of the diagram, the red and brown vertical arrows indicate a set of data in which dilute

long chains are measure in matrices of different short chain molecular weight. The red arrow indicates data which clearly follow CR Rouse scaling of terminal

relaxation, and the brown arrow indicates data which depart from this). Blends are labeled according to material (PolyIsoprene, PolyButadiene or PolyStyrene)

and molecular weight of the long/short component in kg/mol. References for the data are given in Table I.
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2. Details of construction of the lines on the diagram

We now describe the construction of the modified Viovy

diagram. We consider first the upper right hand side of the

diagram, since this is the region most relevant to our above

simulations. The long chains will entangle with other long

chains provided ~ZL > 1, and this gives a vertical line toward

the top of the diagram in Fig. 6, separating dilute from con-

centrated long chains. This line was present in the original

Viovy diagram.

A second line of the diagram is obtained by considering

which of the two terms in Eq. (2) is dominant for the effec-

tive friction along the fat tube. For fast CR, fCR is small and

the second term dominates, so that motion directly along the

fat tube (mediated by CR events) is the major process. For

slow CR, the chain can more readily move along the fat tube

by snaking its way along the more tortuous contour of the

thin tube (we note that motion along the thin tube also results

in motion along the fat tube!). The balance between these

two modes of motion can be obtained at a scaling level by

comparing the bare reptation time in the thin tube (3Z3
Lse)

with the reptation time for direct motion along the fat tube

mediated by CR events, which scales as (3 ~ZLZ2
LsCR). We

find that the two processes are of similar magnitude when

3Z3
Lse ¼ 3 ~ZLZ2

LsCR; (12)

which implies that

Gr� � ~ZL: (13)

An equivalent line to this was present on the original Viovy

diagram. However, the scaling argument just presented

ignores quite substantial prefactors, assumed to be “order 1”

constants. It is more accurate to draw the line based upon the

point where the two terms in Eq. (2) are of similar magni-

tude, using the results obtained from the slip-spring model

(especially for the effective friction from CR events) to

quantify this. This is done in Appendix B, and the result is

that the line should in fact be drawn at

Gr� � 0:047 ~ZL; (14)

which substantially moves the crossover from that predicted

by the scaling argument in Eq. (13). The main reason for this

shift in the line is that relaxation due to CR is substantially

faster than would be expected from simple scaling argu-

ments, as discussed in Appendices B and C 1.

The line predicted by Eq. (14) is shown separating regions

4 and 3c in Fig. 6. Although drawing a line on a diagram

seems to imply a sharp crossover, the data shown in Fig. 3

illustrate that, for polymers of realistic length, there is not a

sharp boundary between the two regimes, and rather the tran-

sition from one to the other is somewhat smooth and

continuous.

All the above assumes that it is appropriate to consider

motion in the fat tube at all. However, for sufficiently slow

CR, it takes time for the thin tube to locally explore the fat

tube, i.e., it takes finite time for equilibration of the thin tube

over the size of a fat tube entanglement. If there are /�1
f thin

tube segments per fat tube segment, then this equilibration

time is the CR-Rouse time of /�1
f tube segments, which

scales as

se;f � sCR/�2
f : (15)

This time also corresponds to the long time crossover used in

Eq. (5): We can use this equation to obtain a more accurate

expression, consistent with the results of the slip-spring sim-

ulations. We demonstrate this in Appendix B, giving the

result

se;f � 1:39sCR/�2
f : (16)

(In fact, the constant 1.39 could here and below be reason-

ably approximated as 1 for the purposes of the logarithmic

plot of the Viovy diagram.) We may compare this timescale

with other relaxation times to determine whether the fat tube

is relevant to chain dynamics and stress relaxation at those

timescales.

One such timescale corresponds to the transition from

CLF to the onset of centre of mass reptation motion.

According to tube theory, this transition occurs at the longest

CLF time of the chain. For monodisperse chains in a fixed

tube, this CLF time is just the Rouse time of the chain.

However, if we consider motion in the fat tube, then the lon-

gest CLF time is the effective Rouse time using the rescaled

friction from Eq. (2). If CR is sufficiently slow that the first

term in Eq. (2) dominates, then this CLF time was found by

Read et al. [11,28] to be sCLF ¼ sR=/f , where sR ¼ Z2
Lse is

the Rouse time of the long chains.

We may compare the fat tube CLF time sCLF to the fat

tube equilibration time se,f. If sCLF > se,f, then the chain will

have had opportunity to explore the fat tube locally before

undergoing its deepest possible CLF motion in the fat tube.

If this is the case we expect CLF in the fat tube to occur, and

for this in turn to accelerate the terminal relaxation of the

chain. On the other hand, if sCLF < se,f, then the transition to

terminal reptation must occur before the chain has locally

explored the fat tube, and so full CLF in the fat tube is no

longer a possible mechanism for accelerating the terminal

relaxation (although CLF in a partially dilated tube may still

be possible). This can be seen in the simulation data in Fig. 3

where for sCR¼ 30 000 the plateau corresponding to CLF in

the fat tube is not attained before the final transition to termi-

nal reptation. Arguably, for sCR¼ 3000 the fat tube CLF pla-

teau is not fully attained either. Consequently, the line where

sCLF¼ se,f marks an important transition above which full

CLF in the fat tube occurs. In terms of the Viovy diagram

parameters, this gives

Gr� ¼ 1:39 ~Z
�1

L : (17)

This is a new line on the diagram, not present in the

original work of Viovy, because it concerns the effects of

CLF. It is shown as the line separating regions 3c and 3b

in Fig. 6.
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With our modified Graessley parameter from Eq. (11), the

three lines obtained above ( ~ZL ¼ 1; Gr� ¼ 0:047 ~ZL and

Gr� ¼ 1:39 ~Z
�1

L ) are expected to be fixed lines in our modi-

fied Viovy diagram, i.e., they depend only on the composite

parameters Gr� and ~ZL (provided the short chains are long

enough to be entangled themselves). Hence, we plot them as

solid lines in Fig. 6. However, we must recognize that the

Viovy diagram is a two-dimensional projection of a three

dimensional space defined by parameters (/f, ZL, ZS). For

pure reptation, this projection works perfectly and all lines

on the diagram are fixed. But when CLF is considered, some

“lines” are no-longer perfectly projected in a two-

dimensional representation. The best that can be done is to

choose a 2D projection which fixes some lines (as we have

done above) and then discuss the other transitions, as we

now do.

It is possible that CR is so slow that CLF in the thin tube,

and the transition to terminal reptation in the thin tube,

occurs before any substantial CR has occurred at all. This

will be the case if shop > sR, where shop � 1:39sCR sets the

early-time crossover in Eq. (5). The result then is that the

dynamics of reptation and CLF of the long chains is essen-

tially unaffected by CR. Setting sCR¼ sR gives the limit of

this regime as

Gr� ¼ 1:39Z�1
L : (18)

Evidently the location of this transition on the Viovy dia-

gram depends on the value of ZL, so it is not a fixed line in

the projected ð ~ZL;Gr�Þ space. We represent it as a horizontal

dashed line in Fig. 6, separating region 3a from 3b, and

region 2a from 2b, choosing a representative value ZL¼ 100,

which is typical for many literature binary blends, giving

Gr*¼ 0.0139. Below this line, reptation and CLF of the long

chains are unaffected by CR; above the line, some CLF in at

least a partially diluted tube is possible.

Hence, below the horizontal line, we anticipate the termi-

nal time of the long chains to be simply

sdL ¼ 3Z3
Lf ZLð Þse: (19)

On the other hand, above the line Gr� ¼ 1:39 ~Z
�1

L , we antici-

pate CLF in the fat tube to accelerate the terminal relaxation.

Provided Gr� < 0:047 ~ZL (i.e., chain motion along the thin

tube dominates), the terminal time of the long chains will be

modified to

sdL ¼ 3Z3
Lf ~ZL

� �
se; (20)

where the function f ð ~ZLÞ accounts for the accelerating

effects of CLF in the fatter tube. Intermediate between these

two we expect CR to begin allowing CLF in a partially

dilated tube. For a given effective dilution /*, we can obtain

both the time s�e;f ¼ 1:39sCRð/�Þ�2
required for CR-Rouse

motion to locally relax the chain to the tube diameter corre-

sponding to that dilution, and the CLF time sR=/
�

¼ Z2
Lse=/

� for the chain in the tube at that dilution. Equating

these two gives a partially diluted “supertube,” in which the

CLF time equals the time taken to explore the tube locally

by CR, and which is therefore the optimal diluted tube for

CLF before transition to terminal reptation dynamics. This

gives

/� ¼ 1:39sCR

Z2
Lse

¼ 1:39

ZLGr�
:

Equivalently, the number of effective “entanglements” in

that supertube is ZL/� ¼ 1:39=Gr�. Hence we anticipate a

terminal time

sdL ¼ 3Z3
Lf 1:39=Gr�ð Þse; (21)

which, in regions 2b and 3b, naturally interpolates between

the limits in Eqs. (19) and (20).

We may now follow the arguments of Viovy et al. and

compare the terminal reptation time of the long chains with

other relaxation processes. If sdL < se,f, then the long chains

reptate before they have fully explored the fat tube, and so

entanglements between long chains do not determine the ter-

minal modulus. It is as though the long chains are dilute and

unentangled with other long chains. On the other hand, if sdL

> se,f, then the long chains locally explore the full fat tube

before reptating, and so the terminal modulus is set by entan-

glements between long chains. Setting sdL¼ se,f gives the

boundary between these regimes. For Gr� < 1:39Z�1
L , we

obtain

Gr� ¼ 1:39

3 ~Z
2

Lf ZLð Þ
; (22)

a line with slope –2 on the Viovy diagram, whose position

changes weakly with ZL, shown separating regions 3a and 2a

in Fig. 6. For Gr� > 1:39Z�1
L , the transition sdL¼ se,f must

be solved numerically using Eq. (21) for sdL, giving a line

with a slightly increasing gradient, as shown via the sloped

dashed line separating regions 2b and 3b in Fig. 6.

Finally, for dilute long chains we may compare the repta-

tion time sdL with the CR Rouse time sRCR of dilute long

chains. This comparison indicates whether terminal relaxa-

tion by reptation or terminal relaxation by CR is the faster

process. Using Eq. (21) for sdL, and the scaling result

sRCR ¼ Z2
LsCR, this transition occurs where

3Gr�f 1:39=Gr�ð Þ ¼ 1: (23)

However, the slip-spring model results, discussed in the

Appendix B, indicate that the exact transition occurs at

3Gr�f 1:39=Gr�ð Þ ¼ 0:047; (24)

where the factor 0.047 appears for the same reason as in Eq.

(14), from an assessment of the exact scaling of friction from

CR events. Numerical solution of Eq. (24) gives Gr*

� 0.0254, the solid horizontal line shown separating regions

1 and 2b in Fig. 6. The main source of this small critical

value of the Graessley parameter (Grc¼ 0.0254) is that (as

discussed in Subsection 2 of Appendix C) the slip-spring

simulations exhibit a much faster rate of CR relaxation than
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would be expected from simple scaling arguments. The

physical source of this rapid CR relaxation is likely that the

tube takes finite sized hops for each CR event, rather than

continuous Rouse motion.

B. Checking the diagram with slip-spring
simulations

It is vital, now, to assess whether the modified diagram

we have constructed is useful in mapping real data on binary

blends. We may begin with an initial check: Are the slip-

spring simulations correctly located on the diagram? The

horizontal co-ordinate on the diagram for the simulations is

obtained by using the number of fat tube entanglements for

the N¼ 512 chains deduced above ( ~Z ¼ 12:5). The modified

Graessley parameter can be obtained from Eq. (11), but not-

ing that the slip-springs provide extra friction which slows

down the reptation. Hence, we use Gr� ¼ kSLZLse=sCR,

where kSL ¼ ð1þ fSL=fÞ � 1:93 represents the retardation

of reptation due to slip-spring friction. For the chosen simu-

lation parameters, se ¼ N2
e fb2=3p2kBT ¼ 0:808 and

ZL ¼ 105. Hence, the simulations are located on the vertical

blue dotted line, indicated on the left hand diagram of Fig. 6.

We may observe that the sCR¼ 300 data lie on the boundary

given by Eq. (14) where chain motion along the thin tube

and CR transport along the fat tube are competing. This

matches well with Fig. 3, where the plateau of the sCR¼ 300

data lies just a little way above the horizontal dashed line

(which is the expected limit of motion considering no CR

transport along the fat tube, i.e., including only chain trans-

port along the thin tube). For sCR < 300, the CLF motion

along the fat tube is clearly accelerated by CR; hence, these

data lie in region 4 of the modified Viovy diagram. The data

for sCR¼ 3000, however, lie in region 3b of the diagram,

indicating that we expect some CLF within a dilating tube

before transition to terminal reptation. This, again, can be

seen in Fig. 3, where the enhanced CLF in a dilating tube is

clearly visible, but no clear plateau is observed for CLF in

the fat tube, before transition to terminal reptation. Finally,

the data for sCR¼ 30 000 lie below the horizontal dashed

line on the left of Fig. 6. Hence, we expect only a marginal

effect of CR on the relaxation pathway. This, again, can be

observed in Fig. 3 where the onset of CR for the sCR

¼ 30 000 data coincides with the transition to terminal repta-

tion in the no CR data; hence the effect of CR is weak.

We can make one further check of our modified diagram

against slip-spring simulation data. To the left of the dia-

gram, we consider dilute long chains, which can be modeled

by slip-spring simulations in which all slip-springs undergo

CR. An example set of data of this type was shown in the

right hand side of Fig. 5. The terminal relaxation for such

blends will either be via CR Rouse (region 1 of the diagram)

or reptation (region 2 of the diagram), with a transition

between these regimes estimated at Gr* � 0.0254 above. For

the simulations in Fig. 5 (N¼ 512, Z¼ 105), this crossover

corresponds to sCR � 6500, i.e., somewhere between the

sCR¼ 3000 and sCR¼ 30 000 simulations. Visual inspection

of Fig. 5 indicates that certainly the terminal time of the

sCR¼ 30 000 data is comparable to the data without CR,

which suggests that the terminal relaxation is driven by

reptation. Likewise, the terminal relaxation for sCR¼ 3000

and below is accelerated, though this could be either due to

enhanced CLF or due to full relaxation via CR. We can test

this by noting that the CR Rouse relaxation time sRCR is pro-

portional to fCR, the effective friction constant per bead for

CR Rouse motion. Hence, if we divide the time axis by fCR,

then the data for which terminal relaxation is via CR Rouse

motion should achieve terminal relaxation at the same value

of t/fCR. We illustrate this data reduction in Fig. 7, using the

full expression for fCR given in Appendix A. It is clear that

the data for sCR � 300 relax at the same value of t/fCR (with

peaks indicated by the vertical line) and so are relaxing by

CR Rouse motion. The data for sCR¼ 3000 relax slightly

earlier, and so are close to the crossover. The data for

sCR¼ 30 000 are very much accelerated in this representa-

tion, indicating that another relaxation mechanism (i.e.,

reptation) is responsible for the terminal relaxation.

A similar conclusion can be drawn from the simulations in

[21], which were for shorter chains with N¼ 128 and so

Z¼ 26. Simulations were performed in which all slip-springs

underwent CR with a fixed average CR time just as with the

data in Fig. 5. For these parameters, we therefore expect the

crossover at Gr* � 0.0254 to correspond to a CR time of sCR

� 1600. Figure 11(b) of [21] indicates that the crossover from

terminal relaxation by CR to terminal relaxation by reptation

occurs in the vicinity of 1000 < sCR < 2000. It is clear from

those data that the crossover is broad and smooth, and that close

to the transition the terminal relaxation is faster than would be

expected either from CR or from reptation acting alone.

C. Checking the diagram with experimental binary
blend data

We may now proceed to locate data for literature experi-

mental binary blends on our modified Viovy diagram, as

shown on the right hand side of Fig. 6. The original sources

FIG. 7. Data from the right-hand side of Fig. 5 replotted against a horizontal

axis of t/fCR. The vertical line indicates the rough location of the peak for

the data with sCR ¼ 3, 30, and 300.
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for the various data are listed in Table I. The majority of

these data are collated in the publications of Park and Larson

[14,15] and van Ruymbeke et al. [12]; the remaining data

may be found in Read et al. [11], Watanabe et al. [16,17],

Sawada et al. [13], and Struglinski and Graessley [19].

We focus first on the data in which the long chains are not

dilute ( ~Z > 1). Practically all such data in the literature fix

the length of the long and short chains and then progressively

dilute the long chains in the shorter ones. Hence, each set of

such data corresponds to fixed values of ZL and ZS, and so a

fixed value of Gr* [which can be calculated from Eq. (11)].

Thus, each set of data follows a horizontal line on the dia-

gram. For each set, we calculate Gr* and then represent the

range of values of ~Z available in the blend data with a line in

Fig. 6. For this calculation, we require values for Me, which

we take to be 4.82 kg/mol [polyisoprene (PI)], 1.81 kg/mol

[polybutadiene (PB)], and 16.5 kg/mol [polystyrene (PS)].

These are the values given in the “Materials Database” of

the REPTATE software1 and are based on fitting the Likhtman-

McLeish theory [9] for monodisperse linear polymers to lit-

erature data. Hence, these values are based on the definition

Me ¼ ð4=5ÞðqRT=G0
NÞ, where G0

N is the plateau modulus [8].

However, the qualitative conclusions of this exercise are not

strongly affected by the precise value for Me used within typ-

ical variation found in the literature, and the factor 4
5

in its

definition does not make a large difference to the positioning

of blends on the logarithmic axes of the Viovy diagram.

For each set of data, we focus on a specific question: Is the

terminal relaxation of the long chains observably accelerated

upon dilution with short chains? For most data, this is visibly

and unambiguously clear from the linear rheology.

Nevertheless, it is instructive to note the work of Park and

Larson [15] who examined whether or not their model, using

reptation along the thin tube only, could describe several of

these sets of data. Since their model did not include CLF along

the fat tube we can assume that, if the data were adequately

represented by their thin tube model, the terminal relaxation of

long chains is not significantly accelerated by the short chains.

Further help is available in assessing the data presented by

Watanabe et al. [16,17] for the PS 294/XX, PS 407/XX and

PS 1070/XX blends. In those papers, the linear rheology data

were converted to relaxation spectra, also presented in their

papers, and these spectra were used to assess characteristic

relaxation times, including the terminal relaxation of the long

chains. For these data, then, the authors of the paper them-

selves indicate whether this terminal relaxation is accelerated.

In Fig. 6, green lines indicate blends where it is very clear

that relaxation of long chains is accelerated by dilution with

shorter chains. Blue lines indicate blends where there is no evi-

dence that long chain relaxation is accelerated by shorter chains.

The purple lines indicate two marginal cases where Park and

Larson [15] found only a small acceleration of the long chains

by the shorter ones as compared to predictions of their model

with reptation along the thin tube, and one similar dataset from

Watanabe et al. [16] which we discuss in detail below.

1. Data in region 4 of the Viovy diagram

The vast majority of the experimental data match very

clearly the expectations of the modified Viovy diagram. In

region 4 of the diagram, we anticipate that reptation and

CLF in the fat tube, at a rate set by the CR from the shorter

chains, will be faster than reptation and CLF in the thin tube.

Hence, dilution with shorter chains will certainly accelerate

the relaxation of the longer chains, both due to the acceler-

ated reptation motion and from CLF in the fat tube. This is

exactly what is observed in the data spanning this region. It

is important therefore to include the CR contribution to CLF

in the fat tube when describing data in this region, as was

shown (for example) by van Ruymbeke et al. [12] in model-

ing the PI 308/21 data.

2. Data in region 3c of the Viovy diagram

Acceleration of the long chains is also clearly observed in

data found in region 3c of the diagram, notably in the PI

483/34 and PB 550/20 data. Some of the PS 294/83 data also

lie within this region. In this region, chain motion along the

thin tube is expected to be faster than motion by CR along

the fat tube: Hence, the original work of Viovy et al. pre-

dicted no acceleration of the terminal time. However, we

now predict that CR gives the long chains freedom for CLF

in the fat tube, and that this provides a mechanism to acceler-

ate the terminal relaxation. This explains the speeding up of

the long chains for these data, as was shown explicitly for

the PI 483/34 data by Read et al. [11] by fitting the data with

their model.

For the PI 483/34 and PB 550/20 data, we may test to see

whether the expected speeding up of the terminal relaxation

TABLE I. Literature references for data shown in Fig. 3.

Data References

Long chains accelerated

by short chains?

PI 226/23 Read et al. [11] Yes

PI 308/21 Watanabe et al. [31,32] Yes

PI 308/94 Watanabe et al. [31,32] No

PI 329/14 Sawada et al. [12,13] Yes

PI 483/34 Read et al. [11,28] Yes

PI 626/nn Sawada et al. [13] Yes (dilute long chains)

PB 160/25 Lee et al. [33] Yes (marginal)

PB 181/39 Struglinski and Graessley [19] No

PB 335/71 Rubinstein and Colby [34] No

PB 410/3.9 Wang et al. [35] Yes

PB 410/110 Wang et al. [35] No

PB 450/39 Struglinski and Graessley [19] No

PB 450/93 Struglinski and Graessley [19] No

PB 550/20 Park and Larson [14] Yes

PS 294/36 Watanabe et al. [16] Yes

PS 294/83 Watanabe et al. [16] Yes

PS 294/161 Watanabe et al. [16] Yes (partial)

PS 407/22 Watanabe et al. [17] Yes

PS 407/36 Watanabe et al. [17] Yes

PS 1070/22 Watanabe et al. [17] Yes

PS 1070/36 Watanabe et al. [17] Yes

PS 1070/68 Watanabe et al. [17] Yes

PS 670/160 Montfort et al. [36] Yes (marginal)

1
REPTATE software available from http://reptate.com/ (2009 release) and

http://reptate.readthedocs.io/en/latest/ (2018 release).

1029CLF AND CR IN ENTANGLED POLYMERS

http://reptate.com/
http://reptate.readthedocs.io/en/latest/


of long chains is well predicted by Eq. (20) (i.e., including

only the accelerating effect of CLF in the fat tube). In order

to do this, we must decide on an appropriate dilution factor

/ to apply in calculating ~ZL ¼ /ZL. At first sight, it may

seem appropriate to use / ¼ /chem, where /chem is the chem-

ical volume fraction of the long chains in the melt. However,

as was pointed out previously [11], this underestimates the

degree of dilution appropriate for the fat tube, since a signifi-

cant portion of the long chains relax on the same fast time-

scale as the short chains (e.g., by CLF). In [11], the fraction

/ was treated as a fitting parameter. Here we construct an

approximate argument to estimate the maximal dilution that

could reasonably be applied (consistent with a dilution expo-

nent of 1). We suppose that during CLF in the fat tube, all

long chain material relaxing due to CLF acts to give CR on

the remaining, unrelaxed long chain material, further widen-

ing the fat tube. Hence, the dilution factor that should be

applied at the timescale of CLF in the fat tube is /¼ xL/chem,

where xL is the fraction of long-chains that remain unrelaxed

by CLF. Further, we can estimate xL by noting that the main

contribution to speeding up reptation by CLF is that it short-

ens the distance required for the chains to diffuse. Since the

diffusive relaxation time scales as the square of the diffusion

distance, we expect xL �
ffiffiffiffiffiffiffiffiffiffiffiffi
f ð ~ZLÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð/ZLÞ

p
(at least for

well entangled chains). This gives a self-consistent formula

/ ¼ /chem

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð/ZLÞ

p
which can be solved numerically to

obtain /. We perform this exercise for the PI 483/34 and PB

550/20 blends, resulting in the dilution factors listed in Table

II. These may then in turn be used to estimate the terminal

relaxation times using Eq. (20).

We can, additionally, estimate the degree to which CR

motion, carrying the chain along the fat tube, further accel-

erates the terminal relaxation of the long chains. Although

these blends are in region 3c of the modified Viovy dia-

gram, so that motion along the thin tube is dominant, along-

tube CR motion can still provide a perturbation to the chain

relaxation. We estimate the result of this by including the

full expression [Eq. (2)] for the effective friction for motion

along the fat tube, in which the second term gives the accel-

erating effect due to CR. This is done in Subsection 2 of

Appendix C, giving rise to a new Eq. (C2) for the long

chain terminal relaxation time. The correction factor ACR in

this expression can become as small as 0.6 for the most

dilute blend considered here in the PI483/34 series, indicat-

ing a significant extra correction (though the dominant

correction remains the acceleration due to CLF in the fat

tube).

We show linear rheology data for the two blend series in

Figs. 8(a) and 8(c) and indicate the predicted terminal times

from Eq. (20) (only acceleration due to CLF in fat tube)

using dashed vertical lines and using Eq. (C2) (additional

acceleration due to CR along fat tube) using solid vertical

lines. From Figs. 8(a) and 8(c), we may already make the fol-

lowing comments. Equation (20) predicts a substantial accel-

eration of the terminal relaxation of the long chains, simply

due to the accelerating effects of CLF. This predicted accel-

eration is commensurate with the acceleration observed in

the data, especially since we have noted that the effective

dilution should be stronger than the long chain fraction as

estimated above. In addition, CR motion along the fat tube

provides a further accelerating effect [which we include

using Eq. (C2)]. This becomes more significant as dilution

increases and the boundary with region 4 of the Viovy dia-

gram is approached.

However, we note that, for these data, the cross-over fre-

quency (where G0 ¼ G00) is not a good indicator of the termi-

nal time, since the relaxation spectrum changes appreciably

upon dilution. In order to check more quantitatively whether

the predicted acceleration is accurately modeled, we require

some estimate of the longest relaxation time present in the

data. This is difficult to obtain, but one method that seems

reasonably robust is to fit the data with a spectrum of

Maxwell modes using the software REPTATE. The fitting pro-

cedure in this software uses a set of modes with evenly

spaced relaxation times on a logarithmic scale, where the

relaxation time of the fastest and slowest modes are them-

selves free fitting parameters. Hence, the relaxation time of

the slowest fitted mode with a substantial modulus is a rea-

sonable estimate of the longest substantial relaxation time in

the spectrum. It can be checked that the result is robust, by

starting the minimization procedure from different initial

conditions and with different numbers of modes. We show,

in Figs. 8(b) and 8(d), plots of the longest relaxation times

for the data as a function of dilution, along with the predic-

tions from Eq. (20) as a dashed line and Eq. (C2) as a solid

line. The predictions for the PI 483/34 data are excellent,

indicating that CLF in the fat tube gives the dominant accel-

erating effect, with corrections due to CR along the fat tube.

At the lowest long chain fractions, our approximate proce-

dure for estimating the appropriate / (Table II) may overes-

timate the dilution due to CLF, since the resulting

acceleration is too strong. For the PB 550/20 data, the predic-

tions are also good, but with one caveat: The fitting proce-

dure to estimate the longest relaxation time of the pure

PB550 melt seems to give a surprisingly long relaxation

time, suggesting an additional (roughly 30%) speeding up of

the relaxation of the PB550 chains upon initial dilution with

PB20, which is not captured by Eq. (20) or (C2). If we

instead use the cross-over frequency (where G0 ¼ G00) to esti-

mate the relaxation time of the pure PB550 [shown by a solid

star in Fig. 8(d)], then the predictions are much better, of a

similar quality to the PI 438/34 data. It may be that there is

an artifact in the data for pure PB550, or that there is an addi-

tional accelerating effect on dilution with the PB20 chains

for this particular series of materials which is not captured

by the theory.

TABLE II. Dilution factors obtained from self-consistent formula /
¼ /chem

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð/ZLÞ

p
for PI438/34 and PB550/20.

PI438/33 PB550/20

/chem / /chem /

1.0 0.822 1.0 0.900

0.4 0.283 0.2 0.154

0.2 0.114 0.1 0.066

0.1 0.0398 0.05 0.025

1030 READ, SHIVOKHIN, AND LIKHTMAN



3. Data in region 3 and 2b of the Viovy diagram

Returning to the modified Viovy diagram of Fig. 6, we

now consider regions 3 and 2b of the diagram. In these

regions, it is anticipated that some CR occurs, while CLFs

are taking place, but that within the CLF timescale, there is

not sufficient time for the chain to locally explore the full

width of the fat tube by CR motion. So, the CR that does

occur will permit an increased degree of CLF and this will

partially accelerate the terminal relaxation of the long chains

as compared to a melt of pure long chains. Here, the situation

is nicely illustrated by our sCR¼ 3000 data in Fig. 3: CR

permits some enhanced CLF in a gradually widening tube,

but before full exploration of the fat tube, there is transition

to terminal reptation, which is slightly accelerated since the

enhanced CLF reduces the distance required to reptate.

However, further dilution by the short chains will not fur-
ther accelerate the long chain relaxation, because dilution
only increases the diameter of the fat tube—but, as already
stated, the chain cannot explore the full fat tube in the CLF
timescale. Hence, further dilution does not lead to an
increased amount of CLF, so there is no mechanism to addi-
tionally accelerate the long chain relaxation. Dilution will,
however, reduce the modulus associated with the terminal

FIG. 8. (a) Linear rheology data for the PI 483/34 data [11] at long chain fractions of 1, 0.4, 0.2, and 0.1. Dashed vertical lines are estimations of the inverse

terminal time of long chains using Eq. (20), and solid lines using Eq. (C2) using se ¼ 1.4� 10– 5s, ZL ¼ 100 and / as given in Table II. (b) Longest relaxation

times for the PI 483/34 data [11] as estimated by Maxwell fitting from REPTATE software (solid squares) together with predictions of long chain relaxation time

using Eq. (20) (dashed line) and Eq. (C2) (solid line). (c) Linear rheology data for the PB 550/20 data [14] at long chain fractions of 1, 0.2, 0.1, and

0.05. Dashed vertical lines are estimations of the inverse terminal time of long chains using Eq. (20), and solid lines using Eq. (C2) using se ¼ 1.6� 10– 7s, ZL

¼ 304, and / as given in Table II. (d) Longest relaxation times for the PB 550/20 data [14] as estimated by Maxwell fitting from REPTATE software

(solid squares). Relaxation time as estimated from crossover frequency of pure PB550 data shown as a solid star. Predictions of long chain relaxation time

using Eq. (20) (dashed line) and Eq. (C2) (solid line).
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relaxation. The modulus is expected to scale as /2 in region
3b (by the time of the terminal reptation time, the chain has
explored the fat tube diameter) and as / in region 2b (effec-
tively the long chains appear as dilute throughout their whole
relaxation pathway).

A particularly interesting set of data in this region is the

PS294/161 data of Watanabe et al. [16]. As noted above, for

these data the authors determined the relaxation spectrum

from the linear rheology data and used this to determine the

terminal relaxation time (and terminal modulus) of the long

chains. According to their presented results (Fig. 9 of [16]),

there is a slight acceleration of the long chain relaxation time

from the pure melt to 40% concentration of the long chains,

but no further acceleration upon further dilution. The partic-

ular observation of no further acceleration upon dilution is

exactly in keeping with the predictions described above. For

most of the concentration range, the terminal modulus for

these data scales roughly as /, though it may be that a stron-

ger scaling is attained at the largest long chain fractions (Fig.

10 of [16]).

The PS 670/160 and PB 160/25 literature data are also

found in region 3b of the Viovy diagram. As noted above,

for these data, Park and Larson [15] found a small accelera-

tion of the long chains by the shorter ones as compared to

predictions of their model with reptation along the thin tube.

4. Data toward the lower part of the Viovy diagram

Toward the lower part of the diagram (e.g., region 3a) CR

from the short chains is too slow to produce any appreciable

acceleration of the long chains. This prediction, again, is

borne out by the data.

Only one set of data appears inconsistent with the dia-

gram as drawn, the PB 450/39 data of Struglinski and

Graessley [19]. As indicated in the diagram, this data set is

to the extreme lower end of region 3c. We therefore expect

that CLF in the fat tube might accelerate the long chains

when diluted in the shorter chains. The situation is marginal,

however: The data are extremely close to the 3a region near

the bottom of the diagram. This, combined with the rela-

tively narrow range of dilutions present in the data, may be

the reason why acceleration of long chains is not obviously

present. It would be valuable to generate further data in the

3c region of the diagram.

5. Data for dilute long chains

We may also compare the modified diagram with blend

data obtained in the limit of dilute long chains. Sawada et al.
[13] present several sets of data in which the terminal time

of dilute, long PI chains is monitored as a function of length

of the short chain matrix polymers. In particular, they exam-

ine the extent to which the terminal time follows the

expected scaling for CR Rouse (CRR) relaxation of long

chains. They find that, as the length of short chains is

increased, the CRR scaling is followed until, above a particu-

lar molecular weight of short chains, the relaxation is faster

than expected from pure CR motion and there is then a broad

transition toward the reptation time of pure long chains. The

CCR scaling in their data is only approximate since the CR

relaxation time of the long chains scales as sRCR � Z2
LZc

S

where the exponent c appears to take a value of 3, or a little

less, rather than the exponent of 3.4 which might be expected

from the variation of short chain relaxation time with molec-

ular weight. As discussed in Subsection 2 of Appendix C,

the likely cause of this is a surprisingly broad transition to

the limit of fast CR, where the bare Rouse friction of long

chains slows the rate of long chain relaxation. We predict

that this transition zone extends up to short chain lengths of

around 10 entanglements, resulting in apparent scaling expo-

nents c which could be anywhere between 1 and 3 depending

on the length of the short chains.

The clearest set of data from Sawada et al. [13] is for PI

of molecular weight 626 kg/mol, diluted in shorter chains.

These data appear to show the approximate CRR scaling for

matrix short chain molecular weights up to roughly 60 kg/

mol, corresponding to a modified Graessley number of Gr*

� 0.066. We represent these data with the red vertical line

on Fig. 6. The remainder of their data, for larger matrix

molecular weights, span the broad transition region toward

the reptation time of pure long chains; we represent these

data by the brown vertical line in the right hand side of Fig.

6. We can compare these data with the critical Gr* � 0.0254

predicted on the basis of slip-link simulation data above. The

data should be expected to deviate from the CRR scaling as

this critical Gr* is approached, which is exactly the observa-

tion of Sawada et al. Data at other long chain molecular

weights show a similar behavior, e.g., for long chain molecu-

lar weight 329 kg/mol, the transition appears to begin at a

short chain molecular weight of 43 kg/mol (Gr* � 0.113).

The work presented here may be the first explanation of the

low critical value of the Graessley parameter Gr� 	 1 for

dilute long chains. As noted above, the main reason for this

is that relaxation due to CR is faster than would be antici-

pated from simple scaling arguments, as discussed in

Subsection 1 of Appendix C.

6. Summary

We may summarize this section as follows. We have

redrawn the Viovy diagram in the light of theoretical insight

regarding the effects of CLF on the relaxation of long chains

in binary blends, in particular, noting that CLF in the fat

tube, or in a widening tube, is possible even when the chain

motion is primarily along the thin tube. This insight is con-

firmed by the slip-spring simulations we performed. The

simulations also permit us to quantitatively specify the posi-

tions of lines on the diagram, rather than simply make scal-

ing arguments (e.g., for dilute long chains we predict a

critical Graessley number Gr� � 0:0254	 1). By locating

experimental and simulation data on the diagram, we were

able to confirm the qualitative and quantitative predictions of

the redrawn diagram.

V. CONCLUSION

The goal of this paper has been to use idealized simula-

tions, based on Likhtman’s slip-spring model [3], to inform

our understanding of the interaction between CR and CLFs in
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entangled linear polymer chains (and particularly binary

blends). We began with a set of simulations in which the CR

rate was precisely defined for a fraction of the slip-springs

(representing CR from short chains in a binary blend system),

while CR was suppressed for the remaining slip-springs (rep-

resenting slow CR from entanglements with long chains). Our

data analysis revealed regimes corresponding to CLF in the

“thin tube” (at early times), CLF in a fat tube (at late times)

and an intermediate regime in which CLF occurs in an effec-

tively dilating tube. The effective friction for motion along the

fat tube was found to be well described by the framework of

Read et al. [11,21]. Furthermore, we derived a simple theoret-

ical model based on scaling arguments for Rouse-chain

motion, which was able to describe the full time dependence

of the simulation data in the CR regime for slower CR rates.

In this context, we may briefly discuss the apparent suc-

cess of applying a tube model description for the results of a

slip-spring model, both in this paper and in our previous pub-

lication [21]. The success of this mapping between slip-

spring and tube models is a significant result of this work. As

noted in the Introduction, for chain motion in a fixed tube (or

with fixed slip-springs), we may reasonably expect that the

chain motion (reptation and CLF) would be similar in both

models; this corresponds to “motion along the thin tube” in

the language of the tube model. What is less obvious is that

CR will give exactly analogous motion in the two models.

One particular question that presses is why Eq. (2) should

apply, specifically why and how does CR motion give an

accelerated motion as though “along the fat tube” in the slip-

spring model? We may note that the fat tube in the slip-

spring model is defined by the slow slip-springs which do

not undergo CR. The rate of chain motion through these

slow slip-springs (i.e., along the fat tube) is governed by the

motion of the chain sections trapped between two consecu-

tive slip-springs. It is only appropriate to speak about the fat

tube on timescales such that the chain between two consecu-

tive slow slip-springs can locally equilibrate. In this case, the

rate of chain motion through slow slip-springs is governed

by the equilibration time of such chain sections, which is

directly determined by the CR rate of the faster slip-springs.

Consideration of this gives rise to an equation of the form of

Eq. (2), even though this equation was originally conceived

based on tube model ideas.

Having adequately understood the simulation data, we

then sought to draw out the implications for experimental

studies of entangled binary blends of linear polymers, and

especially for the dynamics of the long chains in such

liquids. We revisited the diagram produced by Viovy et al.
[18], relocating some of the lines on the diagram and identi-

fying new regimes, based on the physics and quantitative

information implied by the simulation data. In particular, we

identified the new region in the diagram in which along-tube

motion of the long chains is predominantly along the contour

of the thin tube, yet CLF is possible to the extent allowed by

the fat tube, resulting in an acceleration of the terminal relax-

ation. We also provide what may be the first explanation of

the surprisingly low critical Graessley number for dilute long

chains. We were able, successfully, to locate a wide range of

literature data on our redrawn diagram.

We anticipate that this present study will prove useful in

several contexts. Although the work of Viovy et al. has been

known for some time, we believe this is the first time a large

amount of literature data has been quantitatively and success-

fully located on such a diagram. We hope, therefore, that this

diagram will assist further studies on binary blends, in particu-

lar providing a map on which to locate experimental systems

and guiding the choice of suitable blends for future study. We

are also certain that this work will assist studies that go beyond

simple binary blends, toward the study of fully polydisperse

systems which are (obviously) the types of liquids more com-

monly encountered in an industrial context. In particular, the

scaling model developed in Sec. III B can be generalized to

more complicated environments with multiple CR times.
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APPENDIX A: MAPPING FROM THE SLIP-SPRING
MODEL TO TUBE MODEL

This paper uses the slip-spring model [3] for the simula-

tions presented. As indicated in the text, these simulations

are closely approximated by tube model calculations, but the

mapping from slip-spring model to tube model requires

accounting for (i) the fact that slip-springs are not pointlike

constraints, and (ii) slip-springs give a non-negligible contri-

bution to the effective friction for chain sliding along the

tube axis. These factors were discussed in detail in an earlier

publication [21] and we here summarize the main results of

that work and their application in this paper. For more

detailed explanations, see [21].

The fact that slip-springs permit the chain to fluctuate

about the slip-spring point of attachment allows the chain

greater freedom than would be the case if the constraints

were pointlike. Hence, the effective number of beads per

entanglement in the tube model, Ne, is greater than the num-

ber of beads per slip-spring, Ne,ss. We obtained an approxi-

mate relationship between them as

Ne ¼ Ne;ss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ns

p
; (A1)

where ns¼Ns/Ne,ss. Correspondingly, as slip-springs are

removed, the ratio of Ne/Ne,ss changes, so that dilution of slip-

springs is not identical to dilution of entanglements in the tube

model. If slip-springs are diluted by factor f (e.g., by CR),

then the corresponding dilution factor in the tube model is

/f ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ns

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4fns

p : (A2)
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These two equations were used in Sec. II to estimate Ne and

dilution factor /f for the fat tube.

Accounting for the above dilution effects, and for the

effective slip-link friction per bead fSL for along tube

motion, we found that the effective friction per bead for

motion along the fat tube contour is

ffat ¼
f

/f

fSL þ ~ffat; (A3)

where the first term gives the contribution from the slow

slip-springs which define the fat tube, and the combined fric-

tion from chain sliding along the thin tube and from CR is

obtained from

1

~ffat

¼
/f

fþ 1� fð ÞfSL

þ 1

1� fð ÞfCR þ fþ
; (A4)

where

fþ ¼ f fþ 1� fð ÞfSLð Þ
1� /f

� �
fþ 1� fð ÞfSL

: (A5)

Equation (A4) is the slip-spring equivalent of Eq. (2),

derived for the tube model.

The effective friction from CR hopping of the thin tube

was found to be

fCR ¼
2sCRkBT

b2N2
ea

2
CR

1þ 1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fb2N2

e a
2
CR

sCRkBT

s0
@

1
A: (A6)

The second term in parentheses on the right of this equation

is a correction accounting for the influence of chain friction

on the hop length from CR events. Specifically, if CR is too

fast, then the chain is not able to move a significant distance

during a CR event, and so the hop length is decreased. By fit-

ting Eq. (A6) to chain diffusion data in the slip-spring model

[21], the otherwise unknown constants were found to be

aCR¼ 1.2 and K¼ 0.36.

Using the above equations in the scaling analysis pre-

sented in Sec. III A, we find that the plateau values for CLF

in the fat tube to occur at

�t
3
4
dU
dt
¼ Cl

4Z

3p2kBT

/2
f ffatb2N2

e

 !1
4

; (A7)

where ffat is as given in Eq. (A3). This is the equation used

to determine the level of the horizontal lines in Fig. 3.

The expected longest timescale for CLF in the fat tube (after

which there is a transition to terminal reptation) can be obtained

as the chain Rouse time subject to the fat tube friction, i.e.,

sCLF ¼
N2ffatb

2

3p2kBT
: (A8)

Finally, Eq. (A3) can be used directly in Eq. (3) for the inte-

gration to obtain the full time dependent curves in Fig. 5. In

order to do this, /f in the above expressions must be replaced

by / from Eq. (5), and (correspondingly) f is obtained by

inverting the relationship A2 to obtain f in terms of /.

APPENDIX B: LINES ON THE REVISED VIOVY
DIAGRAM FROM SLIP-SPRING PARAMETERS

The quantitative description of results of slip-spring simu-

lations presented in Appendix A and in the main body of the

paper permits us to locate more accurately the lines on the

Viovy diagram, as discussed in Sec. IV A. Here we specify

the details of how these lines are obtained.

In order to determine whether chain motion along the thin

tube, or CR motion along the fat tube, is the dominant pro-

cess for chain transport (in reptation and CLF), we may com-

pare the two terms in Eq. (2). The slip-spring equivalent of

this is Eq. (A4). To good approximation (ignoring the contri-

butions of slip-link friction, and assuming CR is slow) the

crossover lies where

/f

f
¼ 1

fCR

� b2N2
ea

2
CR

2sCRkBT
; (B1)

where we have used only the first term in Eq. (A6). This

rearranges to give

/f �
3p2a2

CR

2

se

sCR

: (B2)

Finally, multiplying through by ZL gives

~ZL �
3p2a2

CR

2
Gr�; (B3)

which results in Eq. (14) since b ¼ 2=ð3p2a2
CRÞ � 0:047.

For dilute long chains, a critical relaxation time is the CR

Rouse time of the whole chain, which is the Rouse time sub-

ject to the CR friction fCR

sRCR ¼
N2fCRb2

3p2kBT
: (B4)

In the limit of slow CR, this gives

sRCR ¼
2

3p2a2
CR

N2

N2
e

sCR � 0:047Z2
LsCR: (B5)

This, then, gives rise to Eq. (24).

Other lines on the diagram depend on the time t¼ se,f for

the thin tube to explore the width of the fat tube. This may

be obtained from the late-time crossover in Eq. (5), which

occurs when
shop

se;f
¼ /2

f : (B6)

Using shop ¼ c/ðN2
e b2fCR=kBTÞ � 2c/sCR=a2

CR, we find that

se;f ¼
2c/

a2
CR

sCR/�2
f ; (B7)
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which gives Eq. (16), since we use c/¼ 1 and aCR¼ 1.2, so
2c/

a2
CR

� 1:39.

APPENDIX C: DETAILED CORRECTIONS TO
RELAXATION TIMES FOR REAL CHAINS

This Appendix includes some details of estimating of relaxa-

tion times for binary blends of real polymers, specifically exam-

ining how the CR rate varies with short chain length, and

corrections to the terminal reptation time of the long chains due

to CR motion along the fat tube. The expressions used in this

section can be found also in Appendix G of [21].

1. Variation of long chain CR time with short chain
length

Using Eq. (A6) for the effective friction from CR hops,

adding in the chain friction, and rewriting the resultant expres-

sion in terms of tube model units, the relaxation time of dilute

long chains by CR was found to be {Eq. (G5) of [21]}

sRCR ¼ Z2
L bsCR 1þ 1

K

ffiffiffiffiffiffiffiffiffiffi
se

bsCR

r !
þ se

" #
; (C1)

where the parameter b ¼ ð2=3p2a2
CRÞ � 0:047 and we use

sCR ¼ sdS. The above equation is equivalent to B5, but

including the crossover to faster CR.

We may note two main differences between this expres-

sion and the more usual “scaling” expression sRCR ¼ Z2
LsCR

often found in the literature (see, e.g., [12,18,37]). First, we

note that the factor b � 0.047 is small, which indicates that

relaxation from CR is much faster than would be expected

from the simple scaling argument. One result of this is that

fits to data using the standard scaling sRCR ¼ Z2
LsCR typically

require surprisingly small values of sCR 	 sdS [12,37].

A second issue is the broad crossover toward fast CR

implied by the square root term in Eqs. (A6) and (C1). This

term was obtained [21] by including the effect of the local

Rouse friction of the long chain on the distance of the CR

hop (for fast CR the chain does not have time to explore a

significant distance in the CR time, so the hop distance is

reduced). This expression gave a good match to the cross-

over observed in slip-spring simulations as the CR time was

varied. We may illustrate the effect of this by plotting the

ratio sRCR=Z2
L as a function of ZS, under the assumption that

sdS ¼ 3seZ3
Sf ðZSÞ. We do this in Fig. 9, indicating both the

result of the full Eq. (C1) and the leading order approxima-

tion sRCR ¼ Z2
LbsdS for slow CR. We note from this that the

crossover region is, in fact, extremely and surprisingly broad,

easily extending as far as ZS¼ 10 entanglements or more.

This is a result of a combination of the square root term in

Eq. (C1), and the small value of b.

A consequence of this, for realistic short chain lengths in

the transition zone, is that the variation of long chain CR

relaxation time with short chain length is typically weaker

than the 3.4 power law that might be anticipated from a rela-

tion of form sRCR ¼ Z2
LsdS. Sawada et al. [13] found scalings

sRCR � Zc
S with c � 3 or slightly less. Examining CR

relaxation of stars, Ebrahimi et al. [37] proposed a relation

of form sCR � sdS=Z2
S for the CR time, which gives sRCR

� Zc
S with c in the range of 1 to 1.4. The dash-dot lines in

Fig. 9 indicate that apparent scaling laws with c in the range

of 1 to 3 are certainly possible to obtain, especially when the

short chains have only a few entanglements.

2. Correction to long chain reptation time from CR
along the fat tube

For blends substantially in region 3c of the modified

Viovy diagram, we predicted that the reptation time of the

long chains could be well approximated by Eq. (20), i.e., the

bare reptation time corrected for CLF in the fat tube. On

crossing into region 4 of the Viovy diagram, this terminal

time is expected to be further accelerated by CR motion of

the thin tube along the fat tube. In practice, however, lines of

the diagram are not sudden transitions, and there is instead a

broad transition zone from one region to the next, resulting

in corrections to the reptation time as the lines on the Viovy

diagram are approached. We may express the speeding up of

reptation by CR events as a corrected version of Eq. (20)

sdL ¼ 3ACRZ3
Lf ~ZL

� �
se; (C2)

where the CR correction factor was obtained in Appendix G

of [21] as

1

ACR
¼ 1þ ð1� /Þ

/ ð1� /Þ2fCR=fþ 1

h i ; (C3)

and

fCR

f
¼ bsdS

se

1þ 1

K

ffiffiffiffiffiffiffiffiffi
se

bsdS

r !
: (C4)

Equations (C2) to (C4) can be applied throughout regions 3c

and 4.

FIG. 9. sRCR=Z2
L versus ZS as evaluated using Eq. (C1) (solid line) and the

leading order expression for slow CR, sRCR ¼ Z2
LbsdS (dashed line). Dashed

dot lines have gradients of 1 and 3 in the logarithmic plot and are intended

as guides to the eye.
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