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A B S T R A C T

The use of a phase field approach to simulate solidification of metallic alloys has many computational ad-
vantages, but if obtaining quantitative results relies on the interface between phases being physically realistic,
the computational advantage is much reduced. We propose here a method for compensating for a computa-
tionally convenient large interface width by simply transferring a numerically derived 1D steady state anti-
trapping current to a general non-steady 2D simulation. The method proposed is not restricted to dilute or ideal
materials and has a high degree of interface width independence, illustrated here with two models, illustrating a
broad applicability for the approach.

1. Introduction

In phase-field modelling of alloy solidification, applying the varia-
tional principle to the Gibbs free energy results in equations for phase,
solute and temperature, which optimally minimise the Gibbs free en-
ergy, see [1]. The principle is clear and elegant but suffers from the
practical disadvantage that the length scale of the solid liquid boundary
is far smaller than that associated with solute and temperature diffu-
sion. Consequently, phase field modellers of solidification seek to use a
larger than physical interface width to make the mathematical system
computationally easier to solve. Simple adoption of a larger interface
width, though, reveals that solutions are width dependent, see for ex-
ample [2]. It is generally accepted that the approach to compensate for
this is not to be found in a variational formulation, see [3,4] (though,
see the discussion in Appendix C which postulates a variational for-
mulation for including anti-trapping currents). Rather, in an approach
initiated by [3], one provides an extra degree of freedom at the level of
the partial differential equations post variation by typically matching
the phase field equations model to a sharp interface model so that the
resulting equations have an element of interface width independence.
One feature of the application of matched asymptotic analysis to a
sharp interface, e.g. [4,5], is that there is necessarily a degree of ap-
proximation used in order to simplify the free energy functional to a
point where analysis and comparison with sharp interface models be-
comes tractable. For example, [6] extends [3,4] to use in multiphase
models, but only for the simplest thermodynamics. It is of note that
models that use physically realistic free energies for complex materials
avoid this approach, e.g. [2,7].

The phase field technique for alloy solidification, as established in
simpler form by [8] (WBM) is challenged by two phase modelling as
described in [9]. This approach associates a unique concentration field,
cL or cS, for the liquid or solid phases respectively, and the true con-
centration field is constructed as a weighted average using the phase
field. The quantities cL and cS are determined through a concentration
equation and, crucially, a constraint. The constraint can take the form
of proportionality, using a partition coefficient, or by equating the
chemical potential. The latter led [10] to unify the methodology using a
grand-potential functional (GPF) in place of the usual free energy. This
served also to show that the two phase approach was equivalent to a
variational formulation, in particular the equal chemical potential
constraint in the two-phase formulation is a natural consequence of the
new variational technique based on a GPF.

The GPF methodology has been applied in [11] to dilute alloys, but
it is notable here that the GPF approach still requires an anti-trapping
current to compensate for interface width, and thus, by implication, the
model of [9] would benefit from an anti-trapping current to alleviate
interface width dependence. [12] argues that the two phase models,
with the constant chemical potential across the interface, needs mod-
ification for rapid solidification, and suggest modifications that model
this: namely, to replace the constant chemical potential constraint with
equations for cL and cS. It is of note that [12] uses a physically realistic

=δ 1.875 nm in their 1D simulations (and so the method advocated in
our paper naturally do not apply here). However, for 2D/3D simula-
tions it is likely that larger interface widths will be computationally
expedient and thus some method for compensating for artificial solute
trapping will become necessary.
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The GPF approach has also been extended to include non-dilute
alloys in [13]. Here, central to the application of GPF is a quadratic
approximation of the free energies about the equilibrium concentration
values (in a multiphase setting), cij

E. An approach which does not re-
quire approximation to the data bases, for general alloy using an en-
tropy functional is found in [14]. This latter approach is motivated by a
general free boundary problem formulation and contains the equal
diffusion chemical potentials of the two-phase method as a constraint.
For more general thermodynamics the authors state that there is po-
tentially a numerical bottle neck due to this constraint.

We choose to adopt and extend the method of [8] to allow quan-
titative simulation of more general alloys, without recourse to special
cases and approximations. It is of note that the application of the WBM
approach to general free energy models has only previously been its
extension to multiphase models. Consequently, this work represents a
first attempt at quantitative modelling, and modelling in itself, for so-
lidification with arbitrary CALPHAD thermodynamics, whilst allowing
a conveniently larger than physical interface width. In this sense the
method may be seen as both an extension of [3,8], to allow rapid so-
lidification modelling for arbitrary two phase binary alloys.

A constraint on the phase field approach is that the interface must
have sufficient resolution to capture the finest curvature found at the
solid-liquid boundary. But typically, tip radii, ≫ ∼ρ d 10 nm where d0
is the chemical capillary length, being the same order of magnitude as
physical interface width, this being the distance over which long-range
atomic ordering is lost at the interface between a crystal and its parent
melt and which is typically a few atomic radii. Of more concern is the
effect of large interface width on solute partitioning where the max-
imum and minimum values for solute concentration found at the solid-
liquid interface are very much interface width dependent. This effect is
known as artificial solute trapping, since it is a model dependent effect
that tends to drive the partition coefficient closer to unity. Solute
trapping also arises naturally in systems where the velocity of growth is
sufficiently high, see [15], which analyses three regimes from low to
high growth velocity. We propose here an approach which compensates
for artificial (interface width induced) solute trapping, for realistically
modelled binary alloys at arbitrary concentration.

In outline, the method we propose consists in solving a 1D steady
state problem where the solution not only depends on input values for
tip speed and tip interface width (and given tanh profile), but also the
strength of an anti-trapping current, j. We seek the strength of j in the
steady state 1D problem such that the maximum and minimum values
for solute, c, within the interface, coincide with the equilibrium values
found from the free energy functions for liquid and solid by well known
common tangent construction. Once j is found from the 1D problem we
apply it to the full (non steady) 2D problem. New values for tip speed
and width are extracted from the 2D simulation and used, inter-
mittently, to solve the 1d problem, where the new value for j is applied
thereon.

We find, for the PbSn alloy tested, and to a large extent model of
[8], tested to make connection with a standard model, that this ap-
proach gives a high degree of interface independence across a range of
measures at the crystal tip. The measures used are tip radius, ρ, tip
speed, V, and measures for solute partitioning: ≡ −c c cΔ L S and

≡k c c/S L, where cS is the solid concentration near the tip and cL is the
liquid concentration near the tip.

2. Solute trapping in 1D

In this section we focus on a specific phase-field model for alloy
solidification, Pb-Sn in this case, in order to introduce the method
proposed to compensate for solute trapping. This is based upon looking
at the dependence of solute partitioning on interface width in a steady
state 1D scenario.

The phase equations governing the evolution of phase, ϕ, (where
=ϕ 0,1 is solid and liquid respectively) and solute concentration, c, on a

domain, Ω, are, respectively (see, for example, [1])

= −ϕ M δF
δϕ

̇ ,
(1)

and

= ∇ ∇c D δF
δc

̇ · (2)

where

∫= ∇F f ϕ ϕ c x( , , ) d ,
Ω

3
(3)

M is the mobility and = + − −D ϕD ϕ D c c RTv[ (1 ) ] (1 )/( )L S m , with the
liquid and solid diffusivities ≫D DL S, and R and vm the molar gas
constant and the molar volume respectively. The free energy density, f,
is decomposed into a surface part, fS, and bulk part fB:

= ∇ +f f ϕ ϕ c f ϕ c( , , ) ( , )S B (4)

where fB combines, by interpolation, the liquid and solid free energy
curves, illustrated in Fig. 1 for a simple constructed example. The sur-
face term is

⎜ ⎟= ⎛
⎝

∇ ∇ + − ⎞
⎠

f W c δ ϕ ϕ ϕ ϕ( )
8

· (1 )S

2
2 2

(5)

where W is the surface energy of the barrier height between the two
phases and δ is a measure of the interface width.

In 1D and at equilibrium Eq. (1) becomes

= δF
δϕ

0 S

(6)

where

∫=F f xdS SΩ (7)

The phase profile,1

Fig. 1. A constructed example free energy curves,
= − = − +f c f c( 0.25) , ( 0.75) 0.1L S2 2 with the common tangent construction that

give the equilibrium values of c in the two phases: = =c c0.85, 0.35S
E

L
E .

1 more generally the interface width, and even the general shape is modified by the
bulk driving term. Some of our tests imply that the resulting profile is well fitted by a
continuous piecewise function using two tanh profiles defined on ∈ϕ [0,0.5] and

∈ϕ [0.5,1], respectively, though we cannot assert the generality of this result.
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= + ⎛
⎝

⎞
⎠

ϕ x x
δ

( ) 1
2

1
2

tanh 2 ,
(8)

solves Eq. (6) in 1D, and has the property, ′ ==ϕ x δ( )| 1/ϕ 1/2 (see ap-
pendix A). we adopt the double well potential in Eq. (5), in line with
many authors, e.g. [8] in preference to, say, a quadratic potential (a
double obstacle) to keep the equations smooth in the bulk: =ϕ 0,1

The solute equation

= ∇ ∇c D ḟ · ,c (9)

in 1D becomes

= ∂ ∂c D ḟ ,x x c (10)

where we use the notation ∂ ≡ ∂
∂y x( )x
y x

x
( ) , and the functional derivative

≡ ∂
∂fc

f
c . In a comoving coordinate system moving to the right at velo-

city, u, Eq. (10) becomes

= ∂ ∂ +D f uc0 ( ).x x c (11)

By writing

∂ = ∂ + ∂f f c f ϕx c cc x cϕ x (12)

one can solve for c x( ), once we know ϕ x( ). We assume, for this purpose,
that the 2D phase profile normal to the boundary is well approximated
by a tanh function, e.g. Eq. (8), but with a width, δ , ultimately extracted
from a 2D simulation. Together with Eq. (12), an initial value for c in
the solid, and a value for the tip speed, u, this allows us to solve Eq.
(11).

To illustrate the effect of solute trapping we begin with two para-
bolic example free energy curves for the liquid and solid phases in
Fig. 1, where we can extract the equilibrium values for =c 0.85S

E and
=c 0.35L

E using the common tangent rule.
Using the solid value as a boundary condition, a selection of solu-

tions are given in Fig. 2 for a different values of interface width, δ . Also
superimposed in the figure are horizontal lines presenting the equili-
brium values for reference, where it is clear that even for the sharpest
values chosen for δ, the peaks still do not reach the equilibrium liquid
(minimum) value, and for progressively larger δ this minimum in-
creases to get continually closer to the solid (boundary condition)
value.

An approach to compensating for the interface width dependency in
models with general thermodynamics can be found in [16]. It is based
on the observation that including a regularising term in the free energy,

∇ ∇δ c c·2 , to artificially increase the distance between the two extreme
values of c should compensate for the trapping effect. The main pro-
blem with this approach is the introduction of 4th order derivatives into
the solute equation, which [16] observe can have non-physical effects.
On the other hand, a successful adoption of this approach, would result
in a variational formulation, with consequent advantages (not least a
reliable and thermodynamically consistent formulation of the tem-
perature equation, see [1]).

We adopt a method more in common with the approach pioneered
in [3]. To this end, returning to the full dimensional model, the final
gradient term in Eq. (9) can be decomposed

∇ = ∇ + ∇f f c f ϕ.c cc cϕ (13)

We will show that compensation for the reduction of partitioning due to
the large interface can be achieved by artificially modifying the second
term, ∇f ϕcϕ , to give

= ∇ ⎛
⎝

∇
∂
∂

+ ⎞
⎠

c D
f
c

j̇ ·
(14)

where ∝ ∇ϕj . The additional term j is known as an anti-trapping cur-
rent.

The first appearance of an anti-trapping current is found in [3],
which compensates for interface effects in the dilute solution limit
(linear solidus and liquidus lines, constant kE). Using our notation the
current is defined by

= −
∇
∇

aδ c ϕ
ϕ
ϕ

j Δ ̇
| |0

(15)

where =a 1/(2 2 ), and = −c c cΔ | |L
E

S
E

0 (where superscript E indicates
equilibrium values). The derivation of Eq. (15), along with the de-
termination of relationships between other parameters in the dilute
alloy formulation is firmly based on the analysis of sharp interface
models for which the phase field formulation is adapted to reproduce.
Here, our starting point is the phase field formulation itself and its
limiting behaviour as the interface width tends to zero. But rather than
investigate this limit we aim to adapt the equations to make them
nearly independent of δ in the range < <δκ0 1 (κ is the tip curvature),
where δ is sufficiently small to resolve the curvature but as large as
possible otherwise.

We integrate Eq. (11) from a point in the solid where it is assumed
the gradients of fc vanish to give

Fig. 2. Example 1D steady state solutions to Eq. (18), for and free energies as in Fig. 1, with various phase field interface widths, = …δ , , ,21
5

2
5 . None of the solutions

here give the liquid equilibrium minimum, =c 0.35L
E , ( =δ 1/5 is the closest, at ∼ 0.4).
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= ∂ + −D f u c c0 ( )x c S
E (16)

which we rewrite as

= ∂ + ∂ + −f c f ϕ u
D

c c0 ( ).cc x cϕ x S
E

(17)

On inspecting Fig. 2, we can find the local minimum value, cL
m (or

maximum depending on the convention for c), by solving

= ∂ + −f ϕ u
D

c c0 ( ),cϕ x S
E

(18)

with the phase profile

= +ϕ x
δ

1
2

1
2

tanh 2 .
(19)

We note that Eq. (19) is only a solution of the equilibrium equation and
that the dynamic profile is not a tanh profile, even with different δ. That
said, the dynamic profile with a given slope,

∼δ1/ at the interface =ϕ 0.5
is reasonably well approximated by Eq. (19), but with δ replaced by

∼δ .
The method we present uses a given tanh profile, but we take care to
extract from the dynamic solution the actual interface width.

We seek to correct cL
m to make it equal to the equilibrium value, cL

E

by introducing an extra degree of freedom, α, as follows:

= + ∂ + −α f ϕ u
D

c c0 (1 ) ( ).cϕ x S
E

(20)

We find, in order to have a minimum, cL
m, equal to cL

E, that

+ = −
∂ =

α u c
Df ϕ

1 Δ
( )

,
cϕ x x x

0

liq (21)

where, recall, ≡ −c c cΔ | |L
E

S
E

0 , and xliq is the unknown position where the
minimum value in the liquid appears (n.b. if we knew xliq we could
solve for α directly).

Assuming we have found α, to apply the value of anti-trapping to
the non-steady state 2D problem we take the tip velocity to be given by

= − ∇u ϕ ϕ/̇| | and the j to be in the direction of the outward normal.
Thus, in higher dimensions and non steady state, we write

= ∇ ∇ +c D f j̇ ·( )c (22)

with

= ∇αf ϕj .cϕ (23)

In practice, we require the anti-trapping to work for a range of values of
δ and u, so we search for a value β such that there is a minimum =c cL

E

in the solution of the ode, with =α βλ, i.e.

= ′ + + ′ + −f c x βλ f ϕ x u
D

c c0 ( ) (1 ) ( ) ( )cc cϕ S
E

(24)

where λ is the non-dimensional parameter

=λ uδ
D

,
L (25)

with u the tip speed, δ the actual interface width (such that
∇ ==ϕ δ| | 1/ϕ 1/2 ) and DL the value of diffusivity in the liquid. This allows
us to have ≈c cL

m
L
E for values from 0 to λ (in particular for speeds <u

which will be found away from the tip). We summarize the procedure
here in Fig. 3.

We comment on the difference between Eqs. (21) and (24). In Eq.
(21) we assume we know where the minimum is located, =x xliq and so
′ =c x( ) 0liq by definition. In Eq. (24) we solve and then search for the
minimum (or maximum depending on convention) as per the table in
Fig. 3. In short, Eq. (21) gives one solution for one u but Eq. (24) gives a
range of solutions, which is necessary since u varies around the den-
drite.

For our constructed parabolic free energy functions we find a value
of =β 4.83 compensates for interface width dependence in the steady
state problem, with diffusivity = = = =D D u δ1, 0.001, 0.2, 1L S . This is
illustrated in Fig. 4, where we not only see an exact compensation when

=δ 1 but also effective compensation for interface widths, < <δ1/5 2.
Since the interface width only varies slightly around a dendrite, this
suggests that, if u δ, are known approximately at the tip, then smaller
values of u at other locations on the dendrite surface will benefit from
the same value of β (because of Eqs. (24) and (25) the current de-
pendends linearly on u and δ).

In summary, the whole procedure is given in Fig. 5 and, when ap-
plied to our constructed example free energy curves, Fig. 1, results in
modified solute profiles given in Fig. 4 (to be compared to the no anti-
trapping results Fig. 2). The next section looks at the results of applying
this procedure to a real complex alloy solution, e.g. Lead-Tin, and the
WBM model of Copper Nickel, in single phase growth.

3. Results

This section contains results for a general binary alloy - Lead-Tin
and also the simpler Copper-Nickel model of [8]. The anti-trapping
method is seen to be effective in both cases, but appears more effective
for the more complex model - PbSn.

Fig. 3. Bisection method to find value of the anti-trapping current, β.
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Fig. 4. Solutions to the same steady state 1D problem as illustrated in Fig. 2 but with an anti-trapping current. The value for =δ 1 is chosen to be exact by the choice,
=β 4.83.

Fig. 5. The numerical anti-trapping method.
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3.1. Lead-Tin simulation

In this subsection we explore the effect of anti-trapping with PbSn
across different parameters, with and without a thermal field. In par-
ticular we explore the single phase growth of the Lead-rich solid phase
in the regions indicated in the PbSn phase diagram given in Fig. 6
generated using [17]. We explore the anti-trapping model in both iso-
thermal and thermal conditions. The single thermal run being at 480 K
and =c 0.3. The complete details of the model and parameters are given
in detail in Appendix B where, for example, the units in the plots dis-
cussed are detailed in Table 1.

We employ the numerical methods of [18] with a grid size of
=xΔ 0.39 and domain size of ×800 800 in units of the capillary length

d0.

We inspect the results for the dynamic partition coefficient
=k c c/S L; the normalised partition difference −c c c( )/ΔL S 0, where cΔ 0 is

the difference in equilibrium values; tip radius ρ; and tip speed V. The
latter two are in units of =L 10 nm and =V 0.20 m/s respectively. We
plot these quantities against the tip position, and thus these plots reveal
the transient values. Steady state quantities may be extracted, in some
cases, from the final tip position values if the plot has zero slope. Each
sub plot contains three curves for each interface width, both with anti-
trapping (AT) and without (NT) (6 plots in total). Broadly, the results
without anti-trapping (NT) are interface width dependent and with AT
are to a high degree width independent, even in some transient regions.
In all the simulations, we find that the AT current has an effect on the
actual simulated interface width, i.e. AT tends to reduce δ as compared
to that without AT.

In the simulations we control the interface width with an input
value δe which corresponds to the 1D equilibrium interface width,
where the 1D solution is:

⎜ ⎟= ⎡
⎣⎢

+ ⎛
⎝

⎞
⎠

⎤
⎦⎥

ϕ x
δ

1/2 1 tanh 2 .
e (28)

noting we define the equilibrium interface width

=
′ =

δ
ϕ x

1
( )

.e
x 1/2 (29)

Fig. 7 shows results of 6 simulations for three different interface
widths (roughly in the range 5 to 10 d0), with and without anti-trap-
ping. Here the input values (in proportion to the 1D equilibrium in-
terface width) are =δ / 8 4,6e and 8 for blue, red and green respec-
tively. These results demonstrate a high degree of interface width
independence when AT is used, and, conversely, a δ dependence
without AT. The two smaller interface widths display convergence for
all quantities measured, but the highest δ disagrees slightly in the tip
radius.

Fig. 8 shows the equivalent set of results but with a change to the
initial condition, =c 0.250 , effectively making this a larger under-
cooling. In this case the input values are also =δ / 8 4,6e and 8 for blue,
red and green respectively. Here the discrepancy between the AT results
and the non-AT results is more marked, but still the agreement amongst
the AT results is again very close: in particular there is agreement even
in the tip radius for all widths.

Fig. 9 shows the equivalent set of results but with a change to the
initial condition, = =c T0.3, 4800 K. For stability, the input values are
reduced to =δ / 8 3,4e and 6 for blue, red and green respectively. Here
the discrepancy between the AT results and the non-AT results becomes
greater still, nevertheless the agreement within the AT results is very
close. Even the largest interface width =δ 6.78 approaches the steady
state value of tip radius, ρ.

The thermal-solute phase field model, we employ, is detailed in
Appendix B. This results in results given in, Fig. 10, we adjust the 1D
solve to depend on tip velocity, V, the interface width at the tip, δ , and
the temperature at the tip, Ti. The far field temperature, T0, was set at
480 K and the tip temperature, Ti was found to rise to 503.7 K. At Ti, the
equilibrium values from the common tangent values for c are of course
different to those associated with T0, and are the natural choice for the
1D solve, i.e. we use Ti not T0 to extract the AT current.

3.2. Simulations using WBM model

In order to explore the wider applicability of our technique towards
interface width independence, and also to make connection with a
simpler and well known model, we give results of simulations using the
benchmark model found in [8]. This model, known as WBM, in fact,
forms the basis for our model for PbSn, and by extension, any model
using data base free energies in this way.

We use the model and parameters as described in [8, Table 1] with

Fig. 6. The phase diagram for Lead-Tin with white circle (520 K and
=c 0.25,0.30 ) and red circle (480 K and =c 0.3) being the regions of interest

explored in the simulations.

Table 1
Physical parameters used in the simulation. † these latent heat values are not
used in the model which relies on the free energy- see text for detail.

Parameter Symbol Value

Char Length L0 −10 9 m
Char speed V0 0.2 m s−1

Diffusivity (Liquid) DL −10 9 m2 s−1

Diffusivity (Solid) DS −10 13 m2 s−1

Capillary length d0 −10 9 m
Initial radius R0 d20 0
Anisotropy ∊ 0.02

Surface Energy σA 0.033 J m−2

Surface Energy σB 0.059 J m−2

Melting Temperature (Pb) TA 600 K
Melting Temperature (Sn) TB 505 K
Operating temperature T 480,520 K
Initial concenteration c0 0.3, 0.25

Mol per unit Vol νm 54730m−3

Interface width (Pb) δA × d4,8,12 0
Interface width (Pb) δB δ T T σ σ( / )( / )A B A A B

Latent heat LA e2.61 8 J m−3†
Latent heat LB e9.35 7 J m−3†
Kinetic (Pb) μA 0.0026/m K−1 s−1

Kinetic (Sn) μB 0.0031/m K−1 s−1

Mobility M − +c M cM(1 ) A B
Mobility (Pb) MA μATA

LAδA72

Mobility (Sn) MB μB TB
LB δB72

Barrier height W = − +W c W c(1 )A B

Barrier height (Pb) W A T σ L δ/(6 2 )A A A A
Barrier height (Sn) WB T σ L δ/(6 2 )B B B B
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the exception of the kinetic parameters,
=μ μ[ , ] [2.00,2.47]Ni Cu mK−1 s−1, which we found computationally dif-

ficult and so have reduced these by a factor of 100 to =μ [0.02,0.0247].
One feature of the model given in [8] is that the equilibrium con-
centrations depend on the interface width, δ (via their expression for
free energy Eqs. (8) to (10) and the expression for barrier height Eq. 36
in [8]). Hence, we chose a particular reference δ so that the equilibrium
concentrations as given by [8] are =c 0.16S and . This is in contrast to
most other users of the model who restrict the model’s application to
either dilute alloys, or where partitioning is negligible, e.g. [19].

Application of our method to WBM results in Fig. 11, which illus-
trates cΔ at all points around an early dendrite (where = −c c cΔ L S can
be given as a function of angle, ∈θ π[0, /2], between a point on the 2D
dendrite’s surface to the x-axis - see Fig. 12 for the corresponding
dendrite shapes). In the figure the dotted line indicates cΔ 0, the equi-
librium value. It is clear that there is convergence of cΔ across a small
range of input parameters, =δ / 8 4,6,8e . The simulation was on a
domain of ×800 800 with =xΔ 0.39 and so there are between 10 to 20
grid points across the interface.

The main feature of Fig. 11 is the convergence, not just at the tip
( =θ π0, /2), but also to a high degree throughout the surface. The anti
trapping current is computed from the tip speed and by design, a low
speed reduces the current. Thus we expect good convergence at the tip
and in between the dendrite arms (where the speed is much reduced).
The agreement in between these extremes is due to a reasonable as-
sumption that the amount of anti-trapping is in linear proportion to

speed. On the other hand there is not convergence when there is no
anti-trapping- “NT”. The dashed curves in Fig. 11 make perfect sense in
terms of the known deficiencies of the model. Growth is slowest at π/4
so interface induced trapping is lowest and the solution is closest to
equilibrium. Conversely, for =θ π0, /2 velocity is at a maximum, so the
largest departure from equilibrium is to be expected.

A plot of all the corresponding dendrites is given in Fig. 12, all at the
same tip position. Clearly there is better agreement with the anti-
trapping model between the different interface values, which may be
contrasted with the straight phase field model (dashed lines). The figure
adds weight to the assertion that even qualitatively, dendrite formation
may well be incorrect without anti-trapping.

4. Discussion

The immediate observation from the above results is that compen-
sating for solute trapping alone seems good enough to give results with
a high degree of interface independence. Clearly, as is commonly ac-
cepted and is the case here, the interface width must still be less that the
tip radius. The rule of thumb being <δ ρ/2. Yet the 1D solve uses
equilibrium values for cS

E and cL
E which differ significantly from the

values found in the dynamic setting, as should be expected since there is
natural solute trapping for higher velocities associated with increasing
undercooling. The question that needs to be addressed is: why does the
use of equilibrium values from the 1D steady state model give such
satisfactory results in the dynamic setting where the dynamic partition

Fig. 7. Results for PbSn, = =c T0.3, 5200 K, =δ / 8 4,6,8e (blue, red and green respectively). Clockwise from top left: dynamic partition coefficient, kE ; concentration
difference normalised with equilibrium value c cΔ /Δ 0; tip speed,V; tip radius, ρ. The dashed results are without the anti-trapping and solid lines with anti-trapping.
There is a high degree of interface independence for the latter across all measures. All dimensioned quantities are in units of length, =L 10 nm and velocity,

=V 0.20 m/s as given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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values, cS and cL are (significantly) different from the equilibrium ones?
An intuitive answer to this can be made by examining the case where
the far field (and initial condition) for c0 is increased to a point where
the undercooling is reduced to near equilibrium and the tip velocity
becomes very small. In this scenario, the equilibrium values for cS

E and
cL

E are unchanged and are approached by the dynamic values, and the
only change for the 1D solve is the lower tip speed. The results above
suggest that there is a near linear proportionality between tip speed, V,
and the size of anti trapping in all the cases considered above. The
Peclet number for these simulations is, = ∼Pe ρV D/ 0.5L . The predic-
tion, therefore, is that the method might be less effective in situations
with significantly higher Peclet numbers.

For small V, [8] propose a model for the partition coefficient, in
their notation

= − −k k VM(1 Γ )E
1

0 (30)

where, in our model, we write this with ≡∼V Vτ d2 /(3 )0 0

= − + ∼k k V O V[1 ( )]E
2 (31)

where =τ MW1/0 and the capillary length
∫∼ ≡ −∞

∞d ϕ x(2/3)/Γ (2/3)/ ( ) dx0 0
2 for an interface width ∼δ d0. Now,

since the chosen characteristic time and lengths in our simulations are
τ0 and d0, we can read off the non-dimensional number, ≡∼V Vτ d(2/3) /0 0

from the figures, the highest being from Fig. 9, where

≈ × ∼∼V 0.153 (2/3) 0.102. Thus indicating ∼k k0.898 E. Our result in
Fig. 9, for the value for the smallest =δ d4 0 being: =k k/ 0.887E , which
is clearly very close to this linear prediction.

Finally, in Appendix C we seek to put the anti-trapping current into
a thermodynamic context. This not only shows that the anti-trapping
term can be put into a variational form, but also that the anti-trapping
current is approximately entropy neutral. We then go on to make a
connection with other work, [22], which postulates a cross term, re-
lated to anti-trapping, in the phase field equation.

5. Conclusion

We have presented a scheme to compensate for interface width
dependence in general phase field modelling of metallic alloys. The
scheme consists of a steady state 1D solve to extract an anti-trapping
current, j, such that equilibrium partition values for solute are retained
independent of the interface width. This value for j is then applied, to a
general 2D simulation, with the modification that the anti-trapping is
proportional to velocity and interface width (which vary along the
dendrite surface). This straightforward approach is seen to be very ef-
fective in the first unsteady problem chosen, across a range of tem-
peratures and solute concentration, and also in the WBM benchmark
problem.

Fig. 8. Results for PbSn, = =c T0.25, 5200 K, =δ / 8 4,6,8e (blue, red and green), Clockwise from top left: dynamic partition coefficient, kE ; concentration difference
normalised with equilibrium value c cΔ /Δ 0; tip speed,V; tip radius, ρ. The dashed results are without the anti-trapping and solid lines with anti-trapping. There is a
high degree of interface independence for the latter across all measures. All dimensioned quantities are in units of length, =L 10 nm and velocity, =V 0.20 m/s as
given in Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Results for PbSn at the highest undercooling, = =c T0.3, 4800 K, =δ / 8 3,4,6e (blue, red green). Clockwise from top left: dynamic partition coefficient, kE ;
concentration difference normalised with equilibrium value c cΔ /Δ 0; tip speed,V; tip radius, ρ. The dashed results are without the anti-trapping and solid lines with
anti-trapping. There is a high degree of interface independence with AT for the latter across all measures, but without, the results disagrees significantly for different
δ / 8e (and so δ). All dimensioned quantities are in units of length, =L 10 nm and velocity, =V 0.20 m/s as given in Table 1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Results for PbSn at the highest undercooling, = =c T0.3, 4800 K, with a thermal field. Clockwise from top left: dynamic partition coefficient, kE ; con-
centration difference normalised with equilibrium value c cΔ /Δ 0; tip speed,V; tip radius, ρ. The dashed results are without the anti-trapping and solid lines with anti-
trapping. There is a high degree of interface independence with AT for the latter across all measures, but without, the results diverge significantly for different δe. All
dimensioned quantities are in units of length, =L 10 nm and velocity, =V 0.20 m/s as given in Table 1.

Fig. 11. Plot of cΔ against the angle subtended between the x-axis and a point
on the dendrite surface. The dotted line represents equilibrium cΔ 0. The lowest
velocity is found at π/4 and the highest being at the tip - =θ π0, /2. The effect of
interface width on cΔ is much more noticeable without anti-trapping for all

∈θ π[0, /2]. Fig. 12. A plot of the corresponding dendrites (using the same color code as
Fig. 11). We see that there is broad agreement between the profiles associated
with the anti-trapping. Without anti-trapping one can see that the trend with
larger interface widths is towards a rounded diamond shape normally asso-
ciated with near equilibrium growth (Wulff shape).
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Appendix A. Equilibrium 1D solution to the phase field equations

Beginning with the 1D equilibrium functional equation, Eq. (6),

∫= ⎡
⎣⎢

∇ ∇ + − ⎤
⎦⎥

=δF
δϕ

δ ϕ ϕ ϕ ϕ x
8

· (1 ) d 0S
Ω

2
2 2

(32)

is follows, by applying the variation derivative, that

∇ = − −δ ϕ ϕ ϕ ϕ
8

2 ( 1)(2 1)
2

2
(33)

which, upon substitution, is satisfied by Eq. (8) as required.

Appendix B. Model detail and parameters

One of the simulations had a dynamic temperature field for which we used the model detailed in [1]

= ∇ ∇ −⎛
⎝

− ∂
∂

⎞
⎠

∂
∂

C T κ T T
T

f
ϕ

ϕ̇ · 1 ̇p
(34)

where ≡ − =∂
∂

C T κ D, 100p
f

T L
2

2 . The other parameters and functions used in the PbSn model are given below in the tables:

In Table 1, indicated by †, the latent heat values are evaluated using ≡ − − ∂
∂E ϕ c T T( , , ) (1 )T

δF
δϕ with = ≡ −L E E T E TΔ | (1,0, ) (0,0, )A A APb and

= ≡ −L E E T E TΔ | (1,1, ) (0,1, )B B BSn , where =ϕ 1(0) is liquid(solid), and =c 0(1) is Pb(Sn).
The bulk free energy is given by interpolating between solid and liquid free energies using the monotonic function, = −g ϕ ϕ(3 2 )2 , to give

∑ ∑

∑ ∑

∑ ∑

= + − +
= + − −
= − + +

= − + +

= =

= =

= + = +

= =

= =

= =

f g ϕ f c T g ϕ f c T S c T
S RT c c c c
f c g T cg T f c T

f c g T cg T f c T

g h T T g h T T

g h T T g h T T

f f Tf c c f f Tf c c

( ) ( , ) (1 ) ( , ) ( , ),
[ ln (1 )ln((1 )],

(1 ) ( ) ( ) ( , ),

(1 ) ( ) ( ) ( , ),

( ), ( ),

( ), ( ),

( ) ( ), ( ) ( ).

B
L S

M

M
L

A
L

B
L

RK
L

S
A
S

B
S

RK
S

A
L

i
A
L i

i B
L

i
B
L i

i

A
S

i
A
S i

i B
S

i
B
S i

i

RK
L

i

L i L i
i RK

S

i

S i S i
i

1

8
,

1

8
,

1

8
,

1

8
,

1

2

1
,

2
,

1

2

1
,

2
,

(35)

These functions are the standard way CALPHAD methodology, [20], represents solute-thermal dependence. Here fRK indicates Redlich-Kister model;
SM indicates the entropy of mixing; and the pure thermal dependence is given by Gibbs vector constants and functions in the following array:

i hA
L i, hB

L i, hA
S i, hB

S i, T T( )i

1 −2977.961 1247.957 −7650.085 −345.135 1
2 93.949561 51.355548 101.700244 56.983315 T
3 −24.5242231 −15.961 −24.5242231 −15.961 T Tln( )
4 − −e0.365895 2 − −e0.188702 1 − −e0.365895 2 − −e0.188702 1 T 2

5 − −e0.24395 6 −e0.3121167 5 − −e0.24395 6 ,
−e0.3121167 5

T3

6 0.00 −61960.0 0.00 −61960.0 T1/
7 − −e0.6019 18 −e0.147031 17 0.00 0.00 T 7

8 0.00 0.00 0.00 0.00 T1/ 9

The Redlich-Kister contants and functions are given by:

(36)

Appendix C. A variational form for anti-trapping

In this section we wish to postulate how the addition of the anti-trapping current, j, may be formulated within a variational framework. One
application of this is to inspect the contribution of j to entropy production, and since changes in interface width have negligible effect on entropy
production it follows that there is a requirement on j to be entropy neutral.

It is explained in [1] that the binary alloy formulation, Eqs. (1) and (2), used in this paper can be derived from

=A A Ḟ [ , ] (37)

where, A is an arbitrary functional and the bracket is defined
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∫ ∫= − − ∇ ∇A F M δA
δϕ

δF
δϕ

x D δA
δc

δF
δc

x[ , ] d · d .
Ω

3
Ω

3

(38)

To produce a solute equation with a current, see Eq. (14), we can postulate an additional term to the bracket of

∫− ∇ δA
δc

xj· d
Ω

3
(39)

which produces the extra term, ∇ j· in:

= ∇ ∇ + ∇c D f j̇ · · ,c (40)

by design. Now, by noting that ∝ ∝ϕj n ṅ δF
δϕ

we can rewrite the bracket term Eq. (39) as

∫− ∇δF
δϕ

δA
δc

xnΛ · d
Ω

3

(41)

where =n jΛδF
δϕ includes all the parameters such as, M D α, , etc. The full bracket is now

∫ ∫ ∫= − − ∇ ∇ − ∇A F M δA
δϕ

δF
δϕ

x D δA
δc

δF
δc

x δF
δϕ

δA
δc

xn[ , ] d · d Λ · d .
Ω

3
Ω

3
Ω

3

(42)

Which gives the anti-trapping model in bracket form and therefore implies that the anti-trapping model can be derived from a variational form.
Following the methods of [1] we can see there is entropy production sȦT ,due to this term of

= ∇ ≡ ∇s
T

δF
δϕ

δF
δc T

fn j̇ Λ 1 ·AT c (43)

If we make the assumption, by the common tangent rule (and the non-equilibrium extension of that rule given in [8]), that fc is equal either side of
the interface (i.e. ≡ = ≡= =f f f f| |c

S
c ϕ c ϕ c

L
0 1 ), and j is approximately constant, we find by integrating across the interface that

∫≡ = − ≈S s x
T

f fj̇ ̇ d 1 | |( ) 0.
L

S
AT c

S
c
L

(44)

The significance of this result is that the anti-trapping term is entropy neutral, and thus, for example, need not be included in the temperature
equation and does not contribute to free energy minimisation. This single observation explains why the anti-trapping current not only corrects solute
partitioning but also, to a large extent, creates interface width independence across a range of measures.

Finally it is possible to postulate a symmetric form of anti-trapping by writing

∫ ∫

∫ ∫

= − − ∇ ∇

∇ + ∇

A F M x D x

x xn n

[ , ] d · d

Λ · d Λ · d .

δA
δϕ

δF
δϕ

δA
δc

δF
δc

δF
δϕ

δA
δc

δA
δϕ

δF
δc

Ω
3

Ω
3

Ω
3

Ω
3

(45)

which gives the following phase field formulation

= − + ∇ϕ M δF
δϕ

fṅ Λ · ,c (46)

and

= ∇ ∇ −∇c D f δF
δϕ

ṅ · ·Λ .c (47)

This formulation above is very similar to as mentioned in [22], being a development on their previous work [21]. The difference is that in our
formulation, ∝j nδF

δϕ , but in [22] ∝ ϕj n .̇ Exploration of the above is beyond the scope of this paper and is left for future work.

Appendix D. Relating the 1D anti-trapping current to 2D/3D

Starting with the 1D equation, Eq. (24),

= ′ + + ′ + −f c x βλ f ϕ x u
D

c c0 ( ) (1 ) ( ) ( )cc cϕ S
E

(48)

multiply by D and differentiate with respect to x gives

= ∂ ′ + ′ + ′ + ′D f c x f ϕ x βλf ϕ x uc x0 [ ( ( ) ( ) ( ))] ( )x cc cϕ cϕ (49)

Setting ′ = −uc x c( ) ̇ gives

= ∂ ′ + ′ + ′c D f c x f ϕ x βλf ϕ ẋ [ ( ( ) ( ) ( )]x cc cϕ cϕ (50)

and so converting to 2D/3D gives

= ∇ ∇ + ∇ + ∇ = ∇ ∇ + ∇ = ∇ ∇ + ∇c D f c f ϕ βλf ϕ D f βλf ϕ D f Dβλf ϕ̇ ·[ ( )] ·[ ( )] ·( )cc cϕ cϕ c cϕ c cϕ

Thus = ∇ = − ∇
∇Dβλf ϕ δf ϕj ̇

cϕ
D

D cϕ
ϕ
ϕ| |L
.
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