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Using evidence from randomised controlled trials in economic models: What information is relevant 

and is there a minimum amount of sample data required to make decisions? 

John W. Stevens, School of Health and Related Research, University of Sheffield 

Abstract 

Evidence from randomised controlled trials (RCTs) is used to support regulatory approval and 

reimbursement decisions.  I discuss how these decisions are typically made and argue that the 

amount of sample data and regulatory authorities concerns over multiplicity are irrelevant when 

making reimbursement decisions.  Decision analytic models (DAMs) are usually necessary to meet 

the requirements of an economic evaluation.  DAMs involve inputs relating to health benefits and 

resource use that represent unknown true population parameters.  Evidence about parameters may 

come from a variety of sources including RCTs, and uncertainty about parameters is represented by 

their joint posterior distribution.  Any impact of multiplicity is mitigated through the prior 

distribution.  I illustrate our perspective with three examples: the estimation of a treatment effect 

on a rare event; the number of RCTs available in a meta-analysis; and the estimation of population 

mean overall survival.  I conclude by recommending that reimbursement decisions should be 

followed by an assessment of the value of sample information and the DAM revised as necessary to 

include any new sample data that may be generated. 

Key points: 

Evidence about the true values of uncertain parameters in decision analytic models can be from 

sources external to a clinical trial, including expert opinion. 

The amount of sample data that is available and regulatory concerns over multiplicity is irrelevant 

when making reimbursement decisions. 

A reimbursement decision should be followed by an assessment of the value of sample information. 

1. Introduction 

An economic evaluation involves the systematic evaluation of the relative impact of technologies on 

clinical outcomes, resource use, and other aspects relating to the health of patients.  The aim of an 

economic evaluation is to make decisions regarding the most likely cost-effective technology to 

adopt amongst two or more competing technologies and to facilitate the development of guidance 

on its use in clinical practice.  Health technologies include new medicinal products, medical devices, 

diagnostic tests, surgical procedures and health promotion activities.  An economic evaluation of a 

medicinal product can be performed using a study-based cost-effectiveness analysis or by 

constructing a decision analytic model (DMA).  For the purpose of reimbursement decision making, 

study-based cost-effectiveness analyses are of limited value because they rarely, if ever, meet the 

requirements of an economic evaluation [1]. 

Evidence about the clinical effectiveness of medicinal products will typically be available from one or 

more randomised controlled trials (RCTs) as well as from other sources.  The primary purpose of a 

clinical trial is to assess the effect of a new treatment relative to a control treatment.  Regulatory 

authorities have developed guidance to avoid conscious or unconscious biases by requiring that all 
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important aspects regarding the design and conduct of a clinical trial, and the main statistical 

analyses are specified in a protocol before the clinical trial begins [2]. A particular concern is 

multiplicity, which can arise as a consequence of, for example, multiple primary variables, multiple 

comparisons between treatments, and sequential clinical trials involving repeated analyses of 

accumulating data. Issues regarding multiplicity should also be of concern in the context of DAMs, 

although the way the multiplicity is accounted for depends on the analytical framework.  In addition, 

sample sizes for secondary endpoints and the number of RCTs available for a meta-analysis may be 

relatively small, which raises the question whether there is sufficient information to estimate 

parameters in DAMs in order to make reimbursement decisions.  In this paper, I discuss issues 

regarding multiplicity and sample size, and their impact on drug regulatory approval and 

reimbursement decisions. 

In Section 2, I outline the regulatory authorities concern regarding multiplicity and the way risk is 

controlled using the frequentist Type I error probability.  In Section 3, I present the incremental cost-

effectiveness ratio and net (monetary) benefit as criteria for reimbursement decisions, and discuss 

how uncertain parameters in DAMs should be estimated.  In Section 4, I conclude with a discussion 

and recommendation. 

2. Drug Registration 

A key feature of the design of a clinical trial is the specification of an appropriate sample size, and 

the standard frequentist approach to sample size determination is based on Neyman-Pearson 

theory.  Let Θ represent the set of all possible values of an unknown population parameter 𝜃 of the 

distribution of a random variable 𝑋 then the Neyman-Pearson approach to statistics separates the 

parameter space according to null (𝐻0) and alternative (𝐻1) hypotheses, which can be written in 

general form as: 𝐻0: 𝜃 ∈ Θ0 𝐻1: 𝜃 ∈ Θ0𝑐   
where Θ0 is a subset of the parameter space and Θ0𝑐   is its compliment.  Thus, two types of error are 

possible: 1) the statistical test leads to the rejection of the null hypothesis even though it is true 

(Type I error), and 2) the statistical test leads to the acceptance of the null hypothesis even though it 

is false (Type II error) [3]. 

At the design stage, the conventional approach to fixed sample size determination involves a 

primary variable, a test statistic, 𝑇 = 𝑡(𝑋), null and alternative hypotheses, the Type I error 

probability and the power of the test (1 minus the Type II error probability).  Power is often set at 

0.80 or 0.90, and it is recommended that this is made as large as possible, particularly when clinical 

trials are difficult or impossible to repeat.  The Type I error probability is the main concern for the 

regulator and is usually set at 0.05 or less [2].  Multiplicity can inflate the Type I error probability.  In 

the simple case of a clinical trial comparing two treatments, one primary variable and one 

hypothesis to be tested, there is no impact on the Type I error probability.  In other situations, 

various approaches can be taken to control the Type I error probability when it might be inflated. 

At the analysis stage, tests of statistical significance are usually presented using a Fisherian 

approach.  The Fisherian approach to significance testing requires a test statistic, and the probability 
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distribution for the test statistic under the null hypothesis.  Then, given the observed value of the 

test statistic, 𝑇 = 𝑡(𝑥), and the null hypothesis, the probability of observing a value as extreme or 

more extreme than that observed is calculated i.e. 𝑃0(𝑡(𝑋) ≥ 𝑡(𝑥)).  The resulting probability is the 

P-value with small values indicating that either a rare event has occurred or the null hypothesis is 

false [4].  When there is multiplicity, point and interval estimates of treatment effects depend on the 

procedure used to control the Type I error probability (the probability of rejecting at least one null 

hypothesis), although methods for generating point and interval estimates that are consistent with 

the testing procedure in that they produce unbiased estimates with the required coverage are not 

always available [5].  In addition, there is ambiguity over the appropriate way to interpret estimates 

of treatment effect associated with outcomes that were not specified as part of the primary 

objectives and such analyses are generally regarded as exploratory.  Nevertheless, such outcomes 

may be important when making reimbursement decisions. 

3. Reimbursement 

3.1. A framework for decision making 

A DAM provides a mathematical representation of the way in which changes in health over time and 

the resources used affect quality-adjusted life years and total costs relevant to a target patient 

population.  A DAM can be thought of as a function where the inputs represent unknown true 

population parameters.  Acknowledging uncertainty about the unknown true population parameters 

is achieved by treating them as random variables with a specified (joint) probability distribution.  

Generating the distribution of the outputs of the model (i.e. population mean costs and benefits) is 

known as uncertainty analysis in the statistical literature, although it is referred to as probabilistic 

sensitivity analysis in the health economic literature [6]; sensitivity analysis strictly involves assessing 

how uncertainty in the inputs affects uncertainty in the output [7].  An important justification for the 

use of probabilistic sensitivity analysis in order to correctly generate population mean costs and 

benefits is in the context of non-linear models. 

 

Decisions are often made with respect to the incremental cost-effectiveness ratio, (𝜌), defined as  𝜌 = (𝛾2 − 𝛾1) (𝜇2 − 𝜇1)⁄ , 

where 𝛾𝑖  is the population mean cost for treatment 𝑖 and 𝜇𝑖  is the population mean benefit for 

treatment 𝑖.  In practice, the appropriate basis for the decision is whether net (monetary) benefit, 𝛽(𝐾) = 𝐾(𝜇2 − 𝜇1) − (𝛾2 − 𝛾1), 

is positive for some given value of the acceptable cost per unit health benefit, 𝐾 [8].  Also of interest, 

at least in terms of quantifying decision uncertainty, is the probability that 𝛽(𝐾) is positive such that 𝑄(𝐾) = 𝑃{𝛽(𝐾) > 0|𝒙}, 

where 𝒙 represents the sample data and 𝑄(𝐾) is a function known as the cost-effectiveness 

acceptability curve.  The act of treating unknown true values as random variables and making 

probabilistic statements about population parameters have meaning only from a Bayesian 

perspective [9]. 

3.2. Parameter Estimation 
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The purpose of a clinical trial and a meta-analysis of a medicinal product are to estimate relative 

treatments effects; baseline parameters such as those representing the response to the control 

treatment (e.g. log odds) are treated as nuisance parameters and are relevant only in that they are 

used in the estimation of study-specific treatment effects.  Estimation is normally performed on an 

additive scale such as the log odds ratio and log hazard ratio, which allows both pooling of relative 

treatment effects across clinical trials and, with suitable information on the background risk in a 

target population, estimation of absolute effects [10] as required in an economic evaluation.  

Statistical analysis proceeds by specifying a model, known as a likelihood function, which links 

sample data to the parameters, 𝜃, in the model; a linear predictor, 𝜂 = 𝑿𝜷, where 𝑿 is a design 

matrix of independent explanatory variables representing treatment and other potentially relevant 

covariates, and 𝜷 is a vector of unknown parameters; and a link function, 𝑔(𝜃) = 𝜂, which maps 

values of 𝜃 to values between −∞ and ∞ [11].  In a generalised linear model framework the 

unknown parameters, 𝜷, can be estimated from a frequentist perspective using maximum likelihood 

or using a Bayesian approach.  However, as discussion in Section 3.1, an economic evaluation strictly 

requires a Bayesian perspective and the generation of a (joint) posterior distribution [12]. 

A Bayesian analysis synthesises two sources of information about the unknown parameters: the 

sample data, which expresses the relative plausibility of different values of the parameters, 

expressed formerly by the likelihood function, 𝑓(𝑥|𝜃), and a prior density, 𝑓(𝜃), which represents 

other information that is available in addition to the sample data [13].  Bayes’ theorem synthesises 
the two sources of information through the equation: 

 𝑓(𝜃|𝑥) ∝ 𝑓(𝑥|𝜃)𝑓(𝜃) 

 

where ‘∝’ is the proportionality symbol and 𝑓(𝜃|𝑥) is the posterior distribution.  The proportionality 

symbol expresses the fact that the product of the likelihood and prior density must be scaled to 

integrate to one over the sample space of the parameter for it to be a probability distribution.  In 

principle, the prior density should represent genuine prior beliefs in any Bayesian analysis and 

should incorporate correlation between multiple parameters.  In addition, concerns over multiplicity 

are irrelevant from a Bayesian perspective because adjustments for multiplicity are made explicitly 

through the prior distribution.  In practice, when there is a large amount of sample data, the data 

will provide the majority of the evidence about parameters and will dominate any reasonable prior 

beliefs so that the posterior distribution will be similar to the likelihood function.  In these 

circumstances, the cost and effort involved in formulating a prior distribution may not be justified.  

Indeed, it is common for many Bayesian analyses to make use of so-called non-informative prior 

distributions representing a state of prior ignorance [14], sometimes without any consideration to 

the impact on posterior distributions.  However, in the absence of sufficient sample data, posterior 

distributions will not represent reasonable posterior beliefs unless prior distributions represent 

reasonable prior beliefs.  Thus, it is precisely in situations when there is limited sample data with 

which to estimate parameters that the Bayesian approach and the incorporation of external 

information allows the estimation of parameters. Although the generation of a (joint) posterior 

distribution is required to propagate uncertainty through an economic model, a Bayesian estimate of 

location will not generally be unbiased, and the extent of the bias will depend on the prior 

distribution. However, the posterior mean has zero expected bias and is consistent in the sense that 

as the sample size tends to ∞, the posterior probability that the true value is the Bayesian estimate 
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tends to one [15].  In what follows, I discuss the estimation of parameters using evidence from RCTs 

with reference to three specific examples: the estimation of a treatment effect on a rare event, the 

number of clinical trials available in a meta-analysis, and the estimation of population mean overall 

survival. 

 

Whether there is sufficient sample data with which to estimate parameters relates not simply to the 

underlying sample size but also the number of events.  For example, consider an RCT that provides 

evidence about the probabilities of a rare event in a control and experimental treatment group.  

Assume that events in each treatment group are possible so that the odds of an event in each 

treatment group is estimable, that this is the only available RCT and the objective is to characterise 

the uncertainty associated with the odds ratio.  In the presence of zero events in one of the 

treatment groups, a frequentist estimate of the odds ratio and 95% confidence interval is sometimes 

generated by adding 0.5 to each cell, although other correction factors have been proposed that 

outperform adding a constant 0.5 in the context of a frequentist meta-analysis [15].  Alternatively, 

given that a Binomial likelihood supports values of the observed number of events 𝑟 ∈ {0,1,2, … , 𝑛}, 

where 𝑛 is the sample size, the odds ratio could be estimated in a generalised linear model 

framework using a Binomial likelihood with a logit link function.  However, in some circumstances, 

frequentist estimates of log odds ratios using this approach may give rise to excessively large 

standard errors so that coverage tends to one rather than the nominal level.  A Bayesian analysis 

with conventional non-informative prior distributions for the log odds associated with the control 

group, 𝑁(0, 1000), and log odds ratio between the experimental and control treatment groups, 𝑁(0, 1000), may also give rise to implausibly large values for the odds ratio.  In this situation effort 

should be given to specifying prior distributions that reflect reasonable prior beliefs so as to 

eliminate implausibly extreme parameter values.  Furthermore, clinical trials with zero events in 

each treatment group do not provide sample information about the treatment effect [11] so that all 

information about it would need to come from external sources. 

Evidence about parameters from multiple clinical trials can be combined using meta-analysis models 

[12].  A fixed effect model assumes that all clinical trials provide an estimate of the same underlying 

treatment effect and that any differences in sample estimates are the result of sampling variation 

alone, and also allows for a conditional inference given the available clinical trials  [16].  However, 

heterogeneity in treatment effects is expected between clinical trials because they will not usually 

follow the same protocol.  A random effects meta-analysis assumes that the true underlying 

treatment effects in each study follow some distribution.  In a Bayesian analysis it is assumed that 

the true study-specific treatment effects, 𝜃𝑖, from study 𝑖 are related but not identical (i.e. that they 

are exchangeable) such that: 𝜃𝑖|𝜇, 𝜏~𝑁(𝜇, 𝜏2) 

where 𝜇 represents the underlying population mean and 𝜏 represents the between-study standard 

deviation [17].  The same model is used from a frequentist perspective and there are several 

estimators available with which to estimate the between-study standard deviation, although there is 

limited information about which performs best when the number of clinical trials is small (< 5) [18] 

and estimates tend to be imprecise [17].  It has become common to specify uniform prior 

distributions for between-study standard deviations such as a 𝑈(0,2) for the between-study 

standard deviation on the logit scale.  However, in the absence of a sufficient number of clinical trials 
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with which to estimate the between-study standard deviation from the sample data alone, the prior 

distribution will not be non-informative [19].  When so-called non-informative prior distributions are 

used in meta-analyses with few clinical trials, they are unlikely to reflect reasonable prior beliefs 

with the consequence that posterior distributions will not reflect reasonable posterior beliefs and 

will include unreasonably large parameter values for treatment effects.  Faced with such results, 

some analysts may decide to adopt a fixed effect model, thereby ignoring what is believed about 

heterogeneity a priori [17].  In addition, this approach asserts with probability one that 𝜏 = 0, and 

implies that it is not possible to learn about the true value of 𝜏 with additional sample data even 

though there is uncertainty about its true value.  A Bayesian solution would rule out implausible 

values using an informative prior distribution, which could be done using a weakly informative prior 

distribution based on a half-t distribution [19], the predictive distribution for the between-study 

standard deviation in a future meta-analysis [20] or by formal elicitation of experts’ beliefs [21]. 

Overall survival often provides an important contribution to a DAM in disease areas such as cancer 

where interest is in estimating the population mean quality adjusted life years.  However, clinical 

trials may be designed to test hypotheses about intermediate outcomes such as progression-free 

survival, follow-up may be short relative to what would be necessary to test hypotheses about 

overall survival and there may be few deaths.  In addition, there may be other issues that affect the 

estimate of the relative effect of treatments on overall survival such as switching from the control 

treatment to the experimental treatment group, although I will not discuss this issue further.  In the 

absence of sufficient sample data there is uncertainty regarding the true model from which the data 

arose, and the decision regarding relative cost-effectiveness is often sensitive to the model choice.  

There is an extensive literature on modelling time-to-event data, including standard parametric 

models that are members of the generalised F distribution [22], flexible parametric models [23], 

piecewise models, and mixture models which include the standard cure rate model as a special case 

[24], and a growing body of work in the health economic literature on fitting parametric survival 

functions to time-to-event data [25-29], combining evidence on time-to-event outcomes across 

multiple clinical trials [30-32], and on incorporating external information in addition to sample data 

[33, 34].  A limitation with standard parametric models is that they only capture certain shapes for 

the hazard function; for example, the hazard function of a generalised F distribution can be only 

decreasing, decreasing but not necessarily monotone and arc shaped, while the hazard function of 

the generalised gamma subfamily can be only monotonically increasing and decreasing, bathtub and 

arc-shaped.  The appropriateness of each of these models depends on true model from which the 

data arose which requires input from clinical experts about the underlying disease process, the 

mechanism of action of different treatments and the expected risk of an event over time as well as 

from the data analyst when using criteria such as measures of relative goodness-of-fit between 

models.   

It is not sufficient to attempt to fit complex parametric survival models such as a four-parameter 

generalised F distribution unless there is reasonable clinical justification for it, and attempting to do 

so based on the sample data alone with limited follow-up and events may simply result in a model 

with parameters that fail to converge whether or not it is the true model.  When complex parametric 

survival models such as spline models, fractional polynomials and cure rate models are considered, 

there may not be sufficient sample data alone with which to estimate parameters, although this 

would not negate their relevance and it is important to incorporate any relevant external evidence 

about parameters including registry data [34] alone or in combination with elicitation of experts’ 
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beliefs [35, 36].  Finally, there are several ways in which uncertainty about a model might be 

assessed:  1) A single encompassing model can be constructed based on the set of possible 

alternative models.  Prior probabilities would then be assigned to each of the alternative models to 

give a prior distribution over the encompassing models. 2) For a set of possible models, the 

robustness of decisions can be assessed against different model choices. 3) A single model can be 

specified and used to consider the extent to which it is adequate for decision making [37].  In the 

health economic literature the focus has tended to be on the second approach.   

4. Discussion 

The frequentist approach to statistics involves testing a limited number of hypotheses and using 

procedures that control the Type I error probability.  Using this approach to decide on the marketing 

authorisation of new medicinal products is reasonable by regulatory authorities which are risk 

averse.  However, it is unhelpful in the context of an economic evaluation in which a decision has to 

be made whether to reimburse a new product; for a decision-maker whose utility function is net 

benefit, the decision should be based on whether there is positive expected net benefit [8]. 

Probabilistic sensitivity analysis of DAMs is inherently Bayesian and the Bayesian approach to 

statistics and its applicability in the context of making reimbursement decisions has long since been 

established.  Sample data with which to estimate treatment effects from one or more clinical trials 

may have various limitations with respect to the target parameter(s): sample sizes may be small; 

outcomes may have been secondary in the clinical trial protocol; the duration of follow-up may be 

relatively short; there may be few or no events associated with each treatment group; there may be 

concerns over the conduct of the study; there may only be a few clinical trials available with which 

to conduct a meta-analysis.  Nevertheless, where evidence is directly or indirectly relevant to a 

parameter of interest, the task of the analyst is to specify a model that can be used to express the 

current state of uncertainty about the parameters supported by both the sample data and external 

evidence.  Once that has been done then it is irrelevant how much sample data is available or what 

status an outcome had in a clinical trial protocol; all information about the parameters of interest is 

contained in the posterior distribution. 

Some analysts are reluctant to incorporate prior information, preferring instead to estimate 

parameters using maximum likelihood.  In those situations when this is possible, point estimates will 

generally correspond to the Bayesian posterior mode and will ultimately require an assumption of 

asymptotic multivariate normality when approximating joint posterior distributions with sampling 

distributions used in probabilistic sensitivity analyses.  Although such approximations may be 

reasonable in some situations, it is precisely in situations when there is limited sample data with 

which to estimate parameters that the Bayesian approach and the incorporation of external 

information is important to represent genuine uncertainty. 

The decision whether or not to reimburse a new medicinal product involves uncertainty whether it is 

the correct decision.  Although decision uncertainty can be quantified using a cost-effectiveness 

acceptability curve, this does not tell us which parameters might affect the decision and whether 

learning about them would be beneficial.  Sculpher et al [38] discussed a framework for decision 

making under uncertainty, including when it can be concluded that there is sufficient evidence to 

make a decision about the cost-effectiveness of a new technology.  A decision should be made 

whether to acquire more information to reduce the uncertainty associated with influential 
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parameters using expected value of sample information [8, 39].  It should also be recognised that 

the decision whether to reimburse a new medicinal product and to collect additional sample 

information are conditional on the model structure.  If additional sample information is collected 

then the model structure should be reviewed and amended as necessary before repeating the 

process. 

In principle, there is no requirement to have any sample data and we could simply make use of 

information in the form of experts’ beliefs.  Indeed, there may be value to a company which is 

developing a new medicinal product in doing just that before conducting an expected value of 

sample information analysis to identify those parts of a DAM that are most influential prior to 

conducting a Phase 3 clinical trial and generating any sample data. 

In conclusion, all evidence from a randomised clinical trial is relevant when characterising 

uncertainty about parameters in an economic model irrespective of the amount of sample data that 

is available or the status an outcome had in a clinical trial protocol.  However, it is necessary to 

account properly for uncertainty, including prior information to account for multiplicity, when 

generating a joint posterior distribution.  
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