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Abstract 

 
Background 

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neurone disease with a 

variable natural history. The lack of accurate models that predict the disease course and outcomes 

complicates individual risk assessment and counselling, stratification of patients for trials, and timing 

of interventions. We, therefore, aimed to develop and validate a model for predicting a composite 
survival endpoint of individual ALS patients. 

 

Methods 

Using clinical, cognitive and genetic data from 14 cohorts across nine European countries, we 

performed an individual participant data meta-analysis of 11475 patients. All patients were diagnosed 

in specialized ALS centres after excluding other diagnoses, and classified according to the El Escorial 

criteria. Backward elimination with bootstrapping was applied in the largest population-based dataset 

(n=1936); eight out of 16 predictors were selected and used to develop a multivariable model for 

predicting a composite survival outcome (time between onset of symptoms and non-invasive 

ventilation >23 hours/day, tracheostomy, or death) in individual patients. We assessed the 

generalisability of the model by estimating heterogeneity of predictive accuracy across external 

populations (i.e. populations not used to develop the model) using internal-external cross-validation. 
 

Findings 

Data were collected between January 1, 1992, and September 22, 2016. The median follow-up time 

was 97·5 months (IQR, 52·9 to 168·5). Eight of 16 candidate predictors entered the prediction model: 

bulbar versus non-bulbar onset (univariable hazard ratio (HR (95% confidence interval)) 1·71 (1·63 to 

1·79)), age at onset (HR 1·031 (1·029 to 1·033)), ‘definite’ versus ‘probable’ or ‘possible’ ALS 

according to the revised El Escorial criteria (HR 1·47 (1·39 to 1·55)), diagnostic delay (HR 0·52 (0·51 

to 0·53)), forced vital capacity (HR 0·988 (0·987 to 0·989)), progression rate (HR 6·33 (5·92 to 6·76)), 

frontotemporal dementia (HR 1·34 (1·20 to 1·50)), C9orf72 repeat expansion (HR 1·45 (1·31 to 1·61)), 

all p<0·0001. Our model achieved good and consistent external predictive accuracy: the concordance 

(c)-statistic was 0·78 (95% confidence interval: 0·77 to 0·80; 95% prediction interval: 0·74 to 0·82) 
and calibration slope was 1·01 (95% confidence interval: 0·95 to 1·07; 95% prediction interval: 0·74 to 

0·82). The model was used to define five groups with distinct predicted (and observed (standard error)) 

median time to our composite survival outcome since symptom onset: 17·7 (16·5 (0·23)), 25·3 (25·2 

(0·35)), 32·2 (32·8 (0·46)), 43·7 (44·6 (0·74)) and 91·0 (85·6 (1·96)) months. 

 

Interpretation 

The present large-scale individual participant data meta-analysis proposes an externally validated 

model to predict survival free of tracheostomy and non-invasive ventilation >23 hours/day of European 

ALS patients. This model is implemented in an online tool that can be applied to individualised patient 

management, counselling, and future trial design. This model is ethically sensitive, because it might 

cause harm if applied inappropriately, and is, therefore, intended to be used by medical doctors only, 
thereby maximizing benefit and preventing harm to patients. 

 

Funding 

Netherlands ALS Foundation  
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Introduction 
Neurodegenerative diseases impose an enormous clinical and economic burden on patients and health 

systems.1 Development of disease-modifying therapies and strategies for effective palliative care have 

been limited by disease heterogeneity and the presence of overlapping phenotypes.2 Models which 

reliably predict outcomes at an individual patient level may become an important factor in a precision 

medicine approach to find the most effective treatment for patients with neurodegenerative disease, by 

improving potential for prognostic counselling, stratification of patients for trials, and timing of 

interventions.2 

 

Amyotrophic lateral sclerosis (ALS) is one of the most devastating neurodegenerative diseases. It 

predominantly affects motor neurones in brain and spinal cord, leading to weakness of voluntary 

muscles.3,4 Muscle weakness progresses gradually, spreading from a site of clinical onset to other 
regions of the body; patients eventually become paralysed and die, usually as the result of respiratory 

failure.3,4 The clinical features of ALS	are	heterogeneous;	it	can	occur	at	any	adult	age,	up	to	15%	of	

patients	develop	frontotemporal	dementia	(FTD),5	and	10-15%	of	patients	have	a	family	history	

of	ALS	or	FTD.4  

 

Survival varies greatly, ranging from several months to more than ten years. Determinants of survival 

at group level have been studied extensively6: patient characteristics such as older age at onset of 
symptoms, the presence of FTD, or a repeat expansion in C9orf72, have been shown to be associated 

with shorter survival.6,7 Unfortunately, despite the well-documented natural history of ALS,3,6 

prediction of survival in individual ALS patients remains elusive. It is important that such risk 

predictions are sufficiently accurate across different settings and populations. The development and 

validation of such models is, however, challenging due to the limited availability of large datasets with 

individual participant data (IPD) and adequate follow-up time.8-10 

 

We therefore analysed clinical, cognitive and genetic data of 11475 ALS patients originating from 14 

ALS centres in Europe with a view to predicting survival, defined as time between onset of symptoms 

and non-invasive ventilation >23 hours/day, tracheostomy, or death in individual patients on the day of 

diagnosis. We aim to develop and externally validate a prediction model in multiple cohorts; the model 
is available as a free online tool, initially only for health care providers.	 	
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Methods 

 
Study design and participants 

The study was carried out in two stages. In the first stage, predictor selection was performed in 1936 

consecutive incident patients, diagnosed with ALS according to the revised El Escorial criteria, who 

participated in an ongoing prospective, population-based study in The Netherlands (between January 1st 

2006 and March 31th 2015).11 In the second stage, data on identified predictors and survival outcomes 
were requested from 13 European ALS centres to develop and externally validate the model. Patients 

were classified according to the revised El Escorial criteria.12 Written informed consent was obtained 

from all participants and institutional review boards approved this study (Tables S1 to S13 of the 

appendix). The study is reported in accordance with the TRIPOD guidance for transparent reporting of 

prediction models.10 

 

Procedures 

We assessed ten clinical, four cognitive and two genetic characteristics, and used a backward 

elimination procedure with bootstrapping for predictor selection (appendix section III.1).13 Predictors 

that were selected in >70% of the bootstrap resamples entered the multivariable prediction model.13 All 

predictors were selected based on a PubMed search (see research in context). 

 
Clinical predictors were: sex, site of onset (spinal vs. bulbar), age at onset of weakness or bulbar 

symptoms, El Escorial criteria (‘definite’ vs. ‘probable’ or ‘possible’ ALS),12 diagnostic delay (time 

from onset of weakness or bulbar symptoms to diagnosis), forced vital capacity (FVC, percentage of 

predicted based on normative values for age, sex, body height), progression rate defined by the slope 

on the revised ALS functional rating scale (ALSFRS-R; see below),14 premorbid body mass index 

(BMI),15 current smoking,16 cigarette pack years.6 Survival analyses in ALS research generally use 

composite endpoints (i.e. events) comprising both death and respiratory events.17,18 In our study, 

survival was defined as time between onset of symptoms and a composite endpoint, which we defined 

as non-invasive ventilation >23 hours/day, or tracheostomy, or death. 

 

Cognitive predictors were: the presence of FTD according to the Neary or Rascovsky criteria,19 and 
scores on verbal fluency index (VFI),20 frontal assessment battery (FAB)21 and ALSFTD questionnaire 

(ALSFTD-Q).22 For the VFI, participants were asked to name as many words as possible beginning 

with the letter ‘D’ in three minutes. After these three minutes the participants were instructed to read 

aloud the generated words. The VFI was calculated as the number of words generated divided by the 

time needed to read them aloud. The FAB is a bedside test comprising six tasks (maximum of three 

points per task) measuring conceptualisation, mental flexibility, motor programming, sensitivity to 

interference, inhibition control and environmental autonomy, and is sensitive to frontal lobe 

dysfunction. The ALSFRS-Q is a 25-item questionnaire (maximum of four points per item) applied to a 

proxy (i.e. a caregiver who is able to assess the patient’s behaviour) that is developed to screen for 

behavioural disturbances in ALS. 

 
Genetic predictors were presence of a C9orf72 mutation, and the minor allele homozygous genotype 

(C/C) of the UNC13A single nucleotide polymorphism, which were determined as previously 

described.7,23-25 These two genetic predictors are the most frequent mutations in ALS patients and were 

previously shown to be associated with survival outcomes in ALS.7,23 

 

Data were gathered on the day of diagnosis or as soon as possible thereafter. The ALSFRS-R slope was 

determined as follows: ALSFRS-R slope = (48 – ALSFRS-R score)/(date of the ALSFRS-R score – 

date of onset).14 ALSFTD-Q scores were trichotomised into ‘no’, ‘mild’ and ‘severe’ behavioural 

impairment.22 A detailed overview of predictors is provided in Tables S1 to S13 of the appendix. 

 

All cohorts used the ALSFRS-R score, except cohort 6, which used the ALSFRS (i.e. the unrevised 

version of the ALSFRS). The ten questions of the ALSFRS are identical to the first ten questions of the 
ALSFRS-R, but the latter has two additional questions about respiration. The maximum score per 

question is four, resulting in a maximum score of 48 for the ALSFRS-R and 40 for the ALSFRS. To be 

able to compare scores, we transformed the ALSFRS score to the ALSFRS-R score by multiplying by 

1·2 (1·2 times 40 = 48). Furthermore, all cohorts used FVC to measure respiratory function, except 

cohort 2, which used sniff nasal inspiratory pressure (SNIP), known to be correlated with FVC.26 Based 

on subjects in cohort 2 for whom we had information about both FVC and SNIP, we transformed SNIP 

of all subjects to FVC to allow comparability between cohorts. 
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Fractional polynomials were used to identify non-linear relationships with our composite survival 

endpoint.27 Missing values were multiple imputed using multilevel joint modelling techniques in 

accordance with previous publications (appendix sections III.2 and III.3).28,29 

 
We explored patient preferences with regard to knowing their personalised prognosis by conducting an 

online survey among 242 Dutch ALS patients (appendix section VII). 

 

Statistical analysis 

Data from the 14 cohorts were combined using the internal-external cross-validation (IECV) 

framework.30,31 This develops a model for predicting our composite survival endpoint in all but one 

cohort, after which its external validity is evaluated in the omitted cohort. The process is repeated for 

all 14 cohorts (every cohort being omitted once), yielding multiple estimates of external validity for a 

given modelling strategy. A meta-analysis was performed to assess overall performance of the model 

and to identify sources of between-study heterogeneity.32 Between-study heterogeneity, such as 

differences in survival time or differences in (definition of) predictors between different cohorts might 

affect the generalisability of a model. The IECV framework thus provides a means to learn about the 
model’s generalisability across different settings and populations. 

 

For model development, we used multivariable Royston-Parmar survival models (RP-models)33 rather 

than Cox survival models to facilitate the calculation of absolute risks in individual patients when 

implementing the model in clinical practice (appendix section III.4). We assumed a common baseline 

hazard for all cohorts, but also reported values of cohort-specific baseline hazard functions, which 

might help to tailor predictions to different populations. 

 

For model validation, we assessed discrimination, i.e. the ability to differentiate between patients who 

reached our composite endpoint and those who did not, and calibration, i.e. the agreement between 

observed and predicted risk. Discrimination was quantified using the c-statistic, which is the area under 
the receiver operator characteristic (ROC) curve generalised to all survival times as defined by the 

composite endpoint. A c-statistic indicates very good discriminative ability for values close to 1 and 

poor discriminative ability for values close to 0·5. We also measured time-dependent ROC curves three 

years after onset, because this is the period reported as median survival.3 Calibration was assessed by 

calibration plots and quantified by the calibration-in-the-large and calibration slope statistic.31,32,34 A 

calibration slope of 1 in combination with a calibration-in-the-large of 0 indicates good overall 

calibration (appendix sections III.5 to III.7).  

 

We performed a complete case analysis and sensitivity analyses for omitting FTD or the C9orf72 

repeat expansion from the model and using time of diagnosis as starting point for prediction. We 

compared predicted and observed curves for times to reach our composite endpoint for combined and 

individual cohorts as well as the effect of recalibration of the intercept on predictive performance in 
different cohorts.34 Five equal-sized prognostic groups were created based on the linear predictor of the 

model (20% of data per group): very short, short, intermediate, long and very long times to our 

composite survival endpoint. A computer algorithm was applied to the full dataset to randomly select 

five patients out of the five prognostic groups (in total 25 patients), illustrating application of the model 

to individual patients. 

 

Because the IECV approach allows evaluation of external performance across multiple studies, we 

meta-analysed estimates of model performance and calculated 95% confidence intervals (CI), using 

random-effects meta-analyses.32 More importantly, we calculated 95% prediction intervals (PI) to 

quantify the range of model performance across different populations which helps to assess the model’s 

potential generalisability.32  
 

Prognostic models for predicting survival and related outcomes require adequate discrimination and 

calibration performance to be clinically useful. We therefore calculated the ‘joint’ 95% PI and 

estimated the probability that the model will achieve a certain predefined c-statistic and calibration 

slope in new (future) patients (see appendix sections III.8 and V for details and definitions of ‘good’ 

performance). 

 

Data sharing 
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For medical doctors, we are making our developed and validated model freely available via an online 

tool (www.encalssurvivalmodel.org). We report all parameters of the model in the appendix and further 

supporting information can be requested via the online tool or corresponding author. 

 

Role of the funding source 

The funders of the study had no role in study design; data collection, analysis, or interpretation; or 

writing of the Article or the decision to submit the paper for publication. The corresponding author had 

full access to all the data in the study and had final responsibility for the decision to submit for 

publication.  
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Results 

 
Data were collected between January 1, 1992, and September 22, 2016, the different cohorts having 

different start and end dates within this period (Supplementary Tables S1 to S13). 11475 ALS patients 

from 14 European ALS centres across 9 countries participated in this study. Total follow-up was 40016 

years and median follow-up time was 97·5 months (IQR, 52·9 to 168·5). Patient characteristics are 

summarised in Table 1 and Figures S1 and S2 of the appendix. 
 

Based on backward elimination, eight of the 16 candidate predictors were selected for the multivariable 

prediction model: age at onset (n=10000, 100% of bootstraps), FVC (n=7598, 76%), diagnostic delay 

(n=10000, 100%), ALSFRS-R slope (n=10000, 100%), bulbar onset (n=8094, 81%), ‘definite’ ALS 

(n=7120, 71%), presence of FTD (n=7416, 74%) or the C9orf72 repeat expansion (n=8679, 87%); see 

appendix section III.1 for variables that were not included in the model. Age at onset, ALSFRS-R 

slope, diagnostic delay and FVC were transformed because of non-linear relationships with our 

composite survival endpoint (appendix section III.2); the relative effects of the predictors after 

transformation are shown in Table 2. Using all imputed datasets, we found that a proportional odds RP-

model with two internal knots, without time-dependent covariates, was most appropriate according to 

the Akaike information criterion and that a proportional odds model consistently outperforms a 

proportional hazard model (appendix section III.4).  
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Cohort 1 2 3 4 5 6 7 8 

ALS centre Utrecht, NLD Dublin, IRL Torino, ITA Sheffield, UK London, UK Oxford, UK Leuven, BEL Lisbon, PRT 

Data source Population-based Population-based Population-based Referral-based Referral-based Referral-based Referral-based Referral-based 

N 1936 1818 1022 1187 1266 849 833 594 

Duration of acquisition (years) 9·2 20·5 9·2 15·7 23·1 15·2 23·8 17·4 

Age at onset (years) 62·7 (55·4-69·8) 65·3 (56·9-72·4) 68·0 (60·2-74·3) 62·3 (52·6-69·9) 63·1 (54·1-70·7) 63·4 (53·8-71·1) 61·2 (51·4-67·8) 62·9 (54·9-70·8) 

Diagnostic delay (months) 10·1 (6·6-16·3) 10·3 (6·0-16·9) 9·0 (5·0-13·9) 12·1 (7·8-21·3) 12·3 (8·0-21·0) 12·6 (8·4-20·9) 8·9 (5·3-13·0) 12·0 (7·5-17·7) 

Progression rate (points/month) 0·6 (0·3-1·0) 0·6 (0·3-1·0) 0·7 (0·3-1·3) 0·6 (0·3-1·2) 0·6 (0·3-1·0) 0·5 (0·2-0·9) 0·6 (0·3-1·1) 0·6 (0·4-1·1) 

Forced vital capacity (%) 91·0 (77·0-105·0) 75·5 (45·7-109·8) 87·0 (66·8-102·0) 83·5 (68·0-102·2) 71·0 (57·0-90·0) 86·0 (68·0-100·0) 94·0 (77·0-110·0) 88·0 (74·0-102·0) 

Bulbar onset 610 (32·9) 690 (38·9) 347 (34·0) 329 (27·7) 411 (33·0) 200 (25·4) 224 (27·0) 196 (33·1) 

‘Definite’ ALSa 354 (19·2) 942 (57·4) 342 (33·6) 298 (27·1) 329 (28·2) -- 64 (20·4) 146 (24·6) 

Frontotemporal dementia 60 (3·8) 86 (23·5) 127 (12·4) 18 (1·5) 12 (0·9) 25 (3·1) 40 (4·8) 31 (5·2) 

C9orf72 repeat expansion 155 (8·8) 71 (10·2) 50 (6·3) 51 (12·7) 5 (8·5) -- 99 (16·4) 17 (14·0) 

Survival since onset (months)b 35·8 (34·8-37·6) 28·6 (27·3-29·8) 30·2 (28·3-31·4) 37·0 (35·4-39·5) 32·5 (31·3-34·5) 35·3 (33·5-38·3) 35·0 (32·7-38·2) 39·2 (36·2-42·0) 

Composite endpoint of survivalc 1460 (75·4) 1586 (87·2) 834 (81·6) 850 (71·6) 1131 (89·3) 699 (82·3) 645 (77·4) 374 (63·0) 

(Continuing below) 

 

 

Cohort 9 10 11 12 13 14 Total HR (95% CI)d 

ALS centre Hannover, GER Ulm, GER Jena, GER St. Gallen, CHE Tours, FRA Limoges, FRA   

Data source Referral-based Referral-based Referral-based Referral-based Referral-based Referral-based   

N 506 443 343 286 190 202 11475 (100·0)  

Duration of acquisition (years) 12·9 6·8 8·0 13·0 5·2 5·2 12·9 (8·3-17·0)  

Age at onset (years) 60·2 (51·9-67·0) 61·1 (52·0-69·3) 61·7 (52·5-68·8) 60·9 (52·0-69·3) 65·5 (59·9-73·6) 64·0 (56·9-73·6) 63·3 (54·8-70·7) 1·03 (1·03-1·03) 

Diagnostic delay (months) 8·0 (5·0-14·9) 10·4 (6·3-17·1) 9·0 (5·0-17·0) 11·0 (6·1-21·9) 9·0 (6·0-14·6) 8·0 (5·0-14·0) 10·5 (6·3-17·6) 0·52 (0·51-0·53)e 

Progression rate (points/month) 0·6 (0·3-1·0) 0·5 (0·3-1·1) 0·6 (0·4-1·0) 0·4 (0·2-0·8) 0·9 (0·4-1·5) 0·9 (0·5-1·6) 0·6 (0·3-1·1) 6·33 (5·92-6·76)f 

Forced vital capacity (%) 81·0 (67·0-95·0) 74·0 (55·0-92·0) -- 86·0 (66·0-101·0) 89·3 (70·0-104·2) 92·0 (67·0-107·0) 88·0 (69·0-103·0) 0·99 (0·99-0·99) 

Bulbar onset 121 (27·7) 130 (29·3) 90 (29·3) 82 (29·5) 64 (36·0) 59 (29·2) 3553 (31·9) 1·71 (1·63-1·79) 

‘Definite’ ALSa 49 (9·7) 227 (51·2) 40 (16·7) 61 (31·3) 68 (38·9) 33 (17·6) 2953 (31·3) 1·47 (1·39-1·55) 

Frontotemporal dementia 4 (0·8) 21 (4·7) -- 2 (0·7) 17 (8·9) 13 (6·4) 456 (4·9) 1·34 (1·20-1·50) 

C9orf72 repeat expansion -- -- 4 (3·8) 13 (4·7) 27 (14·2) 15 (60·0) 497 (10·0) 1·45 (1·31-1·61) 

Survival since onset (months)b 36·0 (33·6-39·0) 46·2 (40·9-51·7) 45·7 (42·0-52·9) 55·5 (46·3-64·0) 32·9 (26·9-40·5) 29·0 (26·5-32·6) 34·7 (34·2-35·3)g  

Composite endpoint of survivalc 443 (87·5) 191 (43·1) 189 (55·1) 139 (48·6) 114 (60·0) 164 (81·2) 8819 (76·9)  

 

Table 1. Patient characteristics. 

Data are median (interquartile range (IQR)) or number (%).Numbers 1-14 indicate the 14 different participating ALS research centres. “--” Indicates unavailable data. 
a’Definite’ ALS according to the El Escorial criteria. bData are median time between onset and composite survival endpoint (95% confidence interval). cComposite endpoint 

of survival was defined as the presence of non-invasive ventilation (NIV) >23 hours/day, or tracheostomy, or death. Different cohorts might use different definitions as 

shown in the appendix (Supplementary Tables S1-S13). dData are hazard ratio (95% confidence interval); hazard ratios are calculated with a univariable random-effects Cox 

model with 14 ALS research centres as grouping factor for the random effects. eBecause of non-normal distributed data, a natural logarithm transformation was applied. 
fBecause of non-normal data, a square-root transformation was applied. gCalculated with a random-effects Cox model with 14 ALS research centres as grouping factor for the 
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random effects. Abbreviations: ALSFRS-R=revised version of the ALS functional rating scale. HR=hazard ratio. 95% CI=95% confidence interval. NA=not available. 

NLD=The Netherlands. IRL=Ireland. ITA=Italy. UK=United Kingdom. BEL=Belgium. PRT=Portugal. GER=Germany. CHE=Switzerland. FRA=France.
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Predictors Univariable HRb Multivariable HRc 

Age at onset (years) 1.28 (1.25-1.31) 1.02 (1.02-1.03) 

Diagnostic delay (months) 0.48 (0.46-0.49) 0.63 (0.59-0.68)d 

Progression rate (points/month) 3.05 (2.84-3.27) 3.19 (2.71-3.75)e 

Forced vital capacity (%) 0.76 (0.72-0.80) 0.99 (0.99-0.99) 

Bulbar onset -- 1.25 (1.17-1.33) 

‘Definite’ ALSa -- 1.25 (1.16-1.34) 

Frontotemporal dementia -- 1.18 (1.01-1.37) 

C9orf72 repeat expansion -- 1.37 (1.19-1.57) 

 

Table 2. Relative effects of transformed predictors. 

Data are hazard ratio (95% confidence interval). All HRs were estimated using random-effects Cox 

models with the 14 ALS research centres as grouping factor for the random effects. Please note that 

this Table is intended to provide an indication of the relative effects of the transformed predictors and 

that the used random-effects Cox model differs from the Royston-Parmar proportional odds model that 

was used to generate the predictions. a’Definite’ ALS according to the El Escorial criteria. bUsing the 

different transformed continuous predictors, we made a comparison between the first and third quartile 

and report the univariable HRs (see appendix III.2 for applied transformations). This illustrates the 

relative effects of the continuous predictors after transformation. As the last four variables are 

dichotomous, it is not possible to make a comparison between a first and third quartile because this 
does not exist for dichotomous variables. cThis column shows the HRs when all eight predictors were 

combined (See Supplementary Figure S2 for more details). HRs result from coefficients and thus do 

not rely on the quartiles that are used in the univariate HR column. dBecause of non-normal distributed 

data, a natural logarithm transformation was applied. eBecause of non-normal data, a square-root 

transformation was applied. HR = hazard ratio. 

 

 

 

The IECV framework resulted in 14 cycles of model development and external validation. The meta-

analysis of these 14 external validations showed a summary c-statistic of 0·78 (95% CI, 0·77 to 0·80; 

95% PI, 0·74 to 0·82), an area under the time-dependent ROC curve three years after onset of 0·86 
(95% CI, 0·85 to 0·88; 95% PI, 0·82 to 0·90), a calibration slope of 1·01 (95% CI, 0.95 to 1·07; 95% 

PI, 0·83 to 1·18) and calibration-in-the-large of -0·12 (95% CI, -0·33 to 0·08; 95% PI, -0·88 to 0·63) 

(Figure 1A-C and Figure S4 of the appendix). The five prognostic groups that were created, based on 

this prediction model, showed good agreement: observed median times to our composite endpoint 

(standard error) were 16·5 (0·23), 25·2 (0·35), 32·8 (0·46), 44·6 (0·74) and 85·6 (1·96) months and 

predicted median times to our composite endpoint (standard error) were 17·7 (0·20), 25·3 (0·06), 32·2 

(0·09), 43·7 (0·21) and 91·0 (1·84) months (Figure 1D). Comparing ‘very short’, ‘short’, 

‘intermediate’ and ‘long’ groups with the group with very long times to our composite endpoint 

revealed a hazard ratio (HR) of 15·29 (95% CI, 13·92 to 16·79), 7·19 (95% CI, 6·53 to 7·91), 4·30 

(95% CI, 3·94 to 4·69) and 2·49 (95% CI, 2·30 to 2·70). Visual inspection of cohort-specific 

calibration plots three years after onset showed good agreement between predicted and observed 
probability for most cohorts (N=11; Figure S7 of the appendix). Predicted and observed probabilities of 

reaching our composite endpoint for cohort-specific curves showed similar results as calibration plots 

(Figure S5 of the appendix). For three cohorts where agreement between observed and predicted times 

to our composite endpoint was suboptimal, recalibration of the baseline hazard notably improved 

calibration (Figure S6 of the appendix). Similar results were found for complete case analysis (Figure 

S14 of the appendix). We assessed all possible two-way interactions (i.e. eight covariates with one 

interaction comprising two of the eight covariates), which did not improve predictive accuracy (Table 

S20 of the appendix). The probability of ‘good’ external predictive performance of the model was 

estimated to be 100·0% for c-statistic and 97·1% for calibration slope. The joint (combined) probability 

of ‘good’ performance was 98·3% (Supplementary Figure S8). Compared to estimates of group level 

data, the model provides more accurate and precise predictions of times to our composite endpoint 

(Figure 2). 
 

An online tool for prediction of time to our composite survival endpoint is available at 

www.encalssurvivalmodel.org. This instrument is based on the regression coefficients of the final 

prediction model (appendix (section III.9)) and can be tailored per population. To illustrate its usage in 

clinical practice, we provide examples of patients selected from our dataset and their associated 

predictions, including the level of uncertainty at patient level (Figure 3) and provide worked examples 

(appendix section VIII). The sensitivity analyses demonstrated that the prediction model also provides 

accurate predictions when patient-level information about the presence of FTD or a C9orf72 repeat 
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expansion is not available and similar results of predictions using date of onset versus date of diagnosis 

as starting point for prediction (appendix section IV). Patients’ preferences with regard to knowing 

their personalised prognosis are presented in appendix section VII.
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Figure 1. Univariate meta-analysis of predictive performance. 

Panel A shows the random effects meta-analysis of discrimination as measured with the c-statistic. C-statistic can be viewed as a generalised area under the receiver operator curve (ROC) for 

all possible time-points. It measures the ability of the model to differentiate between patients who reached our composite endpoint and those who did not. See Figure S4 of the appendix for 

time-dependent ROC curves. Panels B and C show the random effects meta-analysis of calibration as measured with calibration slope (panel B) and calibration-in-the-large (panel C). 

Calibration measures the agreement between observed and predicted time to our composite endpoint. A calibration slope of 1 in combination with a calibration-in-the-large of 0 indicates good 
overall calibration (see appendix section III.7 for further details). The blue ‘diamond’ indicates the mean and 95%-confidence interval (95% CI) of the predictive accuracy. 95%-prediction 

intervals (95% PI), which indicate predicted accuracy of the model in a single new dataset or patient, are depicted as dashed blue lines and as a numeric range (in blue, below 95% CI). Panel D 

is the visual translation of panels A-C in prognostic curves showing the agreement between predicted and observed probability of reaching our composite endpoint as well as indicating good 

discriminative power of the model. The curves also illustrate the possibility to stratify patients in different groups based on their predicted prognosis on the day of diagnosis. Five equal-sized 

groups were created based on predicted time to our composite endpoint. Cohort ID indicates the cohort left out in the internal-external cross-validation (IECV), which was performed once for 

all 14 different datasets. Abbreviations: calibration itl = calibration-in-the-large, 95% PI = 95% prediction interval (reflecting 95% range of accuracy of new predictions).
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Figure 2. Risk group predictions. 

This Figure shows probability densities for times to our composite endpoint (y-axis) of the five risk 

groups in Figure 1D on a time scale (x-axis). Density reflects the probability density (or distribution), 

which is not evenly distributed over time, meaning that the largest number of patients will die where 

the curve has the highest density, but that there is a small chance that patients survive without 

tracheostomy or non-invasive ventilation for >23 hours/day much longer; this is reflected by the long, 

thin tails on the right side of this Figure. This provides guidance for discussing prognosis with patients. 

Furthermore, if the prediction model is not used (dashed curve), predictions will generally be overly 

positive (for groups with short and very short times to our composite endpoint), overly negative (for 

groups with long and very long times to our composite endpoint), or overly uncertain (for group with 
intermediate times to our composite endpoint)). The horizontal bars at the bottom provide the same 

information for the different groups, with dots representing median times to our composite endpoint, 

boundaries of thick lines representing 25 to 75% probability intervals and boundaries of thin lines 

representing 10 to 90% probability intervals to reach our composite survival endpoint. This Figure 

quantifies the uncertainty of individual predictions because, for example, a subject with a predicted 

very short time to our composite endpoint still has a 2% chance of surviving up to 5 years after onset. 
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Figure 3. Clinical applicability to individual patients. 

Characteristics and predictions of 25 randomly selected ALS patients (using a computer algorithm developed to select five patients per risk group from all available patients) 

are presented to illustrate application of the tool to predict time to our composite endpoint to individual patients. Predictions are provided on the left and patient 

characteristics on the right. Median predicted time to our composite endpoint of individual ALS patients is represented by the dots. The boundaries of the thick lines represent 

25 to 75% probability intervals and boundaries of the thin lines represent 10 to 90% probability intervals. The vertical dashed line represents the median time to our 
composite endpoint (34·7 months). A large proportion of patients deviates from the median time to reach our composite survival endpoint (at group level): six patients (24%) 

have a 75% chance of dying, having tracheostomy, or having NIV >23 hours/day before the median time to our composite endpoint while eight other patients (32%) have a 

75% chance of living without thracheostomy or NIV >23 hours/day longer than median time to our composite endpoint. Predicted times to our composite endpoint differ 

significantly between patients, reflecting both heterogeneity in ALS as well as the ability of the proposed model to stratify patients according to their characteristics. 

Abbreviations: + = present; - = absent; ALSFRS-R slope is in points decrease of the ALSFRS-R score per month; diagnostic delay is in months; age at onset is in years; FVC 

is forced vital capacity and is expressed as percentage of predicted (corrected for age, sex and body height); ‘definite’ ALS is according to the El Escorial criteria; FTD is 

presence of frontotemporal dementia; C9 is presence of a C9orf72 repeat expansion.
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Discussion 

 
On the basis of data from 11,475 ALS patients, collected across Europe, we have developed and 

externally validated a model for prediction of survival without tracheostomy or non-invasive 

ventilation more than 23 hours/day in individual ALS patients. Using recently developed state-of-the-

art methods, we derived ranges of predictive performance across different settings and patient 

populations, thereby providing evidence for the potential generalisability of our model. We 
implemented our model in a free online tool for medical doctors to provide estimates of prognosis in 

individual ALS patients, with the aim of facilitating its use in clinical practice and in innovative trial 

design. 

 

Associations between predictors and survival ourcomes in ALS have previously been reported at group 

level.6 Attempts to translate predictive associations into estimates of survival outcomes in individual 

ALS patients are, however, infrequent, and external validation of such models remains elusive.35 It is 

acknowledged that the development of reliable prediction models requires access to large datasets, with 

at least 200 events for validation.8 Hence, the current IPD meta-analysis, including more than 11000 

subjects, is the first study in ALS to enable the investigation of a relatively large number of predictors, 

combining them in a prediction model. This is the first prediction model in ALS that rigorously 

assessed discrimination and calibration performance across different populations. We implemented 
recent methodology to identify sources of heterogeneity across the European cohorts, and addressed 

transportability issues of the model.30,31 This enabled us to determine the likely performance when 

applying the model in clinical practice, and thus to assess its clinical utility in local circumstances. 

Dependent on requirements and clinicians’ or patients’ preferences, the model can be applied using 

probabilities of survival without tracheostomy or non-invasive ventilation more than 23 h per day, 

prognostic groups or point estimates. For care, we prefer the first two options, because these provide 

the possibility of being realistic without driving a patient to despair (see appendix section VIII for 

worked examples). Because of the probability distributions for times to our composite endpoint (Figure 

2), which are also skewed, point estimates may not be preferred for predictions in individual patients. 

Ranges will become wider for subjects with longer times to our composite endpoint (Figure 2) due to 

less steep prognostic curves. 
 

Large-scale European Union funded collaborative projects, such as Euro-MOTOR 

(www.euromotorproject.eu), SOPHIA (www.sophiaproject.eu) and NETCALS (www.jpnd.eu), 

encourage standardised and harmonised data collection between three population-based (n=4776, 42%) 

and 11 referral-based patient registries in this study (Table 1).36,37 Differences in standard of care, or 

cultural or genetic background between registries were taken into account in our model by allowing 

cohort-specific adjustments for estimation of prognosis in individual patients. 

 

Predictors and times to our composite endpoint are likely to differ between different populations as 

shown in our study (Table 1). This might be due to real differences between populations. Other 

possibilities may be referral-bias in referral-based versus population-based registries, variable 
interpretation of (diagnostic) criteria, differences in standard care, cultural or genetic background, or a 

combination of these. In our study we focussed on developing and validating a generalisable prediction 

model for ALS. Importantly, state-of-the-art IECV in our study did not reveal that differences between 

populations affected predictive performance of our model. Furthermore, differences in times to our 

composite endpoint between cohorts could not be interpreted as being caused by a specific cohort. 

 

A weakness of our study is that we did not include treatment with riluzole, the only effective drug with 

proven effect on survival, as a predictor in our model. Reliable information about its usage is missing 

in most registries, but is estimated to be at least 75% in Europe.17 Although the effect of riluzole on 

survival (pooled HR 0·84, based on a Cochrane meta-analysis)18 is more than ten times smaller than the 

combined effect of predictors in our proposed model (HR up to 15·29), incorporating riluzole use as 

well as other treatments, such as ventilation or gastrostomy, into our model will allow further tailoring 
of predictions.  

 

Missing data, which is inherent to observational data, can lead to biased results when not appropriately 

addressed. We therefore used recently developed imputation methods, which are proven to prevent 

such biases, even if a predictor is completely missing from one or more cohorts.28 Using IECV, we 

rigorously assessed the model’s predictive performance in external datasets. This approach not only 

allows one to evaluate the model's overall performance in new patients, but also to establish whether 
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performance is consistent across the different cohorts. It therefore helps to determine to what extent 

model generalisability may be affected by differences in definition of endpoint, in collection of FVC 

versus SNIP or ALSFRS versus ALSFRS-R data, in possible recall bias of disease onset, in recruitment 

of patients between cohorts, in heterogeneity of disease characteristics between cohorts or in the 

presence of unmeasured confounders. Although we did not aim to study such differences between 
cohorts and we can only speculate about possible causes (e.g. ‘intrinsic’ differences of ALS between 

cohorts, or ‘extrinsic’ due to possible differences in, for example, clinical care), these differences did 

not appear to reduce the predictive performance of our proposed prediction model, as demonstrated by 

IECV. 

 

Our newly developed online tool is ethically sensitive and demands thoughtful implementation. The 

tool may support patients in maintaining a degree of autonomy and help them in planning their lives. 

Our survey demonstrated that there is a group of patients who prefer to be informed about their 

personalised life expectancy. This is in line with previous publications in cancer medicine.38 The 

ethical aspects of tailored predictions in ALS or other neurodegenerative diseases have not been 

studied before, but from cancer medicine it is known that early discussions about goals of care are 

associated with better quality of life, reduced use of non-beneficial medical care near death, enhanced 
goal-consistent care, positive family outcomes, and reduced costs.39 On the other hand, many cancers 

have multiple modes of therapy, whereas ALS is still an incurable disease. Furthermore, the outcomes 

of the administered questionnaire might differ in patients from other cultural backgrounds; a selection 

bias might be present in the patients who responded to the survey; patients may not oversee all 

consequences of the acquired knowledge and may regret asking to be informed if the predicted time to 

death, tracheostomy, or NIV >23 hours/day they receive is shorter than expected. To minimise the risk 

of such potential harm, the online tool will only be accessible to medical doctors, who have to register 

and sign before access is provided (i.e. controlled access). Professional health care providers may use 

our model to determine the intensity of care pathways, and to tailor counselling of individual patients 

and their caregivers. Prediction models might improve clinical trial design (1) by using the predicted 

outcome as inclusion criterion instead of arbitrary eligibility criteria (such as pulmonary function), and 
(2) by improving stratified randomisation using predicted prognosis instead of a limited set of 

prognostic variables, thereby creating more homogeneous strata and greater statistical power to detect 

an effect. This was, for example, previously shown in glioblastoma patients with methylation of the 

MGMT (O6-methylguanine–DNA methyltransferase) gene, illustrating that prediction might be a 

promising tool for future clinical trials.40 

 

In accordance with the TRIPOD statement,10 all parameters and equations of our model are provided 

(appendix section III.4 and III.9) to allow improvement of predictions through continuing research into 

other prognostic factors, such as wet or imaging biomarkers, or newly discovered genetic mutations, or 

to implement outcome measures other than our composite survival endpoint, e.g. being wheelchair-

bound or other specific loss of function. This also facilitates validation of our model in registries from a 

non-European background and its application in trial populations. 
 

In conclusion, we have developed a model for prediction of survival free of tracheostomy or non-

invasive ventilation more than 23 hours/day in individual ALS patients and externally validated this 

model multiple times. We have demonstrated the generalisable and robust predictive performance of 

this model and made it freely available as an easy-to-use online tool 

(http://www.encalssurvivalmodel.org). The outcomes of this study will facilitate tailored care and trial 

design, which will hopefully lead to a more successful discovery of effective treatments for patients 

suffering from this devastating disease. 	
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