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ABSTRACT: Well-characterized promoters with variable
strength form the foundation of heterologous pathway
optimization. It is also a key element that bolsters the success
of microbial engineering and facilitates the development of
biological tools like biosensors. In comparison to microbial
hosts such as Escherichia coli and Saccharomyces cerevisiae, the
promoter repertoire of Cupriavidus necator H16 is highly
limited. This limited number of characterized promoters poses
a significant challenge during the engineering of C. necator
H16 for biomanufacturing and biotechnological applications.
In this article, we first examined the architecture and genetic
elements of the four most widely used constitutive promoters
of C. necator H16 (i.e., PphaC1, PrrsC, Pj5, and Pg25) and established a narrow 6-fold difference in their promoter activities. Next,
using these four promoters as starting points and applying a range of genetic modifications (including point mutation, length
alteration, incorporation of regulatory genetic element, promoter hybridization, and configuration alteration), we created a
library of 42 constitutive promoters, all of which are functional in C. necator H16. Although these promoters are also functional
in E. coli, they show different promoter strength and hierarchical rank of promoter activity. Subsequently, the activity of each
promoter was individually characterized, using L-arabinose-inducible PBAD promoter as a benchmark. This study has extended
the range of constitutive promoter activities to 137-fold, with some promoter variants exceeding the L-arabinose-inducible range
of PBAD promoter. Not only has the work enhanced our flexibility in engineering C. necator H16, it presented novel strategies in
adjusting promoter activity in C. necator H16 and highlighted similarities and differences in transcriptional activity between this
organism and E. coli.

KEYWORDS: Cupriavidus necator H16, Ralstonia eutropha H16, gene expression, constitutive promoter, synthetic biology,
metabolic engineering

C upriavidus necator H16 (or Ralstonia eutropha H16) is a
chemolithoautotrophic soil bacterium, most widely

known for its ability to accumulate polyhydroxyalkanoates
(PHA).1 This metabolically versatile organism is capable of
utilizing a wide range of energy and carbon sources (including
H2 and CO2) to support growth and achieving high cell
density.2 These intrinsic properties have cemented its potential
applications in biological CO2 capture and utilization3,4 as well
as commercial-scale production of diverse bioproducts5

including polymers,6−9 hydrocarbons,10−14 and amino
acids.15 Its potential will rapidly come into fruition, aided by
the development of molecular tools. These include genome
engineering methods to permanently alter its metabolic
phenotype,16 expression vectors to assemble heterologous
pathways,8,17 transposon-based random mutagenesis,18 and
transformation method to introduce recombinant plasmids.19

Maximal product yield and titer are key requirements in
biomanufacturing. To this end, metabolic pathway optimiza-
tion is vital in eliminating metabolic bottlenecks that
compromise cellular productivity and metabolic phenotypes

that are detrimental to cell viability. Proven strategies of tuning
gene expression of a metabolic pathway include varying
plasmid copy number, gene dosage, and promoter strength,
among others. Leveraging on promoter strength for pathway
optimization is the most straightforward strategy, which
involves tuning promoter activity at both transcriptional and
translational levels.

L-Arabinose-inducible PBAD promoter and anhydrotetracy-
cline-inducible Ptet promoter are most widely applied to tune
expression of genes, gene clusters, or operons in C. necator
H16.20−23 With a PBAD promoter, high inducer concentration
(up to 1 g/L) is required to achieve high expression yield. The
leaky Ptet promoter, on the other hand, is induced by a weak
antibiotic that is undesirable and its promoter strength is
comparatively weaker. These factors greatly limit the use of
these two promoters for large-scale fermentation. The more
recently developed 3-hydroxypropionic acid-inducible sys-
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tems24 and the p-cumate- and IPTG-inducible Pj5 promoters25

are promising alternatives. Nonetheless, achieving scalable and
tunable gene expression of a multigene pathway by solely
relying on inducible expression systems is severely limited by
the poor modularity of inducer-based systems (or potential risk
of unwanted inducer crosstalk) and a limited number of C.
necator H16-compatible inducible promoters. Further, the use
of inducers such as L-arabinose or anhydrotetracycline on a
large scale is commercially uneconomical.
In this regard, engineering constitutive promoters with a

broad range of activities is a more facile means to modularly
adjust gene expressions of a multigene pathway to the desired
levels or ratios. In addition to facilitating static metabolic
control, constitutive promoters are used to engineer more
efficient inducible promoters23 and to construct metabolite-
sensing genetic circuits that in turn facilitate dynamic
metabolic control in microorganisms.26 Examples of con-
stitutive promoters for use in C. necator H16 include Plac and
Ptac promoters, native C. necator H16 promoters such as PphaC1

promoter, and coliphage T5 promoter and its variants such as
Pj5, Pg25, Pn25, and Pn26 promoters.17,21,27 Despite these
precedent studies, there are knowledge gaps that hinder
constitutive promoter utilization and engineering for C. necator
H16, which are: (1) lack of a universal definition of promoter
architecture, (2) lack of a universal reference scale for
hierarchical ranking of constitutive promoter activities, and
(3) limited examples of rational promoter engineering. The
latter is in stark contrast to promoter engineering reported for
E. coli and yeast.
In this study, we first examined the architecture of four

notable C. necator H16-compatible constitutive promoters: the
native PphaC1 promoter, a semisynthetic PrrsC promoter, and two
coliphage T5 promoters, Pj5 and Pg25. We then evaluated their
activities using in vivo fluorescence measurement of red
fluorescent protein (RFP) expression to establish an under-
standing of the relationship between promoter architecture and
activity. Guided by these structure−function relationships, we
next proceeded to rational engineering of these four parental

promoters. Our engineering strategies include combinations of
point mutation, length alteration, incorporation of regulatory
genetic element, promoter hybridization, and configuration
alteration. This resulted in a collection of 42 promoters
displaying a range of promoter activities. Of these, there are
composite promoter variants that are stronger than the Pj5
promoter; the latter has previously been acclaimed to be the
strongest known constitutive promoter for gene expression in
C. necator H16.17 This new promoter library is envisaged to
further propel the biotechnological applications of C. necator
H16.

■ RESULTS AND DISCUSSION

Defining a Promoter and Quantifying Its Activity.
Standardizing the definition of a promoter is deemed necessary
and particularly relevant to this study for four obvious reasons:
(1) to objectively benchmark the activities of wildtype and
engineered promoters, (2) to critically assess promoter
structure−function relationships, (3) to measure the effective-
ness of various promoter engineering strategies, and (4) to
compare promoters reported by various research groups. In
this study, we describe a promoter as a constellation of three
distinct genetic elements as shown in Figure 1A: (part 1) a
core promoter sequence comprising −35 box, −10 box (or the
Pribnow box), +1 transcriptional start, spacer of 16−18 bp
between the −35, and the −10 boxes as well as the spacer
between the −10 box and +1 site, (part 2) an upstream
element (UP) that refers to the entire DNA sequence
upstream of the core promoter sequence, and (part 3) a
downstream element spanning the nucleotide after the +1
transcriptional start and the nucleotide before the translation
initiation codon. Therefore, the 5′-untranslated region (5′-
UTR) consists of the +1 transcriptional start and the
downstream element, with the latter typically containing cis-
acting regulatory elements such as the ribosome binding site
(RBS). Putting it simply, a promoter is a defined stretch of
sequence upstream of the translational start. This definition is
not uncommon in genome annotation, particularly when the

Figure 1. (A) Promoter definition used in this study. (B) High-throughput characterization of engineered promoters using a fluorescence-based
assay (5′-UTR, 5′-untranslated region; bp, base pair; CamR, chloramphenicol resistance gene; Rep, replication gene; RFP, red fluorescent protein).
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promoter boundary is unclear or ambiguous. This definition
also presupposes that the functional characteristics of a given
promoter are composite effect of all genetic elements within
the predefined promoter architecture. To quantify promoter
activity in C. necator H16, RFP was used as a reporter protein
(Figure 1B). Briefly, DNA fragments corresponding to a
promoter and rfp gene were cloned, in tandem, into a broad
host range pBBR1MCS plasmid backbone harboring a
chloramphenicol resistance gene (Figure 1B and Supporting
Information, Figure S1).
Defining the Boundaries and Architectures of Four

Parental Promoters. Because the four parental promoters,
PphaC1, PrrsC, Pj5, and Pg25, form the basis of this entire study,
clearly defining their boundaries and examining their
architectures are essential such that all subsequently
engineered promoters can be compared against these four
“standards”. All four parental promoters contain −35 box and
−10 box that are almost identical to the hexameric promoter
consensus sequences recognized by the E. coli housekeeping
sigma factor σ

70 (Figure 2A,B).28 PphaC1 is known to be a
relatively strong native promoter.21,23,27 On the basis of the
data reported by Fukui et al., the strength of PphaC1 is ∼58%
that of Ptac.

21 It has been widely studied and applied for
improved PHA-based biopolymer production in C. necator
H16.21,27 However, PphaC1 promoters of different lengths are
used in various studies, making objective comparison
impossible. In this study, PphaC1 promoter is defined as a
466-bp DNA sequence upstream of the translation start of the
phaC1 gene. Previous studies of this promoter affirmed the
presence of a 7-bp “AGAGAGA” Shine−Dalgarno (SD)
sequence within its 5′-UTR. This native RBS is located 11
bp upstream of the translational start.27 The PrrsC promoter
used in this study is a combination of a 210-bp DNA sequence
upstream of the +1 transcriptional start of the native rrsC gene,
the first 5-bp of the native 5′-UTR and a 26-bp synthetic
genetic element. The latter comprises a 20-bp RBS found in
the pBBR1c-RFP PBAD promoter (see Supporting Information)
flanked by an upstream 6-bp BglII restriction site. The

synthetic RBS contains a purine-rich 5-bp “AGGAG” SD
sequence known to markedly improve translation efficiency.
This PrrsC is almost identical to the one used in Li and Liao,23

with only minor difference in the downstream element that
contains an RBS. Finally, the Pg25 and Pj5 promoters used in
this study are both 75-bp DNA sequences, identical to those
previously reported by Gentz and Bujard.29

Narrow Range of Promoter Activities between the
Four Parental Promoters. Fluorescence measurement of
RFP expression revealed a narrow range of promoter activities
(defined as relative fluorescence unit normalized by optical
density; see Methods and Materials) between the four parental
promoters (Figure 2C). The ratio of promoter activities
between the strongest (Pg25) and the weakest (PphaC1) is only
6.3. The promoter activity of PrrsC is 1.7-fold higher than that
of PphaC1. This difference may be attributed to the synthetic
RBS in PrrsC being more effective in promoting translation
compared to the native RBS in PphaC1. The coliphage T5
promoters, Pj5 (75 bp) and Pg25 (75 bp), are much shorter in
length compared to PphaC1 (466 bp) and PrrsC (241 bp). They
have previously been reported as some of the strongest
constitutive promoters in E. coli.29 The strong transcriptional
activity was also verified in C. necator H16.17 The A/T rich
sequence of many coliphage T5 promoters, particularly in their
upstream elements, has been implicated in accounting for their
high transcriptional activity.29 Indeed, the upstream elements
of both Pj5 and Pg25 promoters show high A/T contents (65%
for Pj5 and 85% for Pg25), and the difference in the A/T content
may partly be responsible for the higher activity of Pg25 relative
to Pj5 (Figure 2B). In addition, Pg25 possesses within its 5′-
UTR the purine-rich 5-bp SD sequence used in most
commercially available pET and pBAD vectors, which is
lacking in Pj5 (Figure 2A). Important to point out, Gruber et al.
had an opposite observation that the strength of Pj5 was
stronger than that of Pg25.

17 The promoter sequences used by
Gruber et al. were different compared to those used in this
study, although the core promoter sequences remain identical
(Supporting Information, Figure S2). Promoters in Gruber et

Figure 2. (A) Boundaries and architectures of the four parental promoters, PphaC1, PrrsC, Pj5, and Pg25, used in this study. (B) Comparison of the four
parental promoters to an Escherichia coli σ70 promoter. (C) Activities of the four parental promoters.
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al. were essentially a core promoter sequence flanked by NotI
and EcoRI restriction sites. Further, they both contain an RBS
of T7 gene 10, downstream to the core promoter sequence.
These differences could explain the discrepancy between the
two studies. It further emphasizes the necessity to define a
promoter for objective comparison of promoters used, created
or engineered by various researchers.
Our initial examination of the four parental promoters

highlighted two critical points which guided our subsequent
promoter engineering: (1) conservation of −35 and −10 boxes
is important for maintaining high transcriptional activity in C.
necator H16, and (2) promoter length or A/T content or cis-
acting genetic regulatory element (such as a synthetic RBS)
could potentially influence transcriptional activity in C. necator
H16 significantly.
Expanding the Range of Promoter Activities through

Rational Engineering. Informed by our understanding of the
four “standard” promoters, we proceed to increase the range of
promoter activities beyond the existing 6.3-folds between
PphaC1, PrrsC, Pj5, and Pg25. Our objectives are threefold: (1)
creating both weaker (“tuning down”) and stronger (“tuning
up”) promoter variants to further expand the promoter activity
range, (2) generating promoter variants that exceed or at least
cover the entire L-arabinose inducible range of PBAD promoter,

and (3) developing a set of promoters with gradual increase in
activity (i.e., having promoters with activities evenly distributed
across the entire promoter activity scale).
To this end, we applied a range of rational engineering

approaches. These strategies, summarized in Supporting
Information, Table S1 and Figure S3, can be loosely classified
into five categories: (A) point mutation, (B) length alteration,
(C) incorporation of regulatory genetic element, (D) promoter
hybridization, and (E) configuration alteration. Category A,
point mutation, includes base substitution, single-base
insertion, and single-base deletion. Category B, length
alteration, refers to truncation or extension of a promoter
from either terminus and insertion or deletion of a stretch of
random DNA sequence. Incorporating cis-acting translational
regulatory elements such as T7 stem-loop and RBS are
grouped within category C. Category D, promoter hybrid-
ization, encompasses both creating hybrid promoters and
incorporating cis-acting transcriptional regulatory element such
as an operator. Category E, configuration alteration, involves
transcriptional amplification using a secondary promoter that is
placed in divergent configuration to a primary promoter. In
other words, composite promoters are placed in category E.
Each category is further divided into subcategories (e.g., C1 for
T7 stem-loop and C2 for RBS in category C) and subsub-

Table 1. Summary of 42 Parental Promoters and Their Variants Engineered Using a Combination of Promoter Engineering
Strategies (A = Point Mutation, B = Length Alteration, C = Incorporation of Regulatory Genetic Element, D = Promoter
Hybridization, and E = Configuration Alteration)a

aNumbers in bracket represent promoter digital identifier, in the format of [activity level − relative activity to PphaC1[A1] − promoter length].
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categories (e.g., B1a for truncation of 25 bp upstream of −35
box and B1b for truncation of 50 bp upstream of −35 box in
category B) to pinpoint specific modification made. Using a
combination of the aforementioned strategies, we created in
total 38 promoter variants as summarized in Table 1.
Promoter Nomenclature. On the basis of the classi-

fication of our promoter engineering strategies, we devised a
promoter nomenclature system to systematically name all 38
engineered promoters (Table 1). The system is designed to
provide three pieces of key information: parental promoter,
modifications made, and promoter architecture, using the
standard format of Pparent[M1M2M3···]. In this nomenclature
system, capital P signifies a promoter. Italic subscript “parent”
indicates the parental promoter from which the engineered
promoter is derived. All modifications made are summarized in
bracketed subscript “[M1M2M3···],” with the modifications
arranged in sequence of appearance to reflect the engineered

promoter architecture. As an example, Pj5[C1C2] is a promoter
variant engineered from the parental promoter Pj5 by inserting
a T7-stem loop (denoted by C1) as well as an RBS (denoted by

C2) in its 5′-UTR. The T7-stem loop was placed upstream of
the RBS, as indicated by C1 that comes before C2.

Mutations in −35 Box Tuned Transcriptional Activity
down. Li and Liao previously reported PphaC1‑G3 promoter, in
which its −35 box was mutated from “TTGACA” to
“TTCGGC” (Figure 3A).23 This promoter variant was
shown to retain 15% of the activity of its PphaC1 parent when
characterized using enhanced green fluorescent protein
(eGFP) as a reporter.23 To validate our initial hypothesis
that conserved −35 and −10 boxes are necessary in
maintaining high transcriptional activity in C. necator H16,
we recreated PphaC1‑G3, and this variant was named PphaC1[A1] in
our nomenclature system. RFP fluorescence measurement
ascertained that PphaC1[A1] retains 16% of the activity of PphaC1

Figure 3. (A) Architectures of parental promoters and their engineered variants. (B) Activities of parental promoters and their engineered variants.
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(Figure 3B). This data also indicated that both reporter
proteins, RFP and eGFP, give similar outcome in transcrip-
tional activity quantification. RFP and eGFP are commonly
used in synthetic biology for characterization of biological parts
(e.g., promoter, terminator).30,31 Li and Liao also created a
promoter library with mutated −35 box (TTNNNN). All
promoter variants screened showed lower activity in
comparison to the wildtype promoter.23 Therefore, mutations
in −35 box likely tune the transcriptional activity down.
A Minimal PphaC1 Promoter with Enhanced Activity.

PphaC1 (466 bp) is the longest promoter among the four
parental promoters. To find the minimal functional sequence,
we created 5′→3′ truncated variants of PphaC1: 25 bp
truncation in PphaC1[B1a], 50 bp in PphaC1[B1b], 100 bp in
PphaC1[B1c], and 124 bp in PphaC1[B 1d] (Figure 3A). Interestingly,
removing the entire upstream element (124 bp) in PphaC1[B 1d]

resulted in highest promoter activity, which is 2-fold higher
compared to that of its PphaC1 parent (Figure 3B). This
suggested that cis-acting elements exist within the upstream
element of PphaC1 and contribute to transcriptional suppression.
Synthetic RBS and RBS Repeat Increased Transcrip-

tional Activity. Our initial study with the four parental
promoters, along with a previous study conducted by Bi et

al.,20 motivated us to further investigate the effects of cis-acting
translational regulatory elements on promoter activity. We
focused specifically on the 26-bp synthetic genetic element
derived from PrrsC (containing a 20-bp RBS found in the
pBBR1c-RFP PBAD promoter flanked by an upstream 6-bp
BglII restriction site, herein denoted as synthetic RBS) and the
37-bp T7 stem-loop reported by Bi et al.20 We observed a 4.7-
fold increase in promoter activity when a synthetic RBS was
added to Pj5 (the Pj5[C2] variant) (Figure 3B). On the contrary,
there was no significant change in promoter activity when a T7
stem-loop was added to Pj5 (the Pj5[C1] variant). A drop in
promoter activity was observed when a T7 stem-loop was
added to Pj5[C2] (the Pj5[C1C2] variant). As such, synthetic RBS
is an effective means to amplify promoter activity. We then
added the same synthetic RBS to Pg25 and created a variant
Pg25[C2] that also showed ∼50% increase in promoter activity. A
smaller promoter activity increase in Pg25[C2] could be
attributed to a pre-existing effective SD sequence
(“AGGAG”) in Pg25.

Repeat of −35 and −10 Boxes Increased Transcrip-
tional Activity. The −35 and −10 boxes are highly conserved
regions in prokaryotic promoters, essential for the binding of
RNA polymerases. To test if creating more binding sites for

Figure 4. (A) For gene pairs in HH arrangement, promoters that effect divergent transcription can be organized in three possible ways: back-to-
back, overlapping, or face-to-face. (B) Composite promoters engineered using Pg25 as parental promoter. (C) Composite promoters engineered
using PrrsC as parental promoter. (D) Composite promoters engineered using Pj5 as parental promoter. (E) Composite promoters with PphaC1 as
secondary promoter. (F) Composite promoters with Pg25 as secondary promoter. (G) Composite promoters with Pj5[A1C1C2] as secondary
promoter. In graphs E and F, red, blue and orange symbols represent primary promoter activity, composite promoter activity, and fold change,
respectively.
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RNA polymerase would further increase transcriptional
activity, we created the Pg25[D1] variant. In this variant, we
duplicated the DNA sequence spanning −35 box and −10 box.
In essence, this hybrid promoter is a tandem repeat of two Pg25

promoters, and we observed ∼40% increase in promoter
activity (Figure 3). Again, incorporating a synthetic RBS
(Pg25[D1C2]) gave an additive effect, resulting in further increase
in promoter activity.
Operator Insertion Reduced Transcriptional Activity

Drastically. Hybrid promoters are crucial genetic elements in
the construction of biosensors. Using a malonyl-CoA
biosensor26 as an example, we inserted the fapO operator
sequence “TTAGTACCTGATACTAA” in PrrsC promoter to
create two variants: PrrsC[D4] ( fapO inserted between −35 and
−10 boxes) and PrrsC[D6] ( fapO inserted within the 5′-UTR)
(Figure 3A). fapO operator is conserved in Gram-positive
bacteria such as Bacillus subtilis and acts as a cis-regulatory unit
for transcriptional regulation of fatty acid biosynthesis. For
both promoter variants, we observed a drastic activity
reduction to ∼10% of their PrrsC parent (Figure 3B). The
position of operator and the copy number of operator could
therefore significantly change the transcriptional activity of the
resultant hybrid promoters. Our data corroborated a previous
study by Li and Liao, where tetO operators were inserted to
create PrrsC hybrid promoters.23

Divergent Promoters, Arranged in Back-to-Back,
Increased Transcriptional Activity. The distance between
and the relative transcriptional directions of adjacent genes are
known to be important in some organisms. Neighboring genes
arranged in head-to-head (HH) orientation, for instance, could
be coregulated and this has been proven experimentally.32 For
gene pairs in HH arrangement, promoters that effect divergent
transcription can be organized in three possible ways: back-to-
back, overlapping, or face-to-face (Figure 4A).33 In a recent
attempt to construct a malonyl-CoA biosensor for C. necator
H16 (publication in preparation), we discovered the
significance of divergent transcription in this organism.
Therefore, we created 21 composite promoters to systemati-
cally investigate divergent transcription in C. necator H16. Each
composite promoter is made up of two promoters arranged in
back-to-back (or divergent to each other). The promoter
driving the RFP expression is termed the primary promoter,
while the counterpart is called the secondary promoter.
When PphaC1 (denoted as modification subscript E1), Pg25

(modification subscript E2), and Pj5[A1C1C2] (modification
subscript E3) was applied individually as secondary promoters,
they generally served as transcriptional amplifiers, increasing
the transcriptional activity of the primary promoters (Figure
4B−G). The promoter activities of these three secondary
promoters follow the order of Pj5[A1C1C2] > Pg25 > PphaC1 (eq E3
> E2 > E1). Interestingly, transcriptional amplification depends
on the transcriptional activities of both the primary and the
secondary promoters. For the same primary promoter, activity
enhancement typically decreases with the increased activity of
the secondary promoter (Figure 4B−D, herein described as
secondary promoter effect). Also, for the same secondary
promoter, activity enhancement decreases with the increased
activity of the primary promoter (Figure 4E−G, herein
described as primary promoter effect). We postulate that
secondary promoter effect is attributed to the fact that weaker
secondary promoter competes less with the primary promoter
for transcriptional machinery or factors. If a secondary
promoter of very high activity is used, the competition is so

strong that it diminishes the activity of the primary promoter
(data not shown). The primary promoter effect observed is
perhaps more intuitive and easier to comprehend. If the
primary promoter displays high activity, it is more difficult to
further improve its activity using an amplifier. It is important to
point out that transcriptional enhancement resulted from
divergent promoters is not universal to all prokaryotic systems.
Generally, we did not observe such behaviors when we tested
our composite promoters in E. coli (data not shown).

Promoter Characterization using PBAD as Reference
Scale. This study resulted in a set of 42 constitutive
promoters, including the four parental promoters. The ratio
of promoter activities between the strongest (Pj5[E1A3C2]) and
the weakest (PphaC1[A1], eq PphaC1‑G3 reported by Li and Liao23)
is 137. These promoters showed incremental increase in
activity across the entire scale (Figure 5A). To promote the

widespread use of these promoters, we benchmarked each of
them using L-arabinose inducible PBAD promoter as a reference
scale. Supporting Information, Figure S4, illustrates the dose-
dependent induction of PBAD promoter, using L-arabinose
concentration from 0.001% (w/v) to 0.200% (w/v).
Expression maxima was reached at 0.200% (w/v) L-arabinose.
As depicted in Figure 5B, our engineered promoters covered
the entire L-arabinose inducible range (indicated by scattered
data points). We categorized all promoters into five activity
levels to aid promoter selection: Level 1 (with promoter

Figure 5. (A) Hierarchical ranking of all 42 constitutive promoters
reported in this study. (B) The range of promoter activity was
expanded from 6-fold to 137-fold after applying combination of
promoter engineering strategies (A = point mutation, B = length
alteration, C = incorporation of regulatory genetic element, D =
promoter hybridization and E = configuration alteration). Promoters
derived from PphaC1, PrrsC, Pj5, and Pg25 were colored in blue, green,
pink, and red, respectively. Promoters were categorized into five
activity levels: Level 1 (with promoter activity between 0−2000 au),
level 2 (2000−4000 au), level 3 (4000−6000 au), level 4 (6000−8000
au) and level 5 (>8000 au). Each promoter was benchmarked against
PBAD promoter, induced using various concentrations of L-arabinose,
from 0.001% (w/v) to 0.200% (w/v).
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activity between 0−2000 au), level 2 (2000−4000 au), level 3
(4000−6000 au), level 4 (6000−8000 au), and level 5 (>8000
au). With a PBAD promoter, one could only achieve expression
levels between 1 and 4. Through promoter engineering, we
obtained seven level 5 variants (Pj5[A3C2], Pj5[C2], Pj5[E1C1C2],
Pj5[E2C2], Pj5[E2A3C2], Pj5[E1C2], and Pj5[E1A3C2]) with promoter
activities exceeding that of PBAD (Supporting Information,
Table S2). For easy classification of all engineered promoters,
we developed a numerical coding system (Table 1) and
assigned a digital identifier to each promoter. This will allow us
to develop a C. necator H16-specific promoter database (work
in progress). Each promoter code is in the format of [X-Y-Z],
with X representing activity level, Y representing relative
activity to PphaC1[A1], and Z representing promoter length.
While conceptualizing our engineered promoter nomenclature
and coding systems, we have endeavored to make them
universal such that they can be applied to other promoters yet
to be developed.
Summary of Rational Promoter Engineering for C.

necator H16. Figure 6 provides an overview of the rational

promoter engineering strategies discussed in this article. It
shows the effect of a specific modification by looking at the
promoter activity difference before and after that particular
modification. Creating mutation(s) within −35 box and
inserting operator sequence(s) resulted in drastic reduction
in promoter activity (represented by red data points), while
inserting a T7 stem-loop caused almost no change in promoter
activity. On the contrary, inserting a synthetic RBS and
applying a transcriptional amplifier (specifically PphaC1 or
Pj5[A1C1C2]) gave the highest increase in promoter activity
(>100%). In fact, those promoters that are stronger than PBAD

promoter (indicated as blue data points) were mostly created

using either one of these strategies or combination of them. All
the other strategies provided marginal promoter activity
increase (from 10% to 50%). Also clearly reflected in Figure
5B, creating divergent promoters is the most effective way of
broadening the range of promoter activity. It is worthy of note
that relative promoter activity change is dependent on the
parental promoter, judging on the work presented in this
article.

The Use of Engineered Constitutive Promoters in C.
necator H16. The use of strong constitutive promoters could
potentially result in (a) bacterial growth impairment due to
high metabolic burden and/or (b) protein excretion/leakage
due to high protein expression level. To study these effects, we
selected representative promoters from each activity level
(Supporting Information, Table S3) and conducted further
characterization. We observed similar growth for most of the
strains (Figure 7), with growth rates (μmax) falling between

0.21 and 0.24 h−1 (Supporting Information, Table S3). For
promoter Pj5[E2C2], which is a level 5 promoter, we noticed a
slight drop in growth rate with μmax of 0.18 h−1 (Supporting
Information, Table S3). Comparing fluorescence of cell culture
and of spent medium (Figure 8) confirmed that there was no
protein excretion/leakage. Fluorescence of spent medium was
maintained at the level of ∼1000 au throughout the bacterial
cultivation. This value was almost identical to that of the
control (C. necator H16 harboring pBBR1MCS-1). To study
the time-dependent increase in fluorescence signal, we fitted
the cell culture fluorescence vs time data to a four-parameter
dose−response curve (Supporting Information, Figure S5 and
Table S4) for all promoters from level 2 and above. The
fluorescence increase was mainly caused by bacterial growth. If
we divided the fluorescence measured (Figure 8) by the OD600

(Figure 7), the ratio was kept almost constant at cultivation
times above 12 h (Figure S6), further verifying our approach in
promoter activity quantification in 96-well plate by taking the
RFU/OD600 at t = 48 h.

■ CONCLUSION

This article (1) reported and characterized a set of 42
constitutive promoters with a broad range of promoter activity,
which are derived from the four most widely used constitutive
promoters for C. necator H16 (PphaC1, PrrsC, Pj5, and Pg25), (2)
introduced a nomenclature system and a coding system for
engineered promoters, (3) sketched out the relationship

Figure 6. Relative promoter activity change upon application of
promoter engineering strategies (A = point mutation, B = length
alteration, C = incorporation of regulatory genetic element, D =
promoter hybridization, and E = configuration alteration). Mod-
ifications that resulted in loss of promoter activity were indicated as
red data points. Promoters with activities higher than PBAD promoter
were indicated as blue data points.

Figure 7. Growth curves of C. necator H16 harboring either
pBBR1MCS-1 (control; black line) or plasmids containing various
engineered constitutive promoters [Pg25 (red line), PphaC1[B 1d] (blue
line), PrrsC[E1D4] (brown line), Pg25[E3] (green line), Pg25[D1C2] (pink
line), Pj5[E1A1C1C2] (orange line), and Pj5[E2C2] (purple line)].
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between promoter architecture and its resultant activity, (4)

highlighted similarities (conservation of −35 and −10 boxes)

and differences (composite promoters) in transcriptional

activity between C. necator H16 and E. coli, and (5) provided

guidelines for rational promoter engineering. We strongly

believe our constitutive promoter toolbox that exceeds the

activity range of the inducible PBAD promoter will serve the

biotechnology community working on C. necator H16, be it

strain engineering for industrial biomanufacturing or develop-
ing advanced molecular biology tools for this organism.

■ MATERIALS AND METHODS

Materials. All DNA modifying enzymes were purchased
from either New England Biolabs (Hitchin, UK) or Agilent
(Craven Arms, UK). Nucleic acid purification kits were
purchased from Qiagen (Manchester, UK). All oligonucleo-
tides were synthesized by Eurofins (Ebersberg, Germany).

Figure 8. Fluorescence of cell culture (black columns) and of spent medium (gray columns) of C. necator H16 harboring either pBBR1MCS-1
(control) or plasmids containing various engineered constitutive promoters (Pg25, PphaC1[B1d], PrrsC[E1D4], Pg25[E3], Pg25[D1C2], Pj5[E1A1C1C2], and
Pj5[E2C2]).
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Strains. Escherichia coli DH5α was used for all molecular
cloning, plasmid propagation, and maintenance. Cupriavidus
necator H16 (DSM-428, purchased from DSMZ, Braunsch-
weig, Germany) was used for all experiments described in this
article.
Promoter Engineering and Sequences. All plasmids

were derived from pBBR1c-RFP (see Supporting Information)
and constructed using standard molecular biology techniques.
All engineered promoters were verified by restrictive analysis
and/or DNA sequencing, and their sequences were provided in
the Supporting Information.
Bacterial Cultivation and Transformation. C. necator

H16 was cultivated at 30 °C in nutrient broth (NB: 5 g/L
peptone, 1 g/L beef extract, 2 g/L yeast extract, 5 g/L NaCl;
pH 7.0 ± 0.2 @ 25 °C) supplemented with 10 μg/mL of
gentamicin. Cells were transformed with plasmids using the
electroporation protocol described by Tee et al.,19 plated on
NB agar supplemented with 10 μg/mL of gentamicin and 25
μg/mL of chloramphenicol, and incubated at 30 °C for 40−60
h. E. coli DH5α was transformed with plasmids using the
standard CaCl2 method, plated on TYE agar (10 g/L tryptone,
5 g/L yeast extract, 8 g/L NaCl, 15 g/L agar) supplemented
with 25 μg/mL of chloramphenicol, and incubated overnight
at 37 °C.
Promoter Activity Quantification Using Fluorescence

Assay. Transformants of C. necator H16, carrying either an
RFP-null or an RFP-expressing vector, were precultured in 96-
well microtiter plate containing 200 μL/well of NB
supplemented with 10 μg/mL of gentamicin and 25 μg/mL
of chloramphenicol at 30 °C for 40 h. This preculture was used
to inoculate a fresh clear-bottom 96-well microtiter plate
[Greiner Bio-One (Stonehouse, UK)] containing 200 μL/well
of NB supplemented with 10 μg/mL of gentamicin, 25 μg/mL
of chloramphenicol as well as 0−0.2% (w/v) L-arabinose
(when required) to induce RFP expression. The plate was
cultivated at 30 °C for a total of 48 h. OD600 and fluorescence
(Ex 584 nm, Em 607 nm; bottom read) were measured using
SpectraMax M2e microplate/cuvette reader [Molecular
Devices (Wokingham, UK)] after 12 h of cultivation and
repeated at 6 h intervals. Relative fluorescence unit (RFU) was
calculated by normalizing fluorescence value with the
fluorescence value of C. necator H16 carrying an RFP-null
vector (negative control). The RFU value therefore represents
the fluorescence fold increase owing to RFP expression. RFU/
OD600 value was then calculated as the ratio of RFU and OD600

value of the respective strain. The ratio was used to account for
potential metabolic burden due to high protein expression
level, affecting bacterial growth. Promoter activity (PA) was
defined as the RFU/OD600 value after 48 h of cultivation. The
ratio of RFU/OD600 was more or less a constant at cultivation
time more than 12 h. All experiments were done in triplicate.
Fold Change and Relative Promoter Activity Change.

Fold change and relative promoter activity change were
calculated by using the formulas:

=fold change
PA

PA

2

1

=
| − |

×

relative promoter activity change

PA PA

PA
100%after before

before

Effects of Engineered Constitutive Promoters on
Bacterial Growth and Protein Excretion. Selected
plasmids were freshly transformed into C. necator H16, and
single colonies were picked to prepare overnight cultures.
Falcon tubes, containing 6 mL of fresh mineral salts medium
(MSM)34 supplemented with 10 g/L sodium gluconate
(carbon source), 10 μg/mL gentamicin, and 25 μg/mL
chloramphenicol, were inoculated at a starting OD600 of 0.2.
Cells were cultivated at 30 °C and sampled at regular time
intervals. OD600 of each sample was measured using
BioPhotometer Plus [Eppendorf (Stevenage, UK)]. For all
samples collected, the fluorescence (Ex 584 nm, Em 607 nm;
bottom read) of the cell culture (90 μL) and of the spent
medium (90 μL) was measured using SpectraMax M2e
microplate/cuvette reader [Molecular Devices (Wokingham,
UK)].
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