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ABSTRACT

A system’s ability to precisely locate itself in a known physical

environment is key to its capacity to interact with the environment

in an intricate manner. The indoor localisation problem has been

approached in a variety of ways, ranging from the identiication of

pre-deined features or topologies to the more general cloud-point

matching.

Cloud point matching can be achieved using a variety of algo-

rithms, each with beneits and drawbacks. Recent improvements

have focused on the application of genetic algorithms to solve the

initial ’global’ search for a solution, before reining this solution to a

precise position through a non-genetic algorithm. This project aims

to demonstrate the ineiciency of genetic algorithms applied to the

global search problem for the issue of indoor localisation; this is

thought to be caused by the solution space’s low dimensionality, so-

lution landscape topology and the ineicacy of crossover operators

in the algorithm. Based on our assumptions of map topologies, we

conclude that signiicant redundancies can be found in some purely

genetic heuristics and suggest further development of landscape

analysis to allow the use of algorithms appropriate to the scenario’s

complexity.
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1 INTRODUCTION

The problem of line-of-sight indoor localisation was irst resolved

through the matching of cloud point data (obtained from a line-of-

sight sensor such as a Li-Dar) to retrieve tuple (x ,y,θ ) describing

the location and orientation of a robot in a known environment.

This was irst achieved by algorithms such as the Iterative Closest

Point (ICP) algorithm Besl and McKay [4], and a long line of alterna-

tive heuristic algorithms Lu andMilios [23], Diosi and Kleeman [11]

[29], Biber and Strasser [5], Donoso-Aguirre et al. [13], Konecny

et al. [19] and various improvements on the ICP’s convergence

speed [12] [32], dataset optimisation [33] [25] or precision metrics

[14].

Performing indoor localisation without a priori knowledge of the

robot’s pose increases the diiculty to this problem, as a global

search for the position must now be performed, rather than simply

a pose reinement. Using test cases from Lenac et al. [20], we ini-
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Figure 1: Fitness landscapes for randomly selected scans in

dataset.

tially found the itness landscape of indoor localisation problems

to be relatively smooth and unimodal, as visible in Figure 1 which

displays the best matching translation and rotations of poses at

various points and orientations on the map. Mitchell [27] details

that GAs are most applicable in non-smooth, non-unimodal search

spaces. Ωe may expect these to exist in the context of indoor lo-

calisation as feature-dense reference maps, but this amounts to a

iner resolution of the current problem, requiring a higher sampling

density and computational power but remaining equally solvable.

Furthermore, Grefenstette [17] states that "If [a search] space is

well understood and contains structure that can be exploited by

special purpose search techniques, the use of genetic algorithms is

https://doi.org/10.1145/3205455.3205499
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generally computationally less eicient". Given the full knowledge

of the map and scan data, and the relative ease with which we can

construct a itness landscape relating the two, we can see that the

general problem deinition contrasts greatly with intended applica-

tions of genetic algorithms.

Ωe therefore aim to demonstrate redundancies in the behaviour

of genetic algorithms applied to a subset of the indoor localisation

problem with knowledge of the environment but no a priori pose.

This is achieved by creating improvements to a benchmark ge-

netic algorithms to demonstrate the ability of a simple non-genetic

heuristic algorithm to outperform a genetic algorithm in terms of

eiciency, as measured by pose precision and computational time.

2 EXISTING WORK

The use of genetic algorithms to search for data-matching solutions

was pioneered by Brunnstrom and Stoddart [7] to ind the corre-

spondences between detailed surface models. This was achieved by

using a chromosome design based on a transformation, translation

and rotation in three dimensions. A simpliied X⁄Y translation and

rotation chromosome is used as the basis for all further genetic

algorithms for 2D indoor localisation.

Robertson and Fisher [30] later presented a GA alternative to

the ICP algorithm to avoid requiring a priori pose knowledge and

the tendency to converge to sub-optimal or incorrect solutions.

These were solved through the GA’s ability to search for a global

maxima, rather than simply reine a pose to the local minima. This

is implemented using a 3-tuple matching our problem deinition

(x ,y,θ ), and results in signiicantly better global search results than

a single ICP run, thereby demonstrating the potential of genetic

algorithms within the ield.

Polar Scan matching (PSM) is a variation of Robertson and

Fisher’s initial genetic algorithm which is adapted for the direct

use of raw data from a laser range scanner, therefore reducing the

computational costs of the operation. Ze-Su et al. [35] believe this

would represent two O(n) searches: one for the translation estima-

tion, and one for the orientation estimation. This approach is found

to be more precise and eicient than ICP in the given examples

[35], although given the variation in performance of algorithms in

scenes [12] this result may not be generalisable. As demonstrated

by Ze-Su et al., the method is applied to identify two complete sets

of data, rather than mapping a subset of the data (the area visible

around the robot) into the full set of data (the full map); further

adaptation may therefore be required for the method to function

for general indoor localisation.

Recent improvements in the performance of GAs were suggested

by Lenac et al., but involve a trade-of in accuracy with execution

time due to the use of a rasterized environment.

The concept of combining the global search of a GA with the

accuracy of the ICP algorithm has been introduced in a variety of

concepts. Brunnstrom and Stoddart [7] irst proposed the idea of

applying a low-accuracy global search using a GA, before rein-

ing the most promising individual poses using an ICP algorithm

using the pre-aligned poses. Using a itness function deined by

minimising the sum of the distance between pairs of closest points

(each pair composed of a point in the scan and a point in the map),

Brunnstrom and Stoddart presents an objective set of results demon-

strating the algorithms ability to roughly estimate the 3-tuple pose

modiication, but produces no statistical data regarding the success

rate or accuracy of the algorithm.

The hybrid approach was independently presented by Martínez

et al. [24], resulting in a method which is indistinguishable from a

standard GA, but is however quicker to execute as the GA search can

be completed in a coarser accuracy. This utilises a itness function

similar to the PSM algorithm [35], thereby reducing the complexity

of the itness function to O(n). Ωhen compared to a standard ICP

and GA, the hybrid GA-ICP method performs as well as the GA

and better than ICP, with a computation time between that of an

ICP and GA. As no statistical analysis is performed, it is diicult to

demonstrate this hybrid approach to be superior to other available

methods (as ICP is known to be a local search algorithm, and is

therefore not representative of other global search algorithms [34]).

As such, further evaluation of the GA-ICP algorithm in a larger

variety of environments would be required to ind the strengths

and weaknesses of the approach relative to difering environments.

One should note these papers used a basic form of ICP, and as such

were quickly improved upon as discussed below.

Further hybrid algorithms include a combination of GA⁄TrICP

[22] which improved on previous GA⁄ICP algorithms [7][24], and

a rasterized GA ⁄ mbICP algorithm by Lenac et al. [21].

3 METHODOLOGY

The data used to evaluate our algorithms is taken from Lenac et al.

[21], where a robot’s exploration of a room was simulated using the

Player-Stage software [2]. This produced a series of scan scenarios,

each composed of a veriiable scan pose (x, y, rotation) and polar

scan coordinates (distance, rotation) which mimic LiDar scanner

data. The map of the environment (into which our algorithm will

locate itself) was then calculated from these scans into a cartesian

dataset, and then subsampled to a tolerance of 0.2 units such as to

speed up the algorithm’s execution Figure 2. Ωe should note that

the data utilised had no speciied scale: this can be estimated using

the speciications of an of-the-shelf Li-Dar range inder [1].
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Figure 2: Efects of sub-sampling on features in the refer-

ence map, with tolerances of 0.1, 0.2 & 0.5 units respectively.

The algorithms were each run 30 times using the same scan

(scan110) and map, over a range of time limitations; these restricted

the number of generations for which the algorithm evolved, thereby

providing a comparison of the algorithms over a set of possible

requirements (which could be constricted by the application, avail-

able processing power, etc). Paired T-Tests could then be conducted

across the average eiciency, categorised into buckets by real ex-

ecution time. No values were excluded as outliers, as we aim to
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create a consistent system accounting for the stochastic nature of

genetic algorithms.
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Figure 3: Scan 110 as located in the referencemap, with pose.

4 SOLUTION EVALUATION

Ωe deine a combined error metric E = dhp × |Rh − Rr |, where dhp
is the absolute distance between each estimated pose, and Rh ,Rp
are the respective rotations from North of the hypothetical and

reference pose. As such, a smaller error represents a more accurate

pose. This allows the outputs of our algorithms to be evaluated

independently from their itness functions, and therefore allow us

to compare output poses. As we are only searching for a single

pose, we will only consider the best individual from each run’s inal

generation as the output of an algorithm. These form the set of

results for each algorithm which will be evaluated using statistics

appropriate to individual experiments. An additional measure of

eiciency is deined as the product of the combined error and the ex-

ecution time of the algorithm, thereby allowing quicker algorithms

to be precise algorithms.

5 BENCHMARK ALGORITHM

An existing GA by Robertson and Fisher [30] was adapted as a

benchmark algorithm for the purpose of this project; it consists of

a standard GA with incremental⁄decremental mutation, parameter-

speciic crossover (parameters are x, y, θ ) and tournament based

selection. Diferent termination conditions were used: these were

either generation based (maximum number of permitted iterations)

or time based (maximal allowed execution time, which permits a

generation to inish if it was started before the time limit). The

mutation rate, crossover rate, population size and number of gener-

ations were sequentially optimised for a given scan to maximise the

algorithm’s performance in our test data, creating a robust bench-

mark.

The itness function deined by Robertson and Fisher [30] was

inverted from a minimisation (E =
∑
i |Si −MI | where S is a (x ,y)

point in the scan and M is S’s closest point in the map) to a maximi-

sationM = 1
1+E ; This provides a more accentuated curve of itness

in the hope of improving the convergence capabilities of both the

benchmark and new algorithm, in addition to adhering standards

for GAs established by Eiben and Smith [15]. This was validated

using the itness landscape in Figure 1, which corresponded to the

solution pose.

Figure 4: Efects of crossover and mutation rates on the

benchmark algorithm’s execution time.

Mutation and crossover probabilities were optimised for our test

case (scan110) by execution the algorithm from 60 randomly gen-

erated poses; the lowest average pose error (deined in section 4)

was selected, resulting in a optimal parameters of CXPB=0.8 and

MUTPB=0.8, as visible in Figure 4. A similar analysis was conducted

using these parameters to mutation sizes, as sampled from a normal

distribution with µ = 0,σ = 1.0; this was deemed to provide a

balance between the frequency in small mutations (to adequately

reine the inal pose) and larger mutations (to increase the con-

vergence rate of the pose from the initial pose). The optimised

standard deviation of this distribution for our test scan (scan 110)

was veriied by running the algorithm 30 times using previously de-

ined parameters and a varying mutation size, as visible in Figure 5.

Population sizes and number of generations were set to 50, such as

to provide a more practical execution time which would mimick

the speciications of an embedded system, whilst increasing the

diiculty of the problem for all algorithms evaluated.
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Figure 5: Efects of varied mutation sizes on performance of

the benchmark algorithm.

6 ALGORITHM DESIGN

On the assumption of a smooth itness landscape, we implement

an alternative algorithm to accelerate the convergence of the GA.

Building on David E. Goldberg [10]’s solution to balancing the

conlict between exploration and exploitation, which is achieved

through higher growth ratios followed by building block discovery

through mutation, we diverge by instead utilising mutation to opti-

mise our current local maxima and assume our initial population

was suiciently dense and spread across the map to ind all local
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maximas. The evolutionary behaviour represented a form of elitism,

where the top n percentile of the population was retained at each

generation and duplicated into ofspring, which increase the genetic

diversity via crossover or mutation according to a set probability.

This is known at the (µ + λ) algorithm [3] [31], where µ represents

the number of ittest individuals to select at each generation, and λ

represents the number of ofspring to generate. The mutation rate

was set to 1.0, whilst no crossover was used; this minimised the

average resultant combined error by maximising the incremental

movement of individuals and reduced the occurance of destruc-

tive crossover. A high elitism rate of 0.95 was found to minimise

the combined error when evaluated across a possible range of [0,

1]. Mutation sizes were drawn from a normal distribution with

µ = 0,σ = 1.05. This was deemed to provide a balance between

the frequency in small mutations (to adequately reine the inal

pose) and larger mutations (to increase the convergence rate of the

pose from the initial pose). The near-optimality of this distribution

for our test scan (scan 110) was veriied by running the algorithm

using previously deined parameters and a varying mutation size.

An additional improvement of the population’s initialisation in-

volved arranging individuals into a grid layout; this improved the

probability that all local minimas would be explored, as the elitism

rate rarely removes individuals from the population. In order to pro-

vide an adequate breadth of search without a large computational

overhead, we also experimented with a grid-like instantiation of

individuals (see Figure 6). This enabled the algorithm to evaluate a

larger number of candidate individuals, of which the top 50 are used

as a primed population in the elitist algorithm previously described.

Figure 6: A grid based initial population

7 EVALUATION AGAINST BENCHMARK

These two improvements were evaluated against our benchmark

GA in succession, with the latter grid-arrangement including the

former elitist selection and parameters. All 3 were evaluated 30

times using optimal parameters for each algorithm, and scan110 as

a representative of scans of the dataset.

7.1 Elitist selection

This found the elitist algorithm to be more precise with limited

algorithmic capacity, with a mean combined error of 0.191 against

1.839. The result was validated using a two-tailed T-Test (with un-

equal variance) between the set of combined errors (N=30, p¡0.01).

However, the elitist algorithm also required slightly more time to

run (see Table 1), which brings into question the eiciency of the

algorithm.

Combined error Execution time (s)

Benchmark Elitism Benchmark Elitism

Mean 1.839 0.191 46.923 48.522

Stdev 3.151 0.478 9.160 9.057

Table 1: Combined error and execution time over 30 runs of

benchmark and elitist algorithms

Further to the previous experiment, the code was modiied to

loosely constrain the available execution time; this functioned by

halting the algorithm if, at the end of a generation, the elapsed time

was larger than a speciied threshold. As the subsequent results

had non-exact execution times, the results were weighed according

to their execution time, such that the statistics were ran on values

representing the product of the execution time and combined error.

Lower values therefore represent better eiciency in resolving the

problem.

The elite algorithm was found to produce more eicient results

across the set of target execution times Figure 7. This is most visible

by the comparatively low median (0.550 against 12.960), along with

a more eicient upper quartile (2.110 against 82.407). This demon-

strates that the elite algorithm produces consistently more eicient

solutions than the benchmark algorithm. Poor eiciency values still

occur, as demonstrated by the large whiskers.

10−5 10−3 10−1 101 103

Elite

Benchmark

Combined error × execution time

Figure 7: Performance of each algorithmwith 50 population,

as many generations as possible within the time frame and

optimal parameters for each algorithm.

These results can be further analysed in Figure 8, where the

results are bucketed by execution time. A T-Test (paired across time

buckets) demonstrates the eiciency of the elitist algorithm (i.e:

lower execution time × combined error) per execution time (means

of 23.622 vs 100.865, p¡0.001, N=360). This is not the case for all time

limits; benchmark runs limited to 5-10s are not signiicantly more

eicient (23.724 average combined error × execution time) than the

elite algorithm (26.231). This may be due to the benchmark GA’s

use of crossovers to rapidly explore areas of the map which are not

yet populated; an equivalent breadth of search is not available in

our algorithm due to the small mutation sizes and lack of crossover;

this does appears to disrupt the mutation-based reinement, leading

to a higher error in the benchmark algorithm.

Fitness-rank based selection is capable of rapidly selecting promis-

ing individuals, duplicating them and mutating their ofspring to

ind an optima near them. This results in an eicient algorithm for

a majority of time scales, but can still fail to produce a precise pose

given an arbitrary amount of computational time (as demonstrated
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Figure 8: Average run time × combined error for each algo-

rithm, using as many generations as possible in time limit,

optimal parameters for each algorithm and population of

50.

by the large upper percentiles in Figure 7). This may be due to

the stochastic nature of the genetic algorithms, or more particu-

larly the population initialisation, and may occur if no individual’s

local maxima is the global maxima. Combining elitism with a grid-

instantiation was next evaluated using the same methodology with

which our algorithm was previously compared to the benchmark.

The elitist algorithm including a grid-based initialisation of 200

individuals (followed by the evolution of the 50 best individuals)

was executed 30 times across a range of time limits, producing the

data found in Figure 9.
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Figure 9: Performance of grid-based initialisation compared

to random instantiation, both using elitist selection.

The grid-initialised algorithm was found to be more eicient

when compared to a random initialisation (T-Test paired across

bucketed real execution time, average execution time × error of

2.26 vs 69.00, p¡0.001, N=360). This is likely due to a reduction in the

number of algorithm failures, where no adequate pose was found

within the time limit; we would expect this to occur less frequently

when sampling the map at a higher frequency and consistency.

The efects of this are visualised in Figure 10, where the standard
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Figure 10: Improved pose accuracy and algorithm success

from grid-based initialisations compared to random initial-

isation.
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Figure 11: Performance of each algorithm over 30 execu-

tions for various time limits.

deviations for each execution time group are generally lower for

grid-based initialisation than the standard algorithm. This is found

to be statistically signiicant for two thirds of the groups using an

F-Test (p¡0.001), therefore demonstrating that grid-based initiali-

sations greatly increase the accuracy of the algorithm. Ωe should

note that optimal grid density or parameters were not explored

for the map or scan, and it could therefore be possible to further

accentuate the efect of this method on the output pose.

Ωe should additionally note that while the feature was envi-

sioned using a grid pattern, the use of a larger initial population

which is randomly distributed around the map does achieve a simi-

lar performance. This was validated over 30 runs of the algorithm,

which produced a mean result (in execution time × combined error)

of 3.74 across all execution time buckets, compared to the grid-

based algorithm’s mean of 2.255. A paired T-test across execution

time buckets conirmed that the mean standard deviations were

not statistically discernible from grid-based initialisations (N=360,

p=0.295).

As such, large initial populations of individuals are hugely bene-

icial to the evolution of a pose through elitism selection, as they

increase the density with which the map is sampled, thereby in-

creasing the probability that an individual will be placed in a po-

sition from which it would crawl (via mutation and duplication)

towards the global maxima. This contributes to improving the con-

sistency of pose retrieval, as well as reducing the worst case pose,

as demonstrated by the small IQR of the box plot representing the
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Grid algorithm’s results in Figure 11.

Ωe therefore demonstrate that optimisations are possible for

purely genetic localisation algorithms, improving the accuracy,

computational requirements and precision of our localisationwithin

a map. The optimised algorithm has been reduced away from a

volatile genetic algorithm, which beneits from crossover to explore

a large map with little computational power. In it’s place, we rely on

inding a reasonable initial pose estimation through a sparse brute

force, before reining it through repeated mutation to ascend the

itness gradient. As the mutation has a likelihood of approximately

50 % of being counter-productive (as it can move the individual

towards or away from the optima), it stands out as a signiicant

ineiciency in the algorithm, leading us to a necessary comparison

with a gradient ascent algorithm, which we will design and evaluate

in section 8.

8 ICP ALGORITHM DESIGN & EVALUATION

Given the lack of comparison between genetic algorithm and recent

classical algorithms, an additional experiment was undertaken to

help highlight ineiciencies in the pose reinement of GAs. Follow-

ing Yang et al. [34]’s implementation of a Branch-and-Bound &

ICP algorithm, an ICP implementation [18] was adapted for use

with our grid-layout algorithm. This aimed to form a representative

algorithm from the non-genetic research, and preliminary results

signiied that further optimisation was not required to demonstrate

the beneits of this approach. Following Censi et al. [8], who states

that it would be possible to apply a ’classical’ algorithm to a global

pose localisation problem by running it from a number of random

poses, the algorithm functioned by applying the ICP algorithm

from 200 hypothetical poses laid across a grid on the map, using

the same grid pattern and density as the Grid-GA. The previously

deined combined error metric (see section 4) is then used to se-

lect the inal pose estimation from the set of ICP-reined candidate

poses. The reinement of candidate poses was executed in parallel

using the same compute cluster as in our grid-based GA, thereby

utilising an equally maximal amount of concurrency equivalent to

our GAs parallel evaluation of individuals. The algorithm was run

360 times to create a dataset of comparable size to the grid-based

algorithm’s dataset (which was created using 30 runs over 12 target

durations). As visualised in Figure 12, the grid-ICP has a similar

median eiciency to the grid-based GA (medians: Grid-GA = 0.73,

Grid-ICP = 1.33), but is much more consistent. This is demonstrated

by the standard deviation lower standard deviation of 7.760 for the

Grid-ICP, compared to 68.63 for the Grid-GA. Ωe should note that

whilst Figure 12 displays a similar spread of data using interquar-

tile ranges, we decided to comparatively evaluate the eiciency of

the algorithms using the standard deviation as we have previously

decided not to exclude outliers. As the IQR is ’padded’ against out-

lying values, it is not representative of the worst case values seen

in the overlow bin of Figure 13, demonstrating why the Grid-ICP

algorithm is more consistent than the Grid-GA.

A paired T-Test across the pose error × execution time results

for ICP and the grid-initialised algorithms found the means to be

statistically diferent (N=360, p¡0.01). This indicates that the GA

based algorithm is indeed more eicient, with a mean eiciency of
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Figure 12: Performance of each algorithm over 30 execu-

tions for 12 time limits (note logarithmic x axis)
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Figure 13: Histogram comparing the eiciency of Grid-ICP

and Grid-GA algorithms

2.247 against the Grid-ICP’s mean of 4.350. Ωe further found the

grid-ICP algorithm to have a much smaller mean execution time

compared to the grid-GA: (3.66s, compared to 38.20s)

9 EXPERIMENTAL SUMMARY & DISCUSSION

Ωe therefore demonstrate improvements to the application of GAs

to the problem of indoor localisation; these are the application of

the (µ+λ) algorithm, and priming the algorithmwith a larger initial

population. These improvements highlight the inefectiveness of

GAs to the problem of indoor localisation, as an unreined classi-

cal algorithm can be prototyped to not only indistinguishly match

the precision and eiciency of the algorithm, but would also be

more suitable to an embedded application due to it’s smaller execu-

tion time. Further improvements to the ICP algorithm (such as the

mbICP or trICP algorithms) could further reduce the computational

power requirement, as would the optimisation of grid arrangements

and population density. Ωe hypothesise that this improvement is

possible due to the destructive nature of the crossover operator

when dealing with co-dependent parameters (as is our case), and

the inability of mutations to rapidly evolve individuals in a reliable

fashion without being less eicient than random walking. Both the

grid-GA and grid-ICP rely on the position of at least one individual

in the ’itness well’ of the global maxima, signifying that limita-

tions may arise in large maps which cannot be adequately sampled

through a large initial population (or to run the ICP algorithm from

a dense grid).

Improvements to our methodology are possible, and may im-

prove the signiicance of these indings. The use of sequential pa-

rameter optimisation ignores any possible co-dependence of these
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parameters to maximally optimise an algorithm. This was the cho-

sen methodology for practical reasons, as a multi-parameter search

would require inaccessible amounts of computation power. Re-

search in meta-genomic by Brain and Addicoat [6] suggests that it

could be possible to use a genetic algorithm to optimise our GAs

for a given set of scans and a map. This would improve the con-

vergence speed of the candidate solutions, thereby reducing the

computational time required to run the algorithm. This is not a fea-

sibly rapid solution given available resources due to the stochastic

behaviour of genetic algorithms and the long execution time of our

algorithms.

Furthermore, the assumption of a single, smooth and global max-

ima is central to the function of both grid-based algorithms. The

lack of common test-benches (as opposed to other ields such as

IRIS dataset in computer vision [16]) further complicates the task

of comparing algorithms in generalisable cases. As demonstrated

in our landscapes in Figure 1, this is the case for our test scans

and maps. However, if exploring a repeated environment where

features occur with slight variations (for example oices with desks,

cabinets, walls), both the Grid-ICP algorithm and grid-pattern al-

gorithm may converge to an incorrect maxima; depending on the

density of the initial grid and the location of individuals within the

local topology of the maxima. The inability to later explore areas

which are not sampled in the initial population through large muta-

tions or crossovers would prevent either algorithm from searching

unexplored areas, causing the algorithms to become stuck in the

local maxima and return an incorrect pose.

Therefore, we could hypothesise that feature dense search spaces

with associated mountainous itness landscapes could be better

explored by more volatile implementations of GAs, such as the al-

gorithms proposed by Robertson and Fisher [30] or Lenac et al. [20],

with additional reinement using a classical algorithm (as proposed

by Lenac et al. [21]). Such maps could be caused by either having

a poorly featured scan dataset (due to low sensor range relative

to map size). Nevertheless, we should note that the use of a single

test case proves no guarantee of any form of dominance between

algorithms, and that although we postulate that non-smooth it-

ness landscapes are infeasible given our current itness metric, the

existence of these would form an edge case to our current analysis.

Therefore, whilst purely elitist genetic algorithms are inefective

in our test case, a crossover operator may be necessary to explore

larger maps; this would also preclude requirement of a short com-

putation time due to the added complexity.

The lack of exploration of the solution space’s topology is there-

fore both an unexplored and central issue to the problem of in-

door localisation through GAs; this draws a strong comparison

to Mitchell [27]’s statement that "GAs are most applicable in non-

smooth, non-unimodal search spaces".

Ωe should note that the indings presented here depend on an

underlying assumption; the presence of a smooth itness landscape,

which we can sample with suicient density to allow for random

walking to propagate a candidate pose to the global maxima. Ωe

may expect these to exist in the context of indoor localisation as

feature-dense reference maps, but this amounts to a iner resolution

of the current problem, requiring a higher sampling density and

computational power but remaining equally solvable. Furthermore,

Grefenstette [17] states that "If [a search] space is well understood

and contains structure that can be exploited by special purpose

search techniques, the use of genetic algorithms is generally com-

putationally less eicient".

Ωe conclude that whilst it is possible to optimise GAs for a par-

ticular map topology and scan, the application of a purely genetic

algorithm to the problem of indoor localisation is likely to be in-

ferior in accuracy and execution time when compared to a hybrid

algorithm capable of global search and gradient-ascending local re-

inement (such as [34]). This is likely due to the low dimensionality

of the problem, which results in a topographically unimodal itness

landscape. The scope of these indings are limited to purely genetic

algorithms, as hybrid genetic algorithms can avoid the diiculty of

balancing exploration and exploitation through the use of alternate

reinement algorithms [21] or modiications to the behaviour of the

GA [9]. These may prove to be extremely beneicial when perform-

ing localisation in very large spaces with limited computational

capabilities, but further research should be undertaken to com-

paratively evaluate the behaviours of GAs in these environments

against other leading algorithms. The lack of any application of

itness landscape topology to the problem precludes the possibility

of asserting any dominance of GA or non-GA algorithms, but, if

evaluated against a robust & diverse test bench, could allow the

selection of a hypothetically optimal problem for a given scenario.

Such work may result from the application of explanatory land-

scape analysis to indoor localisation, as discussed in Mitchell et al.

[28] and more recently Mersmann et al. [26].
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