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Abstract 25 

1. Understanding how, where and when animals move is a central problem in marine ecology 26 

and conservation. Key to improving our knowledge about what drives animal movement 27 

is the rising deployment of telemetry devices on a range of free-roaming species. An 28 

increasingly popular way of gaining meaningful inference from an animal’s recorded 29 

movements is the application of hidden Markov models (HMMs), which allow for the 30 

identification of latent behavioural states in the movement paths of individuals. However, 31 

the use of HMMs to explore the population-level consequences of movement are often 32 

limited by model complexity and insufficient sample sizes.  33 

2. Here, we introduce an alternative approach to current practices and provide evidence of 34 

how the inclusion of prior information in model structure can simplify the application of 35 

HMMs to multiple animal movement paths with two clear benefits: (1) consistent state 36 

allocation and (2) increases in effective sample size.  37 

3. To demonstrate the utility of our approach we apply HMMs and adapted HMMs to over 38 

100 multivariate movement paths consisting of conditionally dependent daily horizontal 39 

and vertical movements in two species of demersal fish: Atlantic cod (Gadus morhua; 40 

n=46) and European plaice (Pleuronectes platessa; n=61).  41 

4. We identify latent states corresponding to two main underlying behaviours: resident and 42 

migrating. As our analysis considers a relatively large sample size and states are allocated 43 

consistently, we use collective model output to investigate state-dependent spatio-temporal 44 

trends at the individual- and population-level. Specifically, we show how both species shift 45 

their movement behaviours on a seasonal basis and demonstrate population space-use 46 

patterns that are consistent with previous individual-level studies.  47 
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5. Tagging studies are increasingly being used to inform stock assessment models, spatial 48 

management strategies and monitoring of marine fish populations. Our approach provides 49 

a promising way of adding value to tagging studies because inferences about movement 50 

behaviour can be gained from a larger proportion of datasets, making tagging studies more 51 

relevant to management and more cost effective.  52 

 53 

 54 

Keywords: Atlantic cod, data storage tags, European plaice, hidden Markov modelling, 55 

movement behaviour, population-level patterns, priors.   56 
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1. Introduction  82 

 83 

The spatial management of the marine world requires in-depth information about how animals 84 

move, when they move and where they move to. Key to increasing our understanding of species 85 

space use, movement patterns, and how individuals interact with the environment they inhabit, is 86 

the rising deployment of small and reliable data loggers and transmitters on free-roaming marine 87 

animals (Costa, Breed, & Robinson, 2012; Hussey et al., 2015; Hays et al., 2016). Capable of 88 

recording a range of movement metrics, including horizontal and vertical movement alongside 89 

basic environmental information such as water temperature, salinity and ambient daylight, these 90 

devices have revolutionized our understanding of fundamental ecology (Hussey et al., 2015), 91 

documented ocean-wide dispersal events (Block et al., 2011), highlighted areas that are essential 92 

for species survival (Raymond et al., 2015) and even allowed us to test the effectiveness of current 93 

conservation policies (Scott et al., 2012; Pittman et al., 2014).  94 

 95 

One of the main motivations for animal-borne telemetry studies is that by understanding individual 96 

movement behaviour, we might infer the population-, species- and community-level consequences 97 

of movement (Block et al., 2011; Wakefield et al., 2011; Raymond et al., 2015; Hindell et al., 98 

2016). This is especially true in marine systems, as individual observations provide our only 99 

insight into the otherwise unobservable. Achieving this scaling of inference from individual 100 

movement patterns to population dynamics requires two important components. The first is an 101 

adequate sample size (number of individuals) to address the ecological question of interest 102 

(Hebblewhite & Haydon, 2010) and second, a statistical means by which we gain meaningful 103 
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inference at the individual- and population-level from a finite sample of individuals (e.g. Langrock 104 

et al., 2012; McClintock, Russell, Matthiopoulos, & King, 2013; Jonsen, 2016).  105 

 106 

The issue of sample size has been extensively discussed, especially when considering how 107 

movement studies can inform marine conservation and spatial management (Hebblewhite & 108 

Haydon, 2010; McGowan et al., 2017; Nguyen et al., 2017; Ogburn et al., 2017). Tags can be 109 

expensive (McGowan et al., 2017), are liable to occasional failure or loss and often result in 110 

individual pathways that are data-poor or have a low number of observations. As a result, meeting 111 

the minimum sample size of 20+ individuals when making simple statistical comparisons between 112 

populations is uncommon (Hebblewhite & Haydon, 2010), with even greater numbers needed 113 

when testing for the effects of age, sex and species identity (Lindberg & Walker, 2007). In the 114 

absence of a collaborative effort across multiple institutions (e.g. Block et al., 2011; Hindell et al., 115 

2016), a significant increase in funding or a community wide shift to data sharing (e.g. via online 116 

data repositories like Movebank - Kranstauber et al., 2011); it would appear that the most viable 117 

route towards robust population-level inferences are approaches that make the most of the tagging 118 

data we already have.  119 

 120 

Among the many methodological developments that utilize movement data to answer ecological 121 

questions, hidden Markov models and hidden semi-Markov models have taken centre stage (e.g. 122 

McKellar et al., 2015; DeRuiter et al., 2016; Michelot et al., 2016; Towner et al., 2016).  Favoured 123 

because they match our initiative understanding that movement is governed by switches in an 124 

animal’s motivation (Patterson et al., 2017), HMMs provide a computationally efficient means of 125 
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objectively classifying movement into discrete states, with different statistical properties, 126 

indicating differences in underlying behaviour (Langrock et al., 2012). 127 

 128 

HMMs have been fitted to multiple individual pathways simultaneously in both the frequentist 129 

(e.g. Langrock et al., 2012; McKellar et al., 2015) and Bayesian statistical paradigms (McClintock 130 

et al., 2013; Jonsen, 2016). However, these approaches are typically implemented by specialist 131 

statisticians and require the coupling of HMM and hierarchical structures, producing a hierarchical 132 

Hidden Markov model (HHMM).  The alternative is the use of HMMs or other state-space 133 

approaches that fit on an individual by individual basis (e.g. Jonsen, Myers, & James, 2007; 134 

Michelot et al., 2017). This latter, more frequently used approach has its advantages, the most 135 

notable being an ease of use for statisticians and biologists alike. Fitting per individual also has its 136 

disadvantages. The first is that it requires individual movement paths that are suitably data-rich to 137 

achieve model convergence, imposing even stricter restrictions on sample size. The second is a 138 

distinct lack of any formal process by which state one in animal A is ensured consistency with 139 

state one in animal B. This lack of consistency means that estimated parameters can readily inform 140 

individual-level movement studies but will result in tricky interspecific and intraspecific 141 

comparisons, limiting a researcher’s ability to ask post-hoc population-level questions of their 142 

data.  143 

 144 

Our objective is to introduce an alternative framework that uses HMMs to overcome the described 145 

limitations of individually fitted HMMs whilst maintaining their heralded ease of use advantages. 146 

Our approach combines an N-state HMM and several hierarchical structures but bypasses the need 147 

to integrate over the random effects (as in HHMMs; Langrock et al., 2012) by using information 148 
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we gain from our data-rich pathways as a priori approximations of each states movement 149 

parameters. Doing so not only allows us to achieve coherent individual- and population-level state 150 

classification, but also ensures that we maximise our sample size by gaining meaningful inference 151 

from our data-poor and data-rich movement paths.  152 

 153 

To illustrate our approach, we apply it to a real ecological problem – quantifying seasonal space 154 

use patterns in Atlantic cod (Gadus morhua) and European plaice (Pleuronectes platessa) in the 155 

North Sea and English Channel. Both Atlantic cod and European plaice have significant 156 

commercial and conservation value and as a result have been the subject of several long-term 157 

tagging programs (e.g. Righton, Metcalfe, & Connolly, 2001; Hunter, Metcalfe, Arnold, & 158 

Reynolds, 2004; Hunter, Metcalfe, O’Brien, Arnold, & Reynolds, 2004; Hobson, Righton, 159 

Metcalfe, & Hays, 2007, 2009). Drawing on this, the rest of this paper considers a case study of 160 

107 individual bivariate movement paths, many of which (n=73) have limited observations and/or 161 

lack clear biological signals. Our findings demonstrate clear spatio-temporal patterns in the 162 

movement behaviour of either species that are consist with individual-level studies (Hunter, 163 

Metcalfe, Arnold, et al., 2004; Hunter, Metcalfe, O’Brien, et al., 2004; Hobson et al., 2007, 2009; 164 

Neat et al., 2014). Furthermore, by analyzing a relatively large dataset, we provide a unique insight 165 

into how differing sub-stocks of cod and plaice shift their behaviour on a seasonal basis, with clear 166 

consequences for fisheries management and conservation.   167 

 168 

2. Materials & Methods 169 

 170 

2.1.Case study data  171 



 8 

 172 

Movement paths were taken directly from the deployment of data storage tags (DSTs) on free-173 

roaming fish in the North Sea or English Channel. The dataset includes 107 individuals from two 174 

species of European demersal fish: Atlantic cod (n=46) and European plaice (n=61). All fish were 175 

tagged and released between December 1996 and June 2011. Fish were broadly separated into sub-176 

stocks based on release location (see Figure 1) and displayed considerable variation in movement 177 

path duration (Table S1).  178 

 179 

Each DST was programmed to record depth (m) at 10-minute intervals for the duration of 180 

deployment. The first two weeks and the last day of every time series were excluded to remove 181 

any erroneous or irregular measurements associated with release and recapture events as per 182 

Hobson et al., (2007). For details of tag type, fish catchment, tag implantation and measurement 183 

accuracy see Righton et al. (2010; Gadus morhua) or Hunter, Metcalfe, Arnold, et al. (2004; 184 

Pleuronectes platessa).  185 

 186 

Each movement path is a bivariate time series of horizontal and vertical movement per day. Net 187 

vertical movement (m day-1) of each fish was taken directly from the raw DST data by calculating 188 

the absolute difference between corresponding 10-minute depth measurements and summing the 189 

values for each day at liberty. Horizontal movement (m day-1), in comparison, was inferred 190 

indirectly from the depth data in a two-step approach. First, daily geolocation estimates were 191 

produced via a Fokker-Planck-based method that combines Metcalfe & Arnold's (1997) tidal 192 

location method and a Bayesian state-space model (see Pedersen, Righton, Thygesen, Andersen, 193 

& Madsen 2008 for model details). The straight-line distance between daily geographic estimates 194 



 9 

(commonly referred to as ‘step-length’) was then calculated using the Great Circle equation. Both 195 

vertical (v) and horizontal (h) movement metrics were log (natural log) transformed prior to model 196 

implementation. Only time series that were longer than 40+ days and had complete depth 197 

recordings were used in this study. For descriptions of horizontal and vertical movement in 198 

Atlantic cod and European plaice see Hunter, Metcalfe, Arnold, et al. (2004), Hunter, Metcalfe, 199 

O’Brien, et al. (2004) and Hobson et al. (2007; 2009).  200 

   201 

2.2.The model  202 

 203 

Previous individual-level studies demonstrate that Atlantic cod and European plaice display 204 

periods of high activity while in the water column punctuated by periods of relatively low activity 205 

while on the seabed (Metcalfe, Hunter, & Buckley, 2006; Righton et al., 2010). Thus, we consider 206 

a discrete 2-state HMM. We label state one as ‘resident’ (R), representing periods of time with low 207 

movement rates. We label state two as ‘migrating’ (M), representing a much more active phase 208 

where movement rates in the horizontal and vertical dimension are greatly increased. As in all 209 

attempts to infer behaviour from movement observations, state labels must be interpreted with care 210 

as they provide simplified proxies of unobserved behavioural modes, not direct equivalents 211 

(Patterson et al., 2017).  212 

 213 

For a movement path of length T, it is assumed that an underlying, non-observed state sequence 214 

S1, …, ST, taking values in {R, M} describes the persistence within and stochastic switching 215 

between states. The time varying evolution of this state process takes the form of a (first-order) 216 

Markov chain, with transition probability matrix Γ 217 
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 218 

																																																																			Γ = 	 $𝛾&	→&𝛾(	→& 			
𝛾&	→(𝛾(	→()																																																															[1] 219 

and 220 

																																																													𝛾-	→. = Pr(𝑆345 = 𝑘	| 𝑆3 = 𝑗)																																																							[2] 221 

 222 

for any j, k in {R, M}. Given a state j at time t the observation xt is assumed to be drawn from a 223 

multivariate normal distribution (MVN):  224 

																																																																									𝑥3	~	𝑀𝑉𝑁 @µ- , Σ-C																																																														[3] 225 

with  226 

																																																																															𝜇- =	@FGHF-IC																																																																							[4] 227 

and 228 

																																																													Σ- =	J s-KL𝜌-s-Ks-I 		
𝜌-s-Ks-I
s-IL

N																																																								[5] 229 

 230 

and H and V represent movements made in the horizontal and vertical dimension, respectively. 231 

Thus, the complete-data likelihood given a state sequence S1, …, ST is  232 

 233 

																																																𝜔QR𝜙QR(𝑥5)𝛾QR→	QT𝜙QT(𝑥L)…	𝛾QVWR	→	QV𝜙QV(𝑥X)																																			[6] 234 

 235 

where the row vector 𝜔 is the Markov chain initial state probability (which we assume to be 236 

uniform at t=1) and 𝜙- refers to the multivariate normal density stated in equation 3. We allow 237 

distinct parameters for each fish, indexed by i = 1, …, 107, and write these as ΓZ	, 𝜇-Z  and Σ-Z.  238 
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 239 

In practice, standard HMM algorithms allow us to calculate the actual likelihood, when the states 240 

are unobserved, very efficiently by integrating over all possible state sequences using the forward 241 

algorithm (Zucchini, MacDonald, & Langrock, 2016). Framing the model in this way enables us 242 

to conduct parameter estimation using a Bayesian approach, by numerically maximising the 243 

posterior density. The classification probability of each state at t is then determined using the 244 

backward smoothing algorithm (Zucchini et al., 2016). More details for how the efficient HMM 245 

machinery can be used to conduct statistical inference are given in Zucchini et al. (2016), for the 246 

particular case of animal movement modelling see Patterson et al. (2017). For our case study, we 247 

used the R optimisation routine optim to numerically maximize the log posterior density. State 248 

allocation is carried out by selecting the most likely state at each time point separately.  249 

 250 

Periods of relative inactivity (low h and v movement rates) can persist for 3-5 months in either 251 

species (Metcalfe et al., 2006; Righton et al., 2010). To accommodate this persistence within state, 252 

we have imposed a prior penalty term on the transition probabilities, such that 253 

 254 

																																																																									𝛾55	~	𝑏𝑒𝑡𝑎(𝛼, 𝛽)																																																																			[7] 255 

and 256 

																																																																									𝛾LL	~	𝑏𝑒𝑡𝑎(a	, 𝛽)																																																																		[8] 257 

 258 

where a = 99 and b =1. This prior, termed here after as the transition probability prior, is designed 259 

to ensure that states R and M correspond to strong seasonal shifts in movement behaviour and not 260 

day-to-day fluctuations.  261 
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 262 

2.3.Classifying fish movements 263 

 264 

We apply the model described in section 2.2. to all 107 individual movement paths, such that each 265 

fish gets its own parameter set. Each parameter set consists of 12 estimated parameters, two 266 

transition probabilities and 2 sets of 5 parameters describing the mean (𝜇-) and covariance (Σ-) of 267 

each state. A total number of 24,624 days (Atlantic cod = 9290 days; European plaice = 15,334 268 

days) were considered. As expected, the resulting state sequences are predominately made up of 269 

two clearly defined behavioural modes – one more active and one less active (see Figure S1 and 270 

S2 for example output). However, the parameters describing the numerical structure of these 271 

modes showed great variation among fish, with no clear consistency. Moreover, a handful of 272 

movement paths failed to achieve model convergence, as an upper threshold of observations is 273 

needed for robust parameter estimation (Patterson, Basson, Bravington, & Gunn, 2009).  274 

 275 

To avoid the wasteful removal of valuable data or a tedious post-hoc description of the individual 276 

variation that exists in the HMMs output, we adopted an alternative approach. Based on the 277 

selection criteria outlined in Figure S3, we select model output from 34 fish (Atlantic cod, n=11; 278 

European plaice, n=23) spread evenly across the five sub-stocks (Table S2). We then calculate 279 

summary statistics (means m and variances d) that describe the numerical structure of the two 280 

states (Figure S4). These summary statistics are used to construct Gaussian distributions (Figure 281 

2), 𝑁(𝑚, d) where m and d are dimension (h or v) d, state j and species specific given the selected 282 

sample. These informative distributions (4 per species), termed here after as priors on the model’s 283 
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movement parameters, are then introduced directly into the HMMs likelihood function, such that 284 

equation 6 is multiplied by  285 

 286 

																																																																	dd𝜙(𝜇-e	|
e-

	𝑚-e , 𝛿-e)																																																											[9] 287 

 288 

where 𝜙(	∙|	𝑚, d) is the Gaussian density with mean m and variance d. Thus, our informative priors 289 

act to constrain the mean parameters of each state during the classification process.  290 

 291 

This adapted approach is applied to the classification of the remaining 73 individual pathways 292 

(Atlantic cod, n=35; European plaice, n=38), outputting state sequences that comprise comparable 293 

states across all fish. This enables post-hoc comparisons to be made at the individual- and 294 

population-level with relative ease. For an example of how prior inclusion influences the 295 

classification process see Figure S5. Furthermore, demonstrations of how comparable states are 296 

across multiple fish (Figure S6) and differences between model fit for one of the data-poor 297 

movement paths are provided (Figure S7).  298 

 299 

All HMMs were coded and implemented in R (R Core Team, 2016; see Supplementary 300 

Information document 2 for example code). All plots were generated using the ggplot2 (Wickham, 301 

2009) and ggmap (Kahle & Wickham, 2013) packages in R (R Core Team, 2016). Bathymetric 302 

data was sampled from the General Bathymetric Chart of the Oceans online repository (GEBCO, 303 

www.gebco.net), which is a global topographic dataset with a one-minute spatial (1’) spatial 304 

resolution.  305 

 306 
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2.4.Prior sensitivity analysis  307 

 308 

When imposing prior distributions in statistical models it is always important to test what influence 309 

those priors have on the models’ predictions, in our case the model’s estimated state sequences. 310 

To test the sensitivity of our model to changes in the transition probability prior we varied the α 311 

and β values that characterise the priors’ beta distribution and re-ran the HMM for all 34 ‘selected’ 312 

fish. In test 1 (α = 49.5, β = 0.5) we still expect a behavioural switch to occur at an order of every 313 

100 days. However, we approximately double our prior’s variance. In test 2 (α = 49, β = 1) the 314 

expected rate of switching is halved.   315 

 316 

To test the model’s sensitivity to changes in the movement parameter priors, we varied the 317 

variances (ds) that describe the spread of each state and re-ran the adapted HMM for 10 randomly 318 

selected fish from each species. In test A, we increased all d values by 10%, reflecting a prior 319 

expectation of greater variability between the parameters of individual fish, and in test B we 320 

decreased all d values by 10%, reflecting an expectation of reduced variability. During all re-runs 321 

of the adapted HMM (Test A and Test B) the state transition prior is kept constant, therefore 322 

ensuring that any change in state is a direct consequence of the changes to the model’s movement 323 

parameter prior.  324 

 325 

2.5.Univariate modelling  326 

 327 

To assess the advantages of using bivariate responses, we also carried out an analysis using a 328 

univariate observation model, considering only movements made in the horizontal dimension. The 329 
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same model for transition probabilities is used as described above. We apply this approach to the 330 

34 fish (Atlantic cod, n=11; European plaice, n=23) previously characterized as data-rich 331 

movement paths. Reported comparisons reflect the percentage change, if any, in the resultant state 332 

sequences for each individual fish.  333 

 334 

2.6.Inferring population patterns 335 

 336 

Since population dynamics emerge as the sum of the individuals that comprise the population we 337 

used individual movement behaviours to explore spatiotemporal patterns. Annual temporal 338 

patterns of movement behaviour were calculated for each species in two ways. First, the daily 339 

individual probabilities of each fish being in each state were averaged across all individuals and 340 

over each week of the year. Secondly, the proportion of fish classified to each state was calculated 341 

by averaging the daily number of fish in each state and smoothing it, again to the weekly time step. 342 

Week refers to weeks of the year, starting on the 1st January and ending on the 31st December and 343 

is independent of year.  344 

 345 

Patterns of space use while in either state were quantified using utilization distributions (Worton, 346 

1989; Kie et al., 2010; Womble & Gende, 2013). For each species and sub-stock, utilization 347 

distributions were calculated by pooling all daily horizontal geolocations for specified time periods 348 

and spatially binning them into 5km2 grid cells (Maxwell et al., 2011; Womble & Gende, 2013). 349 

Specified time periods were state dependent and based on a weekly averaged probability of 350 

observing a given state across all individuals exceeding 0.5. Successive weeks classified to the 351 

same behavioural state were then grouped. In Atlantic cod this meant locations that were classified 352 
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to a resident state between June – October and locations classified to a migrating state between 353 

November – May were used. In European plaice locations classified to a resident state between 354 

April – September and locations classified to a migrating state between October – March were 355 

used. 356 

 357 

3. Results 358 

 359 

3.1.Individual fish movement 360 

 361 

Mapping the posterior probability of being in a particular state indicated that individual fish from 362 

either species switch between periods of highly directed movement when in a migratory state and 363 

periods of random and highly localized movements when in the less active resident state (Figure 364 

3). Time spent in either state and the transitions between states were shown to vary in space and 365 

time and can be linked to certain habitats. For example, cod 1186 spent 197 days (June - 366 

November) consecutively in the resident state within the deeper waters of the Celtic Sea and only 367 

shifted into a migratory state when transiting through the English Channel. In comparison, plaice 368 

1084 undertook long-distance directed movements after its release in the German Bight, spending 369 

54 days consecutively in the migrating state before switching to the resident state in the shallow 370 

waters of the Central North Sea.  371 

 372 

The majority of individual time series had observations that shifted between resident and migratory 373 

states (n=41 Atlantic cod, n=60 European plaice). However, a small number of individuals (n=6) 374 

persisted in a single state for the duration of their time series: one European plaice and four Atlantic 375 
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cod remained in a resident state throughout, whereas the movements of one Atlantic cod were 376 

consistently classified to the migratory state. All 6 single state movement paths had short duration 377 

times (average movement path duration = 56 ± 21 days) and were released throughout the year 378 

(November – May).  379 

 380 

3.2.Population patterns 381 

 382 

The mean probability of observing a resident state and the proportion of observations classified to 383 

a resident state varied throughout the year (Figure 4). In both species, migratory behaviour 384 

dominated throughout the winter and into spring, with the onset of summer signifying a shift in 385 

movement behaviour to the resident state. This shift in state occurred earlier in European plaice 386 

than in Atlantic cod, with movements of plaice having a higher probability of classification to the 387 

slower, less active resident state between late April and September, compared to June through to 388 

November in cod.  389 

 390 

The model predicted large variation in average movement rates within each state (Table 1). 391 

Horizontal movement rates of plaice tagged and released in the Southern North Sea and German 392 

Bight were significantly lower than those tagged in the Central North Sea (resident, Student’s t-393 

test, p < 0.001; migrating, Student’s t-test, p < 0.001). In the resident state, plaice from the Southern 394 

North Sea and German Bight moved on average 6.5 km day-1 horizontally and between 20.0-26.1 395 

m day-1 vertically compared to 13.9 km day-1 horizontally and between 15.6-125.8 m day-1 396 

vertically in the migratory state. In comparison, plaice tagged in the Central North Sea exhibited 397 
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much higher horizontal movement rates, moving on average 12.9 km day-1 and 19.5 km day-1 in 398 

the resident and migratory states, respectively.  399 

 400 

Predicted spatial utilization distributions showed that migration occurred throughout the spatial 401 

domain, with no clear concentration of migratory activity in either species (Figure 5; Figure S8). 402 

In comparison, periods of time spent in a resident state produced clear geographical patches of 403 

space use while in certain habitats. These habitats varied with species (Figure 5) and sub-stock 404 

(Figure S8), however Southern North Sea cod and plaice both aggregated in the coastal waters off 405 

the English mainland.  Cod in the English Channel shift to a resident state when in the western 406 

mouth of the Channel. In the German Bight, 90% of plaice spent most of their time at liberty within 407 

the area, displaying little or no dispersal. Of those plaice tagged in the Central North Sea, 48% 408 

were estimated to be in the resident state within the Northern North Sea whilst a further 11 fish 409 

undertook southern migrations before shifting to a resident mode in the shallow waters of the 410 

Central North Sea.  411 

 412 

3.3.Prior sensitivity analysis  413 

 414 

Minimal change in the classification of states was found during prior sensitivity analysis (Table 415 

S3). Re-running the HMM with changes to the transition probability prior revealed an average 416 

percentage change in state across all individuals of 1.5% in cod and 1.8% in plaice. In comparison, 417 

re-running the adapted HMM with changes to the movement parameters priors resulted in a 418 

percentage change in state that was on average <1% in cod and 2.3% in plaice. Such findings 419 
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demonstrate that the precise details of these priors are not crucial, with state classifications and 420 

biologically-important results being robust to fairly large changes in prior parameters.  421 

 422 

3.4.Distribution of state dwell times 423 

 424 

In an HMM, the length of time that an individual spends in one state before switching to the other 425 

necessarily follows a geometric distribution. Pooling across individuals, we find that these 426 

distributions are indeed geometric (see Figure S9 and Figure S10), and so the dynamics of the 427 

fitted changes in state are consistent with the Markov nature of the model. Further model 428 

assessment is provided by residual plots in Figure S11 and Figure S12.  429 

 430 

3.5.Comparison to univariate modelling 431 

 432 

State allocation was found to be different across the two tested observation models. The bivariate 433 

model resulted in state sequences that differed from the univariate model in 8.0% and 23.3% of 434 

cases in Atlantic cod and European plaice, respectively. This result confirms the need for the 435 

bivariate analysis.  436 

 437 

4. Discussion 438 

 439 

One of the main objectives of animal movement studies is the scaling of inference about movement 440 

behaviours from individuals to populations (Block et al., 2011; Wakefield et al., 2011; Raymond 441 

et al., 2015; Hays et al., 2016; Hindell et al., 2016). HMMs (Patterson et al., 2009; McKellar et al., 442 
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2015; Michelot et al., 2016) or their Bayesian equivalents (Jonsen et al., 2013; McClintock et al., 443 

2013) provide a powerful way of achieving this objective but only when movement behaviours are 444 

identified consistently across multiple individuals. Here we have achieved this consistency by 445 

‘borrowing’ information from a finite sample of individuals and using it to provide our model with 446 

data-driven approximations of each state. Using this novel extension to HMM methodology, we 447 

investigated spatial and temporal shifts in movement behaviour from a large sample size of 448 

bivariate movement pathways. We demonstrated where and when shifts between two ecologically 449 

meaningful states are most likely to occur and add further confidence to observations of seasonal-450 

dependence in the movements of commercially important demersal fish. Our biological findings 451 

complement and advance current understanding and highlight how our approach has significant 452 

utility in the fields of movement ecology and conservation.    453 

 454 

Our approach to behaviour classification has two major advantages. First, it enabled us to gain 455 

meaningful inference from 73 (68% of the dataset) additional movement pathways, many of which 456 

are data-poor and would otherwise be subject to post-hoc removal. This retention of all individual-457 

level information is favorable because it maximised our sample size and lends more information 458 

to our analysis. Second, our approach ensures that state labels are allocated consistently across 459 

multiple individuals, without resorting to large increases in model complexity. As a direct 460 

consequence of these two advantages, we were able to ask population-level post-hoc questions of 461 

our movement data and provide answers that are meaningful for conservation and spatial 462 

management. 463 

 464 
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Studies that classify behaviour based on horizontal and vertical movements are rare (but see Breed, 465 

Bowen, & Leonard, 2013; Bestley, Jonsen, Hindell, Harcourt, & Gales, 2015; DeRuiter et al., 466 

2016). Here, we have assumed that ht and vt are conditionally dependent given latent states, which 467 

is a novel addition to the movement ecology literature. Our reasons for doing so are linked to a 468 

priori information about how the species of interest alter their activity levels within an annual 469 

cycle (e.g. Hobson et al., 2009). However, we intuitively expect other species occupying three-470 

dimensional environments to exhibit similar degrees of coupling. For example, Bestley et al. 471 

(2015) reveal that the directed horizontal movements in multiple Antarctic pinniped species are 472 

assiocated with longer dive durations, whereas an inverted relationship is noted in blue whales 473 

(Balaenoptera musculus) with percieved shallow foraging behaviours being characteried by 474 

shallow dives and short horizontal movements (DeRuiter et al., 2016). Future studies may find 475 

similar observation models a powerful tool for investigating the dependences of horizontal and 476 

vertical movement rates (Carter, Bennett, Embling, Hosegood, & Russell, 2016).  477 

 478 

Our estimates of average movement rates are consistent with previous work. In cod, horizontal 479 

movements rates whilst in the migratory state are shown to be approximately 13.5km day-1 which 480 

is comparable to past observations (Hobson et al., 2009) and laboratory studies (Bainbridge, 1957; 481 

Videler & Wardle, 1991). In plaice, previous research reports that seven tagged individuals swam 482 

on average 255 ± 60.2km during pre-spawning migrations (Hunter, Metcalfe, & Reynolds, 2003). 483 

Assuming an average migrating of 2-4 weeks (as noted in Hunter et al., 2003), our estimates of 484 

horizontal movement rates between 13-20km day-1 seem reasonable. Therefore, we are confident 485 

that our choice of state labels is biologically meaningful for the species in question.  486 

 487 
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Much work has considered the horizontal and vertical movements of Atlantic cod (Hobson et al., 488 

2007, 2009) and European plaice (Hunter, Metcalfe, Arnold, et al., 2004; Hunter, Metcalfe, 489 

O’Brien, et al., 2004), noting strong seasonal dependence in the movement patterns of individual 490 

fish. Here we add confidence to these findings by providing a mechanistic view of how fish switch 491 

between two movements modes during their annual cycle. Specifically, we show that cod and 492 

plaice are more likely to occupy a resident state during the summer months (April – September in 493 

plaice; June – November in cod). These periods are dominated by low horizontal and vertical 494 

movement rates, therefore our findings support the hypothesis that both species spend their 495 

summer in a sedentary state with minimal activity levels (Metcalfe et al., 2006; Righton et al., 496 

2010). Movement rates then ramp up during the winter and early spring (October – March in 497 

plaice; December – May in cod), resulting in a collective shift in state. As in previous studies 498 

(Hunter, Metcalfe, O’Brien, et al., 2004; Hobson et al., 2007), we interpret this shift to be reflective 499 

of pre-spawning migrations, the onset of spawning and subsequent post-spawning migrations. One 500 

limitation of the two-state model considered here is that we cannot directly infer foraging or 501 

spawning behaviour. Foraging and spawning events are likely to represent an immediate activity 502 

level, with both behaviours involving notable vertical displacement to and from the water column 503 

(Hobson et al., 2009). The inclusion of a third immediate state would be a relatively 504 

straightforward extension to model structure (see Vermard, Rivot, Mahévas, Marchal, & Gascuel, 505 

2010; Peel & Good, 2011; Michelot et al., 2017 for examples of HMMs that consider >2 states). 506 

However, it is unlikely that the scale of these vertical excursions is large enough to allow 507 

classification at the daily time step. Therefore, we suggest that future studies either deploy more 508 

sophisticated tags which are capable of recording more refined information about the underlying 509 

movement process (e.g. accelerometers; Leos-Barajas, Photopoulou, et al., 2017) or consider a 510 
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nested hierarchical HMMs in which vertical and horizontal movements are recorded and classified 511 

at differing time scales (e.g. Leos-Barajas, Gangloff, et al., 2017).  512 

 513 

Over the last 70 years, landings data for the North Sea and English Channel demonstrate that catch 514 

per unit effort (CPUE) for demersal species is higher during the summer months (Righton, 515 

Townhill, & Van Der Kooij, 2009). Such increases in CPUE are undoubtedly linked to changes in 516 

the populations’ underlying movement behaviour, as time spent on the seabed results in an 517 

increased vulnerability to commercial exploitation (Righton et al., 2009). By assuming that time 518 

spent in a resident state is linked to sea-bottom dwelling, we show that cod and plaice aggregate 519 

in certain habitat types. For example, cod in the English Channel have greatest density in the deeper 520 

waters at the western mouth of the English Channel. In contrast, cod and plaice in the Southern 521 

North Sea aggregate in coastal waters off the English mainland. We also demonstrate that plaice 522 

in the German Bight remain exclusive within this region, suggesting the presence of a sedentary 523 

resident population in which fish spawn and forage in the same locality (previously noted in plaice 524 

by Hunter, Metcalfe, O’Brien, et al., 2004 and in cod by Neat et al., 2006). Such spatial information 525 

is essential for defining multi-species management measures, as strategies typically involve gear 526 

restrictions (Moustakas, Silvert, & Dimitromanolakis, 2006) aimed at limiting the exploitation of 527 

certain species/life stages  and spatial fisheries closures aimed at protecting areas of particular 528 

importance for species survival e.g. foraging and spawning grounds (Hunter, Metcalfe, O’Brien, 529 

et al., 2004; Righton, Quayle, Hetherington, & Burt, 2007).   530 

 531 

One limitation of our method is the way in which we deal with individual variation. Currently we 532 

assume that by analysing the movements of a finite sample of data-rich pathways (n=34) we gain 533 
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sufficient information about how the mean movement of each state is distributed throughout the 534 

population. We then expect the movements of all other individuals to be drawn from one of these 535 

distributions and make no attempt to explain any deviance away from this ‘expected’ process. One 536 

way to improve our approach and make it more generic would be the inclusion of covariate 537 

information (e.g. Phillips, Patterson, Leroy, Pilling, & Nicol, 2015). For example, 4 Atlantic cod 538 

were unexpectedly classified solely to a resident state even through their movements occurred 539 

throughout the winter (November – April). Post-hoc investigations reveal an average body length 540 

of ~56cm which lies within the predicted range of length at first maturity (31-74cm; Froese & 541 

Pauly, 2017). It is likely that immature fish act differently to their mature conspecifics (Sippel et 542 

al., 2015) and that tagging programmes like the one considered here include fish of differing sex 543 

and age (Carter et al., 2016). Consideration of these factors is beyond the scope of this paper. 544 

However we believe that the inclusion of body length (see Towner et al., 2016 for an ecological 545 

example) or other individual covariates within the HMMs likelihood function would provide a 546 

fruitful avenue for future research.  547 

 548 

Technological advancements in telemetry devices have led to huge efforts to track the movements 549 

of free-roaming marine animals (Hussey et al., 2015; Hays et al., 2016). Tagging data is now seen 550 

as a valuable information source for stock assessment models (Sippel et al., 2015), monitoring the 551 

effectiveness of conservation efforts (e.g. Raymond et al., 2015; McGowan et al., 2017) and 552 

understanding population dynamics across vast spatial scales (e.g. Block et al., 2011; Hindell et 553 

al., 2016). However, there is no avoiding the fact that tags are expensive (McGowan et al., 2017), 554 

liable to occasional failure and often produce individual pathways that are of limited use (data-555 

poor or a low number of observations). Here we have introduced a methodology that makes the 556 
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process of scaling up inference about movement behaviours from individuals to population more 557 

readily achievable. Moreover, we illustrate how the adoption of our approach can make tagging 558 

studies more cost-effective, as inference can still be gained from data-poor movement paths 559 

without resorting to redeployment or a renewed effort to secure further funding.  560 

 561 

Acknowledgements 562 

 563 

Work was funded by a NERC studentship awarded to C.A.G., J.L.B., P.G.B., D.A.G. and J.W.P. 564 

through the ACCE doctoral training partnership (Grant No. NE/L002450/1). C.A.G. was also 565 

supported by a 2017 Tasmania graduate research scholarship. We thank Yuan Pan, Michael 566 

Spence, Ewan Hunter, Simon Wotherspoon, Alison Parton, Jeroen van der Kooij as well as two 567 

reviewers for discussions and comments that have improved the manuscript.  568 

 569 

Authors’ contributions 570 

 571 

C.A.G, T.A.P. and P.G.B. designed the methodology; C.A.G., P.G.B., J.L.B. and D.A.R. 572 

interpreted and analysed the model’s output; movement paths were derived and analysed by 573 

D.A.R. and S.R.W.; C.A.G., J.L.B., P.G.B., D.A.R. and J.W.P. led the writing of the manuscript; 574 

C.A.G. and S.R.W. designed the figures. All authors contributed critically to the drafts and gave 575 

final approval for publication. 576 

 577 

Data and R Code 578 

 579 



 26 

The collated datasets for each fish species including estimated state sequences, geolocation 580 

estimates (latitude and longitude) and date stamps can be found on the CEFAS Data Hub 581 

(https://doi.org/10.14466/CefasDataHub.54). Example R code to run our HMM is included in 582 

Supplementary Information document 2 or can be downloaded from GitHub 583 

(https://github.com/cagriffiths1/Fish_HMM).  584 

 585 

Conflict of Interest  586 

 587 

Authors declare no conflicts of interest.  588 

 589 

References  590 

 591 

Bainbridge, B. Y. R. (1957). The speed of swimming of fish as related to size and the frequency 592 

and amplitude of the tail beat. The Journal of Experimental Biology, 35(1937), 109–133. 593 

doi:10.1098/rspb.1971.0085 594 

Bestley, S., Jonsen, I. D., Hindell, M. A., Harcourt, R. G., & Gales, N. J. (2015). Taking animal 595 

tracking to new depths : synthesizing horizontal-vertical movement relationships for four 596 

marine predators. Ecology, 96(2), 417–427. 597 

Block, B. A., Jonsen, I. D., Jorgensen, S. J., Winship, A. J., Shaffer, S. A., Bograd, S. J., … 598 

Costa, D. P. (2011). Tracking apex marine predator movements in a dynamic ocean. Nature, 599 

475(7354), 86–90. doi:10.1038/nature10082 600 

Breed, G. A., Bowen, W. D., & Leonard, M. L. (2013). Behavioral signature of intraspecific 601 

competition and density dependence in colony-breeding marine predators. Ecology and 602 



 27 

Evolution, 3(11), 3838–3854. doi:10.1002/ece3.754 603 

Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J., & Russell, D. J. F. (2016). 604 

Navigating uncertain waters : a critical review of inferring foraging behaviour from location 605 

and dive data in pinnipeds. Movement Ecology, 4–25. doi:10.1186/s40462-016-0090-9 606 

Costa, D. P., Breed, G. A., & Robinson, P. W. (2012). New Insights into Pelagic Migrations: 607 

Implications for Ecology and Conservation. Annual Review of Ecology, Evolution, and 608 

Systematics, 43(1), 73–96. doi:10.1146/annurev-ecolsys-102710-145045 609 

DeRuiter, S. L., Langrock, R., Skirbutas, T., Goldbogen, J. A., Chalambokidis, J., Friedlaender, 610 

A. S., & Southall, B. L. (2016). A multivariate mixed hidden Markov model to analyze blue 611 

whale diving behaviour during controlled sound exposures, arXiv, arX, 1–26. 612 

doi:10.1214/16-AOAS1008 613 

Froese, R., & Pauly, D. (2017). FishBase. World Wide Web electronic publication. Retrieved 614 

from www.fishbase.org, version (10/2017) 615 

GEBCO. (2017). General Bathymetric Chart of the Oceans. Retrieved 17 November 2016, from 616 

http://www.bodc.ac.uk/projects/international/gebco/gebco_digital_atlas 617 

Hays, G. C., Ferreira, L. C., Sequeira, A. M. M., Meekan, M. G., Duarte, C. M., Bailey, H., … 618 

Thums, M. (2016). Key Questions in Marine Megafauna Movement Ecology. Trends in 619 

Ecology and Evolution, 31(6), 463–475. doi:10.1016/j.tree.2016.02.015 620 

Hebblewhite, M., & Haydon, D. T. (2010). Distinguishing technology from biology: a critical 621 

review of the use of GPS telemetry data in ecology. Philosophical Transactions of the 622 

Royal Society B: Biological Sciences, 365(1550), 2303–2312. doi:10.1098/rstb.2010.0087 623 

Hindell, M. A., McMahon, C. R., Bester, M. N., Boehme, L., Costa, D., Fedak, M. A., … 624 

Charrassin, J. B. (2016). Circumpolar habitat use in the southern elephant seal: Implications 625 



 28 

for foraging success and population trajectories. Ecosphere, 7(5), 1–27. 626 

doi:10.1002/ecs2.1213 627 

Hobson, V. J., Righton, D., Metcalfe, J. D., & Hays, G. C. (2007). Vertical movements of North 628 

Sea cod. Marine Ecology Progress Series, 347, 101–110. doi:10.3354/meps07047 629 

Hobson, V. J., Righton, D., Metcalfe, J. D., & Hays, G. C. (2009). Link between vertical and 630 

horizontal movement patterns of cod in the North Sea. Aquatic Biology, 5, 133–142. 631 

doi:10.3354/ab00144 632 

Hunter, E., Metcalfe, J. D., Arnold, G. P., & Reynolds, J. D. (2004). Impacts of migratory 633 

behaviour on population structure in North Sea plaice. Journal of Animal Ecology, 73, 377–634 

385. 635 

Hunter, E., Metcalfe, J. D., O’Brien, C. M., Arnold, G. P., & Reynolds, J. D. (2004). Vertical 636 

activity patterns of free-swimming adult plaice in the southern North Sea. Marine Ecology 637 

Progress Series, 279, 261–273. doi:10.3354/meps279261 638 

Hunter, E., Metcalfe, J. D., & Reynolds, J. D. (2003). Migration route and spawning area fidelity 639 

by North Sea plaice. Proceedings of the Royal Society B: Biological Sciences, 270, 2097–640 

2103. doi:10.1098/rspb.2003. 641 

Hussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., … 642 

Whoriskey, F. G. (2015). Aquatic animal telemetry: A panoramic window into the 643 

underwater world. Science, 348(6240), 1255642. doi:10.1126/science.1255642 644 

Jonsen, I. D. (2016). Joint estimation over multiple individuals improves behavioural state 645 

inference from animal movement data. Scientific Reports, 6, 20625. doi:10.1038/srep20625 646 

Jonsen, I. D., Basson, M., Bestley, S., Bravington, M. V., Patterson, T. A., Pedersen, M. W., … 647 

Wotherspoon, S. J. (2013). State-space models for bio-loggers: A methodological road map. 648 



 29 

Deep Sea Research Part II, 88–89, 34–46. doi:10.1016/j.dsr2.2012.07.008 649 

Jonsen, I. D., Myers, R. A., & James, M. C. (2007). Identifying leatherback turtle foraging 650 

behaviour from satellite telemetry using a switching state-space model. Marine Ecology 651 

Progress Series, 337, 255–264. 652 

Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R Journal, 5, 653 

144–161. 654 

Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell, M. S., … 655 

Moorcroft, P. R. (2010). The home-range concept: are traditional estimators still relevant 656 

with modern telemetry technology? Philosophical Transactions of the Royal Society B: 657 

Biological Sciences, 365, 2221–2231. doi:10.1098/rstb.2010.0093 658 

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M., & Kays, R. 659 

(2011). The Movebank data model for animal tracking. Environmental Modelling and 660 

Software, 26, 834–835. doi:10.1016/j.envsoft.2010.12.005 661 

Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., & Morales, J. M. (2012). 662 

Flexible and practical modeling of animal telemetry data : hidden Markov models and 663 

extensions. Ecology, 93(11), 2336–2342. 664 

Leos-Barajas, V., Gangloff, E. J., Adam, T., Langrock, R., van Beest, F. M., Nabe-Nielsen, J., & 665 

Morales, J. M. (2017). Multi-scale Modeling of Animal Movement and General Behavior 666 

Data Using Hidden Markov Models with Hierarchical Structures. Journal of Agricultural, 667 

Biological, and Environmental Statistics, 22(3), 232–248. doi:10.1007/s13253-017-0282-9 668 

Leos-Barajas, V., Photopoulou, T., Langrock, R., Patterson, T. A., Watanabe, Y., Murgatroyd, 669 

M., & Papastamatiou, Y. P. (2017). Analysis of animal accelerometer data using hidden 670 

Markov models. Methods in Ecology and Evolution, 8(2), 161–173. doi:10.1111/2041-671 



 30 

210X.12657 672 

Lindberg, M. S., & Walker, J. (2007). Satellite Telemetry in Avian Research and Management: 673 

Sample Size Considerations. Journal of Wildlife Management, 71(3), 1002–1009. 674 

doi:10.2193/2005-696 675 

Maxwell, S. M., Breed, G. A., Nickel, B. A., Makanga-Bahouna, J., Pemo-Makaya, E., Parnell, 676 

R. J., … Coyne, M. S. (2011). Using satellite tracking to optimize protection of long-lived 677 

marine species: Olive ridley sea turtle conservation in central africa. PLoS ONE, 6(5), 678 

e19905. doi:10.1371/journal.pone.0019905 679 

McClintock, B. T., Russell, D. J. F., Matthiopoulos, J., & King, R. (2013). Combining individual 680 

animal movement and ancillary biotelemetry data to investigate population-level activity 681 

budgets. Ecology, 94(4), 838–849. doi:10.1890/12-0954.1 682 

McGowan, J., Beger, M., Lewison, R. L., Harcourt, R., Campbell, H., Priest, M., … Possingham, 683 

H. P. (2017). Integrating research using animal-borne telemetry with the needs of 684 

conservation management. Journal of Applied Ecology, 54(2), 423–429. doi:10.1111/1365-685 

2664.12755 686 

McKellar, A. E., Langrock, R., Walters, J. R., & Kesler, D. C. (2015). Using mixed hidden 687 

Markov models to examine behavioral states in a cooperatively breeding bird. Behavioral 688 

Ecology, 26(1), 148–157. doi:10.1093/beheco/aru171 689 

Metcalfe, J. D., & Arnold, G. (1997). Tracking fish with electronic tags. Nature, 387, 665–666. 690 

doi:10.1038/42622 691 

Metcalfe, J. D., Hunter, E., & Buckley, A. A. (2006). The migratory behaviour of North Sea 692 

plaice: Currents, clocks and clues. Marine and Freshwater Behaviour and Physiology, 693 

39(1), 25–36. doi:10.1080/10236240600563404 694 



 31 

Michelot, T., Langrock, R., Bestley, S., Jonsen, I. D., Photopoulou, T., & Patterson, T. A. 695 

(2017). Estimation and simulation of foraging trips in land-based marine predators. 696 

Ecology, 98(7), 1932–1944. doi:10.1002/ecy.1880 697 

Michelot, T., Langrock, R., & Patterson, T. (2016). moveHMM: An R package for the statistical 698 

modelling of animal movement data using hidden Markov models. Methods in Ecology and 699 

Evolution, 7, 1308–1315. doi:10.1111/2041-210X.12578 700 

Moustakas, A., Silvert, W., & Dimitromanolakis, A. (2006). A spatially explicit learning model 701 

of migratory fish and fishers for evaluating closed areas. Ecological Modelling, 192, 245–702 

258. doi:10.1016/j.ecolmodel.2005.07.007 703 

Neat, F. C., Bendall, V., Berx, B., Wright, P. J., Cuaig, M., Townhill, B., … Righton, D. (2014). 704 

Movement of Atlantic cod around the British Isles: Implications for finer scale stock 705 

management. Journal of Applied Ecology, 51, 1564–1574. doi:10.1111/1365-2664.12343 706 

Neat, F. C., Wright, P. J., Zuur, A. F., Gibb, I. M., Gibb, F. M., Tulett, D., … Turner, R. J. 707 

(2006). Residency and depth movements of a coastal group of Atlantic cod (Gadus morhua 708 

L.). Marine Biology, 148, 643–654. doi:10.1007/s00227-005-0110-6 709 

Nguyen, V. M., Brooks, J. L., Young, N., Lennox, R. J., Haddaway, N., Whoriskey, F. G., … 710 

Cooke, S. J. (2017). To share or not to share in the emerging era of big data: perspectives 711 

from fish telemetry researchers on data sharing. Canadian Journal of Fisheries and Aquatic 712 

Sciences, 74, 1260–1274. doi:10.1139/cjfas-2016-0261 713 

Ogburn, M. B., Harrison, A.-L., Whoriskey, F. G., Cooke, S. J., Mills Flemming, J. E., & Torres, 714 

L. G. (2017). Addressing Challenges in the Application of Animal Movement Ecology to 715 

Aquatic Conservation and Management. Frontiers in Marine Science, 4, 70. 716 

doi:10.3389/fmars.2017.00070 717 



 32 

Patterson, T. A., Basson, M., Bravington, M. V., & Gunn, J. S. (2009). Classifying movement 718 

behaviour in relation to environmental conditions using hidden Markov models. Journal of 719 

Animal Ecology, 78(6), 1113–1123. doi:10.1111/j.1365-2656.2009.01583.x 720 

Patterson, T. A., Parton, A., Langrock, R., Blackwell, P. G., Thomas, L., & King, R. (2017). 721 

Statistical modelling of individual animal movement: an overview of key methods and a 722 

discussion of practical challenges. AStA Advances in Statistical Analysis, 101, 399–438. 723 

doi:10.1007/s10182-017-0302-7 724 

Pedersen, M. W., Righton, D., Thygesen, U. H., Andersen, K. H., & Madsen, H. (2008). 725 

Geolocation of North Sea cod (Gadus morhua) using hidden Markov models and 726 

behavioural switching. Canadian Journal of Fisheries and Aquatic Sciences, 65, 2367–727 

2377. doi:10.1139/F08-144 728 

Peel, D., & Good, N. M. (2011). A hidden Markov model approach for determining vessel 729 

activity from vessel monitoring system data. Canadian Journal of Fisheries and Aquatic 730 

Sciences, 68, 1252–1264. doi:10.1139/f2011-055 731 

Phillips, J. S., Patterson, T. A., Leroy, B., Pilling, G. M., & Nicol, S. J. (2015). Objective 732 

classification of latent behavioral states in bio-logging data using multivariate-normal 733 

hidden Markov models. Ecological Applications, 25(5), 1244–1258. doi:10.1890/14-734 

0862.1.sm 735 

Pittman, S. J., Monaco, M. E., Friedlander, A. M., Legare, B., Nemeth, R. S., Kendall, M. S., … 736 

Caldow, C. (2014). Fish with chips: Tracking reef fish movements to evaluate size and 737 

connectivity of Caribbean marine protected areas. PLoS ONE, 9(5), e96028. 738 

doi:10.1371/journal.pone.0096028 739 

R Development Core Team. (2016). A Language and Environment for Statistical Computing. R 740 



 33 

Foundation for Statistical Computing, Vienna. 741 

Raymond, B., Lea, M. A., Patterson, T., Andrews-Goff, V., Sharples, R., Charrassin, J. B., … 742 

Hindell, M. A. (2015). Important marine habitat off east Antarctica revealed by two decades 743 

of multi-species predator tracking. Ecography, 38, 121–129. doi:10.1111/ecog.01021 744 

Righton, D. A., Andersen, K. H., Neat, F., Thorsteinsson, V., Steingrund, P., Svedäng, H., … 745 

Metcalfe, J. D. (2010). Thermal niche of Atlantic cod Gadus morhua: Limits, tolerance and 746 

optima. Marine Ecology Progress Series, 420, 1–13. doi:10.3354/meps08889 747 

Righton, D. A., Metcalfe, J. D., & Connolly, P. (2001). Different behaviour of North and Irish 748 

Sea cod. Nature, 411(90), 2001. 749 

Righton, D. A., Quayle, V. A., Hetherington, S., & Burt, G. (2007). Movements and distribution 750 

of cod (Gadus morhua) in the southern North Sea and English Channel: Results from 751 

conventional and electronic tagging experiments. Journal of the Marine Biological 752 

Association of the United Kingdom, 87, 599–613. doi:10.1017/S0025315407054641 753 

Righton, D. A., Townhill, B., & Van Der Kooij, J. (2009). Catch me if you can: archival tagging 754 

studies can help assess changes in the accessibility of Atlantic cod (Gadus morhua) to trawl 755 

gears. ICES CM 2009/J:08. ICES CM, J:08. 756 

Scott, R., Hodgson, D. J., Witt, M. J., Coyne, M. S., Adnyana, W., Blumenthal, J. M., … Godley, 757 

B. J. (2012). Global analysis of satellite tracking data shows that adult green turtles are 758 

significantly aggregated in Marine Protected Areas. Global Ecology and Biogeography, 21, 759 

1053–1061. doi:10.1111/j.1466-8238.2011.00757.x 760 

Sippel, T., Paige Eveson, J., Galuardi, B., Lam, C., Hoyle, S., Maunder, M., … Nicol, S. (2015). 761 

Using movement data from electronic tags in fisheries stock assessment: A review of 762 

models, technology and experimental design. Fisheries Research, 163, 152–160. 763 



 34 

doi:10.1016/j.fishres.2014.04.006 764 

Towner, A. V., Leos-Barajas, V., Langrock, R., Schick, R. S., Smale, M. J., Kaschke, T., … 765 

Hopkins, W. (2016). Sex-specific and individual preferences for hunting strategies in white 766 

sharks. Functional Ecology, 30(8), 1397–1407. doi:10.1111/1365-2435.12613 767 

Vermard, Y., Rivot, E., Mahévas, S., Marchal, P., & Gascuel, D. (2010). Identifying fishing trip 768 

behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov 769 

Models. Ecological Modelling, 221, 1757–1769. doi:10.1016/j.ecolmodel.2010.04.005 770 

Videler, J. J., & Wardle, C. S. (1991). Fish swimming stride by stride: speed limits and 771 

endurance. Reviews in Fish Biology and Fisheries, 1, 23–40. doi:10.1007/BF00042660 772 

Wakefield, E. D., Phillips, R. A., Trathan, P. N., Arata, J., Gales, R., Huin, N., … Matthiopoulos, 773 

J. (2011). Habitat preference , accessibility , and competition limit the global distribution of 774 

breeding Black-browed Albatrosses. Ecological Monographs, 81(1), 141–167. 775 

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. 776 

Womble, J. N., & Gende, S. M. (2013). Post-Breeding Season Migrations of a Top Predator, the 777 

Harbor Seal (Phoca vitulina richardii), from a Marine Protected Area in Alaska. PLoS ONE, 778 

8(2), e55386. doi:10.1371/journal.pone.0055386 779 

Worton, B. J. (1989). Kernel Methods for Estimating the Utilization Distribution in Home-Range 780 

Studies. Ecology, 70(1), 164–168. 781 

Zucchini, W., MacDonald, I. L., & Langrock, R. (2016). Hidden Markov models for time series: 782 

an introduction using R (second edition). Chapman and Hall/CRC. 783 

 784 

 785 

 786 



 35 

Tables 787 

Table 1. State dependent movement rates (horizontal: km day-1, vertical: m day-1) by sub-stock in 788 

Atlantic cod and European plaice. All values are taken from collated model output and are 789 

averaged across all individuals.  790 

 791 

 792 

 793 

 
 

Resident state Migrating state 

 Sub-Stock 
Horizontal 

movement (km) 

Vertical 

movement (m) 

Horizontal 

movement (km) 

Vertical 

movement (m) 

 

Atlantic cod 

(Gadus morhua) 

 

 
Southern North Sea 9.2 31.5 13.9 158.3 

 
English Channel 9.6 53.5 13.4 125.4 

 

European plaice 

(Pleuronectes 

platessa) 

Southern North Sea 6.4 20.0 12.9 115.6 

 

German Bight 6.6 26.1 14.9 125.8 

 
Central North Sea 12.9 26.2 19.5 121.0 
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Figure Legends 804 

Figure 1. Release locations of all tagged fish. Atlantic cod, Gadus morhua (n=46) are shown in 805 

red, fish are either separated into the English Channel sub-stock (triangles, n=23) or the Southern 806 

North Sea sub-stock (circles, n=23). European plaice, Pleuronectes platessa (n=61) are shown in 807 

purple, fish are grouped into three sub-stocks: Central North Sea (circles, n=27), German Bight 808 

(triangles, n=10) or Southern North Sea (crosses, n=24).  809 

 810 

Figure 2. Estimated state-dependent distributions (bars) for vertical (left) and horizontal (right) 811 

movements of all 34-selected fish. Black lines illustrate the movement parameter prior 812 

distributions 𝑁(𝑚, d) that were constructed based on collective model output. Prior distributions 813 

are state (resident, solid line; migratory, dashed line), species (Atlantic cod, top; European plaice, 814 

bottom) and dimension (horizontal or vertical) specific.  815 

 816 

Figure 3. State dependent movement behaviour of two individual fish. Shown in a color scale 817 

from red to yellow is the movement behaviour of one Atlantic cod tagged on the 25th March 2005 818 

(duration = 300 days). Red points represent a migrating state, yellow a resident state and those 819 

points shown in orange illustrate times when the model was uncertain of state classification (i.e. 820 

the daily probability of state classification was less than 0.85). Shown in a scale from purple to 821 

cyan is the movement behaviour of one European plaice tagged on the 14th November 1997 822 

(duration = 253 days). Purple points represent a migrating state, cyan a resident state and those 823 

points shown in royal blue illustrate times when the model was uncertain of state classification. 824 

The start and end point of each individual’s movement path are shown as a green triangle and a 825 

red diamond, respectively.  826 

 827 
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Figure 4. Annual temporal distributions of the resident state in Atlantic cod (red) and European 828 

plaice (blue). The plotted line in either graph illustrates the mean probability of observing a 829 

resident state (±1 SE – grey shading). The underlying barplots demonstrate the proportion of 830 

individual fish that are in a resident state during each week. Periods of time when the mean 831 

probability of observing a resident state is continually >0.5 are illustrated in either species.  832 

 833 

Figure 5. Annual state dependent space use patterns of Atlantic cod (A and B) and European plaice 834 

(C and D) in the North Sea and English Channel. Plots are spilt into periods of resident dominant 835 

(A and C) and migrating dominant (B and D), defined by a mean probability of observing a given 836 

state at a given time being > 0.5. All grid cells (5km2) are illustrated in a color gradient so as to 837 

illustrate the sum total number of days spent in a certain state in a given grid cell within a specified 838 

time period.  839 
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Figure 1.  855 
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Figure 2.  867 
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Figure 4.  891 
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