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Abstract

Background

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive, fatal motor neurone disease with a
variable natural history. The lack of accurate models that predict the disease course and outcomes
complicates individual risk assessment and counselling, stratification of patients for trials, and timing
of interventions. We, therefore, aimed to develop and validate a model for predicting a composite
survival endpoint of individual ALS patients.

Methods

Using clinical, cognitive and genetic data from 14 cohorts across nine European countries, we
performed an individual participant data meta-analysis of 11475 patients. All patients were diagnosed
in specialized ALS centres after excluding other diagnoses, and classified according to the El Escorial
criteria. Backward elimination with bootstrapping was applied in the largest population-based dataset
(n=1936); eight out of 16 predictors were selected and used to develop a multivariable model for
predicting a composite survival outcome (time between onset of symptoms and non-invasive
ventilation >23 hours/day, tracheostomy, or death) in individual patients. We assessed the
generalisability of the model by estimating heterogeneity of predictive accuracy across external
populations (i.e. populations not used to develop the model) using internal-external cross-validation.

Findings

Data were collected between January 1, 1992, and September 22, 2016. The median follow-up time
was 97-5 months (IQR, 52-9 to 168-5). Eight of 16 candidate predictors entered the prediction model:
bulbar versus non-bulbar onset (univariable hazard ratio (HR (95% confidence interval)) 1-71 (1-63 to
1-79)), age at onset (HR 1-031 (1-029 to 1-033)), ‘definite’ versus ‘probable’ or ‘possible’ ALS
according to the revised El Escorial criteria (HR 1-47 (1-39 to 1-55)), diagnostic delay (HR 0-52 (0-51
to 0-53)), forced vital capacity (HR 0-988 (0-987 to 0-989)), progression rate (HR 6-33 (5:92 to 6-76)),
frontotemporal dementia (HR 1-34 (1-20 to 1-50)), C90rf72 repeat expansion (HR 1-:45 (1-31 to 1-61)),
all p<0-0001. Our model achieved good and consistent external predictive accuracy: the concordance
(c)-statistic was 0-78 (95% confidence interval: 0-77 to 0-80; 95% prediction interval: 0-74 to 0-82)
and calibration slope was 1:01 (95% confidence interval: 0-95 to 1-07; 95% prediction interval: 0-74 to
0-82). The model was used to define five groups with distinct predicted (and observed (standard error))
median time to our composite survival outcome since symptom onset: 17-7 (16-5 (0-23)), 25-3 (25-2
(0-35)), 32-2 (32-8 (0-46)), 43-7 (44-6 (0-74)) and 91-0 (856 (1:96)) months.

Interpretation

The present large-scale individual participant data meta-analysis proposes an externally validated
model to predict survival free of tracheostomy and non-invasive ventilation >23 hours/day of European
ALS patients. This model is implemented in an online tool that can be applied to individualised patient
management, counselling, and future trial design. This model is ethically sensitive, because it might
cause harm if applied inappropriately, and is, therefore, intended to be used by medical doctors only,
thereby maximizing benefit and preventing harm to patients.

Funding
Netherlands ALS Foundation



Introduction

Neurodegenerative diseases impose an enormous clinical and economic burden on patients and health
systems.! Development of disease-modifying therapies and strategies for effective palliative care have
been limited by disease heterogeneity and the presence of overlapping phenotypes.2 Models which
reliably predict outcomes at an individual patient level may become an important factor in a precision
medicine approach to find the most effective treatment for patients with neurodegenerative disease, by
improving potential for prognostic counselling, stratification of patients for trials, and timing of
interventions.?

Amyotrophic lateral sclerosis (ALS) is one of the most devastating neurodegenerative diseases. It
predominantly affects motor neurones in brain and spinal cord, leading to weakness of voluntary
muscles.>* Muscle weakness progresses gradually, spreading from a site of clinical onset to other
regions of the body; patients eventually become paralysed and die, usually as the result of respiratory
failure.>* The clinical features of ALS are heterogeneous; it can occur at any adult age, up to 15% of
patients develop frontotemporal dementia (FTD),> and 10-15% of patients have a family history
of ALS or FTD.#

Survival varies greatly, ranging from several months to more than ten years. Determinants of survival
at group level have been studied extensively®: patient characteristics such as older age at onset of
symptoms, the presence of FTD, or a repeat expansion in C9orf72, have been shown to be associated
with shorter survival.®’ Unfortunately, despite the well-documented natural history of ALS,*®
prediction of survival in individual ALS patients remains elusive. It is important that such risk
predictions are sufficiently accurate across different settings and populations. The development and
validation of such models is, however, challenging due to the limited availability of large datasets with
individual participant data (IPD) and adequate follow-up time 310

We therefore analysed clinical, cognitive and genetic data of 11475 ALS patients originating from 14
ALS centres in Europe with a view to predicting survival, defined as time between onset of symptoms
and non-invasive ventilation >23 hours/day, tracheostomy, or death in individual patients on the day of
diagnosis. We aim to develop and externally validate a prediction model in multiple cohorts; the model
is available as a free online tool, initially only for health care providers.



Methods

Study design and participants

The study was carried out in two stages. In the first stage, predictor selection was performed in 1936
consecutive incident patients, diagnosed with ALS according to the revised El Escorial criteria, who
participated in an ongoing prospective, population-based study in The Netherlands (between January 1*
2006 and March 31" 2015).!! In the second stage, data on identified predictors and survival outcomes
were requested from 13 European ALS centres to develop and externally validate the model. Patients
were classified according to the revised El Escorial criteria.'? Written informed consent was obtained
from all participants and institutional review boards approved this study (Tables S1 to S13 of the
appendix). The study is reported in accordance with the TRIPOD guidance for transparent reporting of
prediction models. '

Procedures

We assessed ten clinical, four cognitive and two genetic characteristics, and used a backward
elimination procedure with bootstrapping for predictor selection (appendix section I11.1).!* Predictors
that were selected in >70% of the bootstrap resamples entered the multivariable prediction model.!* All
predictors were selected based on a PubMed search (see research in context).

Clinical predictors were: sex, site of onset (spinal vs. bulbar), age at onset of weakness or bulbar
symptoms, El Escorial criteria (‘definite’ vs. ‘probable’ or ‘possible’ ALS),'? diagnostic delay (time
from onset of weakness or bulbar symptoms to diagnosis), forced vital capacity (FVC, percentage of
predicted based on normative values for age, sex, body height), progression rate defined by the slope
on the revised ALS functional rating scale (ALSFRS-R; see below),'* premorbid body mass index
(BMI),'3 current smoking,'® cigarette pack years.® Survival analyses in ALS research generally use
composite endpoints (i.e. events) comprising both death and respiratory events.!”!8 In our study,
survival was defined as time between onset of symptoms and a composite endpoint, which we defined
as non-invasive ventilation >23 hours/day, or tracheostomy, or death.

Cognitive predictors were: the presence of FTD according to the Neary or Rascovsky criteria,'® and
scores on verbal fluency index (VFI),?° frontal assessment battery (FAB)?! and ALSFTD questionnaire
(ALSFTD-Q).2 For the VFI, participants were asked to name as many words as possible beginning
with the letter ‘D’ in three minutes. After these three minutes the participants were instructed to read
aloud the generated words. The VFI was calculated as the number of words generated divided by the
time needed to read them aloud. The FAB is a bedside test comprising six tasks (maximum of three
points per task) measuring conceptualisation, mental flexibility, motor programming, sensitivity to
interference, inhibition control and environmental autonomy, and is sensitive to frontal lobe
dysfunction. The ALSFRS-Q is a 25-item questionnaire (maximum of four points per item) applied to a
proxy (i.e. a caregiver who is able to assess the patient’s behaviour) that is developed to screen for
behavioural disturbances in ALS.

Genetic predictors were presence of a C9orf72 mutation, and the minor allele homozygous genotype
(C/C) of the UNC134 single nucleotide polymorphism, which were determined as previously
described.”*2 These two genetic predictors are the most frequent mutations in ALS patients and were
previously shown to be associated with survival outcomes in ALS.”*

Data were gathered on the day of diagnosis or as soon as possible thereafter. The ALSFRS-R slope was
determined as follows: ALSFRS-R slope = (48 — ALSFRS-R score)/(date of the ALSFRS-R score —
date of onset).!* ALSFTD-Q scores were trichotomised into ‘no’, ‘mild” and ‘severe’ behavioural
impairment.??> A detailed overview of predictors is provided in Tables S1 to S13 of the appendix.

All cohorts used the ALSFRS-R score, except cohort 6, which used the ALSFRS (i.e. the unrevised
version of the ALSFRS). The ten questions of the ALSFRS are identical to the first ten questions of the
ALSFRS-R, but the latter has two additional questions about respiration. The maximum score per
question is four, resulting in a maximum score of 48 for the ALSFRS-R and 40 for the ALSFRS. To be
able to compare scores, we transformed the ALSFRS score to the ALSFRS-R score by multiplying by
1-2 (12 times 40 = 48). Furthermore, all cohorts used FVC to measure respiratory function, except
cohort 2, which used sniff nasal inspiratory pressure (SNIP), known to be correlated with FVC.?® Based
on subjects in cohort 2 for whom we had information about both FVC and SNIP, we transformed SNIP
of all subjects to FVC to allow comparability between cohorts.



Fractional polynomials were used to identify non-linear relationships with our composite survival
endpoint.?” Missing values were multiple imputed using multilevel joint modelling techniques in
accordance with previous publications (appendix sections I11.2 and I11.3).28-%°

We explored patient preferences with regard to knowing their personalised prognosis by conducting an
online survey among 242 Dutch ALS patients (appendix section VII).

Statistical analysis

Data from the 14 cohorts were combined using the internal-external cross-validation (IECV)
framework.’*3! This develops a model for predicting our composite survival endpoint in all but one
cohort, after which its external validity is evaluated in the omitted cohort. The process is repeated for
all 14 cohorts (every cohort being omitted once), yielding multiple estimates of external validity for a
given modelling strategy. A meta-analysis was performed to assess overall performance of the model
and to identify sources of between-study heterogeneity.*> Between-study heterogeneity, such as
differences in survival time or differences in (definition of) predictors between different cohorts might
affect the generalisability of a model. The IECV framework thus provides a means to learn about the
model’s generalisability across different settings and populations.

For model development, we used multivariable Royston-Parmar survival models (RP-models)* rather
than Cox survival models to facilitate the calculation of absolute risks in individual patients when
implementing the model in clinical practice (appendix section II1.4). We assumed a common baseline
hazard for all cohorts, but also reported values of cohort-specific baseline hazard functions, which
might help to tailor predictions to different populations.

For model validation, we assessed discrimination, i.e. the ability to differentiate between patients who
reached our composite endpoint and those who did not, and calibration, i.e. the agreement between
observed and predicted risk. Discrimination was quantified using the c-statistic, which is the area under
the receiver operator characteristic (ROC) curve generalised to all survival times as defined by the
composite endpoint. A c-statistic indicates very good discriminative ability for values close to 1 and
poor discriminative ability for values close to 0-5. We also measured time-dependent ROC curves three
years after onset, because this is the period reported as median survival.’ Calibration was assessed by
calibration plots and quantified by the calibration-in-the-large and calibration slope statistic.**%3* A
calibration slope of 1 in combination with a calibration-in-the-large of 0 indicates good overall
calibration (appendix sections IIL.5 to I11.7).

We performed a complete case analysis and sensitivity analyses for omitting FTD or the C9orf72
repeat expansion from the model and using time of diagnosis as starting point for prediction. We
compared predicted and observed curves for times to reach our composite endpoint for combined and
individual cohorts as well as the effect of recalibration of the intercept on predictive performance in
different cohorts.>* Five equal-sized prognostic groups were created based on the linear predictor of the
model (20% of data per group): very short, short, intermediate, long and very long times to our
composite survival endpoint. A computer algorithm was applied to the full dataset to randomly select
five patients out of the five prognostic groups (in total 25 patients), illustrating application of the model
to individual patients.

Because the IECV approach allows evaluation of external performance across multiple studies, we
meta-analysed estimates of model performance and calculated 95% confidence intervals (CI), using
random-effects meta-analyses.>? More importantly, we calculated 95% prediction intervals (PI) to
quantify the range of model performance across different populations which helps to assess the model’s
potential generalisability.*?

Prognostic models for predicting survival and related outcomes require adequate discrimination and
calibration performance to be clinically useful. We therefore calculated the ‘joint” 95% PI and
estimated the probability that the model will achieve a certain predefined c-statistic and calibration
slope in new (future) patients (see appendix sections III.8 and V for details and definitions of ‘good’
performance).

Data sharing



For medical doctors, we are making our developed and validated model freely available via an online
tool (www.encalssurvivalmodel.org). We report all parameters of the model in the appendix and further
supporting information can be requested via the online tool or corresponding author.

Role of the funding source

The funders of the study had no role in study design; data collection, analysis, or interpretation; or
writing of the Article or the decision to submit the paper for publication. The corresponding author had
full access to all the data in the study and had final responsibility for the decision to submit for
publication.



Results

Data were collected between January 1, 1992, and September 22, 2016, the different cohorts having
different start and end dates within this period (Supplementary Tables S1 to S13). 11475 ALS patients
from 14 European ALS centres across 9 countries participated in this study. Total follow-up was 40016
years and median follow-up time was 97-5 months (IQR, 529 to 168-5). Patient characteristics are
summarised in Table 1 and Figures S1 and S2 of the appendix.

Based on backward elimination, eight of the 16 candidate predictors were selected for the multivariable
prediction model: age at onset (n=10000, 100% of bootstraps), FVC (n=7598, 76%), diagnostic delay
(n=10000, 100%), ALSFRS-R slope (n=10000, 100%), bulbar onset (n=8094, 81%), ‘definite’ ALS
(n=7120, 71%), presence of FTD (n=7416, 74%) or the C90rf72 repeat expansion (n=8679, 87%); see
appendix section III.1 for variables that were not included in the model. Age at onset, ALSFRS-R
slope, diagnostic delay and FVC were transformed because of non-linear relationships with our
composite survival endpoint (appendix section I11.2); the relative effects of the predictors after
transformation are shown in Table 2. Using all imputed datasets, we found that a proportional odds RP-
model with two internal knots, without time-dependent covariates, was most appropriate according to
the Akaike information criterion and that a proportional odds model consistently outperforms a
proportional hazard model (appendix section I11.4).



Cohort 1 2 3 4 5 6 7 8

ALS centre Utrecht, NLD Dublin, IRL Torino, ITA Sheffield, UK London, UK Oxford, UK Leuven, BEL Lisbon, PRT
Data source Population-based Population-based Population-based Referral-based Referral-based Referral-based Referral-based Referral-based
N 1936 1818 1022 1187 1266 849 833 594

Duration of acquisition (years) 9-2 20-5 9-2 15-7 23-1 15-2 23-8 17-4

Age at onset (years) 627 (55-4-69-8) 653 (56-9-72-4) 68-0 (60-2-74-3) 623 (52:6-69-9) 63-1(54-1-70-7) 63-4 (53-8-71-1) 612 (51-4-67-8) 629 (54-9-70-8)
Diagnostic delay (months) 101 (6:6-16"3) 10-3 (6:0-16-9) 9:0 (5-0-13-9) 121 (7-8-21-3) 12-3 (8:0-21-0) 126 (8:4-20-9) 89 (5:3-13-0) 12:0 (7-:5-17-7)
Progression rate (points/month) 0-6 (0-3-1-0) 0-6 (0-3-1-0) 0-7(0-3-1-3) 0-6 (0-3-1-2) 0-6 (0-3-1-0) 0-5(0-2-0-9) 0-6(0-3-1-1) 0-6(0-4-1-1)
Forced vital capacity (%) 91-0(77-0-105-0) 75-5(45-7-109-8) 87-0 (66-8-102-0) 83-5(68-0-102-2) 71-0 (57-0-90-0) 86-0 (68-0-100-0) 94-0 (77-0-110-0) 88-0 (74:0-102-0)
Bulbar onset 610 (32-9) 690 (38-9) 347 (34-0) 329 (27-7) 411 (33-0) 200 (25-4) 224 (27-0) 196 (33-1)
‘Definite’ ALS® 354 (19-2) 942 (57-4) 342 (33-6) 298 (27-1) 329 (28-2) - 64 (20-4) 146 (24-6)
Frontotemporal dementia 60 (3-8) 86 (23-5) 127 (12-4) 18 (1-5) 12 (0-9) 25@3-1) 40 (4-8) 31(5-2)
C90rf72 repeat expansion 155 (8-8) 71 (10-2) 50 (6-3) 51(12-7) 5(8-5) - 99 (16-4) 17 (14-0)
Survival since onset (months)” 35-8(34-8-37-6) 28:6 (27-3-29-8) 30-2 (28-3-31-4) 37-0(35-4-39-5) 32:5(31-3-34-5) 35-3(33-5-38:3) 35-0(32:7-38-2) 39-2 (36-2-42-0)
Composite endpoint of survival® 1460 (75-4) 1586 (87-2) 834 (81-6) 850 (71:6) 1131 (89-3) 699 (82-3) 645 (77-4) 374 (63-0)
(Continuing below)

Cohort 9 10 11 12 13 14 Total HR (95% CI)*
ALS centre Hannover, GER Ulm, GER Jena, GER St. Gallen, CHE Tours, FRA Limoges, FRA

Data source Referral-based Referral-based Referral-based Referral-based Referral-based Referral-based

N 506 443 343 286 190 202 11475 (100-0)

Duration of acquisition (years) 12-9 6-8 8-0 13-0 52 52 12-9 (8-3-17-0)

Age at onset (years) 60-2 (51-9-67-0) 61-1(52:0-69-3) 617 (52-5-68-8) 60-9 (52-0-69-3) 655 (59-9-73-6) 640 (56-9-73-6) 633 (54-8-70-7) 1-03 (1-03-1-03)
Diagnostic delay (months) 8:0 (5-0-14-9) 10-4 (6-3-17-1) 9:0 (5-0-17-0) 11-0 (6:1-21-9) 9:0 (6:0-14-6) 8:0 (5:0-14-0) 105 (6:3-17-6) 0-52 (0-51-0-53)°
Progression rate (points/month) 0-6 (0-3-1-0) 0-5(0-3-1-1) 0-6 (0-4-1-0) 0-4 (0-2-0-8) 0-9 (0-4-1-5) 0-9 (0-5-1-6) 0-6(0-3-1-1) 633 (5-92-6-76)"
Forced vital capacity (%) 81-0 (67-0-95-0) 74-0 (55-0-92-0) -- 86-0 (66-0-101-0) 89-3 (70-0-104-2) 92-0 (67-0-107-0) 88-0 (69-0-103-0) 0-99 (0-99-0-99)
Bulbar onset 121 (27-7) 130 (29-3) 90 (29-3) 82 (29-5) 64 (36-0) 59 (29-2) 3553 (31-9) 1-71 (1-63-1-79)
‘Definite’ ALS® 49 (9:7) 227 (51-2) 40 (16-7) 61 (31-3) 68 (38-9) 33 (17-6) 2953 (31-3) 1-47 (1-:39-1-55)
Frontotemporal dementia 4(0-8) 21(4:7) -- 2(0-7) 17 (8-9) 13 (6:4) 456 (4-9) 1-34 (1-20-1-50)
C90rf72 repeat expansion -- -- 4(3-8) 13 (4:7) 27 (14-2) 15 (60-0) 497 (10-0) 1-45(1-:31-1-61)
Survival since onset (months)” 36-0(33-6-39-0) 462 (40-9-51-7) 45-7 (42-0-52-9) 55-5(46-3-64-0) 32:9(26-9-40-5) 29-0 (26-5-32:6) 34-7 (34-2-35-3)¢

Composite endpoint of survival® 443 (87-5) 191 (43-1) 189 (55-1) 139 (48-6) 114 (60-0) 164 (81-2) 8819 (76-9)

Table 1. Patient characteristics.
Data are median (interquartile range (IQR)) or number (%).Numbers 1-14 indicate the 14 different participating ALS research centres. “--” Indicates unavailable data.
*Definite’ ALS according to the El Escorial criteria. ®Data are median time between onset and composite survival endpoint (95% confidence interval). “Composite endpoint
of survival was defined as the presence of non-invasive ventilation (NIV) >23 hours/day, or tracheostomy, or death. Different cohorts might use different definitions as
shown in the appendix (Supplementary Tables S1-S13). YData are hazard ratio (95% confidence interval); hazard ratios are calculated with a univariable random-effects Cox
model with 14 ALS research centres as grouping factor for the random effects. “Because of non-normal distributed data, a natural logarithm transformation was applied.
‘Because of non-normal data, a square-root transformation was applied. Calculated with a random-effects Cox model with 14 ALS research centres as grouping factor for the



random effects. Abbreviations: ALSFRS-R=revised version of the ALS functional rating scale. HR=hazard ratio. 95% CI=95% confidence interval. NA=not available.
NLD=The Netherlands. IRL=Ireland. ITA=Italy. UK=United Kingdom. BEL=Belgium. PRT=Portugal. GER=Germany. CHE=Switzerland. FRA=France.



Predictors Univariable HR" Multivariable HR®

Age at onset (years) 1.28 (1.25-1.31) 1.02 (1.02-1.03)
Diagnostic delay (months) 0.48 (0.46-0.49) 0.63 (0.59-0.68)¢
Progression rate (points/month) 3.05 (2.84-3.27) 3.19 (2.71-3.75)°
Forced vital capacity (%) 0.76 (0.72-0.80) 0.99 (0.99-0.99)
Bulbar onset - 1.25 (1.17-1.33)
‘Definite’ ALS* - 1.25 (1.16-1.34)
Frontotemporal dementia - 1.18 (1.01-1.37)
C90rf72 repeat expansion - 1.37 (1.19-1.57)

Table 2. Relative effects of transformed predictors.

Data are hazard ratio (95% confidence interval). All HRs were estimated using random-effects Cox
models with the 14 ALS research centres as grouping factor for the random effects. Please note that
this Table is intended to provide an indication of the relative effects of the transformed predictors and
that the used random-effects Cox model differs from the Royston-Parmar proportional odds model that
was used to generate the predictions. *Definite’ ALS according to the El Escorial criteria. "Using the
different transformed continuous predictors, we made a comparison between the first and third quartile
and report the univariable HRs (see appendix II1.2 for applied transformations). This illustrates the
relative effects of the continuous predictors after transformation. As the last four variables are
dichotomous, it is not possible to make a comparison between a first and third quartile because this
does not exist for dichotomous variables. “This column shows the HRs when all eight predictors were
combined (See Supplementary Figure S2 for more details). HRs result from coefficients and thus do
not rely on the quartiles that are used in the univariate HR column. “Because of non-normal distributed
data, a natural logarithm transformation was applied. “Because of non-normal data, a square-root
transformation was applied. HR = hazard ratio.

The IECV framework resulted in 14 cycles of model development and external validation. The meta-
analysis of these 14 external validations showed a summary c-statistic of 0-78 (95% CI, 0-77 to 0-80;
95% PIL, 0-74 to 0-82), an area under the time-dependent ROC curve three years after onset of 0-86
(95% CI, 0-85 to 0-88; 95% PIL, 0-82 to 0-90), a calibration slope of 1-:01 (95% CI, 0.95 to 1-07; 95%
PL, 0-83 to 1-18) and calibration-in-the-large of -0-12 (95% CI, -0-33 to 0-08; 95% P1I, -0-88 to 0-63)
(Figure 1A-C and Figure S4 of the appendix). The five prognostic groups that were created, based on
this prediction model, showed good agreement: observed median times to our composite endpoint
(standard error) were 165 (0-23), 25-2 (0-35), 32-8 (0-46), 44-6 (0-74) and 85-6 (1-96) months and
predicted median times to our composite endpoint (standard error) were 17-7 (0-20), 25-3 (0-06), 32-2
(0-09),43-7 (0-21) and 91-0 (1-84) months (Figure 1D). Comparing ‘very short’, ‘short’,
‘intermediate’ and ‘long’ groups with the group with very long times to our composite endpoint
revealed a hazard ratio (HR) of 15-29 (95% CI, 13-92 to 16-79), 7-19 (95% CI, 6-53 to 7-91), 4-30
(95% CI, 3-94 to 4-69) and 2-49 (95% CI, 2-30 to 2-70). Visual inspection of cohort-specific
calibration plots three years after onset showed good agreement between predicted and observed
probability for most cohorts (N=11; Figure S7 of the appendix). Predicted and observed probabilities of
reaching our composite endpoint for cohort-specific curves showed similar results as calibration plots
(Figure S5 of the appendix). For three cohorts where agreement between observed and predicted times
to our composite endpoint was suboptimal, recalibration of the baseline hazard notably improved
calibration (Figure S6 of the appendix). Similar results were found for complete case analysis (Figure
S14 of the appendix). We assessed all possible two-way interactions (i.e. eight covariates with one
interaction comprising two of the eight covariates), which did not improve predictive accuracy (Table
S20 of the appendix). The probability of ‘good’ external predictive performance of the model was
estimated to be 100-0% for c-statistic and 97-1% for calibration slope. The joint (combined) probability
of ‘good’ performance was 98-3% (Supplementary Figure S8). Compared to estimates of group level
data, the model provides more accurate and precise predictions of times to our composite endpoint
(Figure 2).

An online tool for prediction of time to our composite survival endpoint is available at
www.encalssurvivalmodel.org. This instrument is based on the regression coefficients of the final
prediction model (appendix (section I11.9)) and can be tailored per population. To illustrate its usage in
clinical practice, we provide examples of patients selected from our dataset and their associated
predictions, including the level of uncertainty at patient level (Figure 3) and provide worked examples
(appendix section VIII). The sensitivity analyses demonstrated that the prediction model also provides
accurate predictions when patient-level information about the presence of FTD or a C90rf72 repeat
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expansion is not available and similar results of predictions using date of onset versus date of diagnosis
as starting point for prediction (appendix section I'V). Patients’ preferences with regard to knowing
their personalised prognosis are presented in appendix section VIIL.
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Figure 1. Univariate meta-analysis of predictive performance.

Panel A shows the random effects meta-analysis of discrimination as measured with the c-statistic. C-statistic can be viewed as a generalised area under the receiver operator curve (ROC) for
all possible time-points. It measures the ability of the model to differentiate between patients who reached our composite endpoint and those who did not. See Figure S4 of the appendix for
time-dependent ROC curves. Panels B and C show the random effects meta-analysis of calibration as measured with calibration slope (panel B) and calibration-in-the-large (panel C).
Calibration measures the agreement between observed and predicted time to our composite endpoint. A calibration slope of 1 in combination with a calibration-in-the-large of 0 indicates good
overall calibration (see appendix section III.7 for further details). The blue ‘diamond’ indicates the mean and 95%-confidence interval (95% CI) of the predictive accuracy. 95%-prediction
intervals (95% PI), which indicate predicted accuracy of the model in a single new dataset or patient, are depicted as dashed blue lines and as a numeric range (in blue, below 95% CI). Panel D
is the visual translation of panels A-C in prognostic curves showing the agreement between predicted and observed probability of reaching our composite endpoint as well as indicating good
discriminative power of the model. The curves also illustrate the possibility to stratify patients in different groups based on their predicted prognosis on the day of diagnosis. Five equal-sized
groups were created based on predicted time to our composite endpoint. Cohort ID indicates the cohort left out in the internal-external cross-validation (IECV), which was performed once for
all 14 different datasets. Abbreviations: calibration itl = calibration-in-the-large, 95% PI = 95% prediction interval (reflecting 95% range of accuracy of new predictions).
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Figure 2. Risk group predictions.

This Figure shows probability densities for times to our composite endpoint (y-axis) of the five risk
groups in Figure 1D on a time scale (x-axis). Density reflects the probability density (or distribution),
which is not evenly distributed over time, meaning that the largest number of patients will die where
the curve has the highest density, but that there is a small chance that patients survive without
tracheostomy or non-invasive ventilation for >23 hours/day much longer; this is reflected by the long,
thin tails on the right side of this Figure. This provides guidance for discussing prognosis with patients.
Furthermore, if the prediction model is not used (dashed curve), predictions will generally be overly
positive (for groups with short and very short times to our composite endpoint), overly negative (for
groups with long and very long times to our composite endpoint), or overly uncertain (for group with
intermediate times to our composite endpoint)). The horizontal bars at the bottom provide the same
information for the different groups, with dots representing median times to our composite endpoint,
boundaries of thick lines representing 25 to 75% probability intervals and boundaries of thin lines
representing 10 to 90% probability intervals to reach our composite survival endpoint. This Figure
quantifies the uncertainty of individual predictions because, for example, a subject with a predicted
very short time to our composite endpoint still has a 2% chance of surviving up to 5 years after onset.
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Figure 3. Clinical applicability to individual patients.

Characteristics and predictions of 25 randomly selected ALS patients (using a computer algorithm developed to select five patients per risk group from all available patients)
are presented to illustrate application of the tool to predict time to our composite endpoint to individual patients. Predictions are provided on the left and patient
characteristics on the right. Median predicted time to our composite endpoint of individual ALS patients is represented by the dots. The boundaries of the thick lines represent
25 to 75% probability intervals and boundaries of the thin lines represent 10 to 90% probability intervals. The vertical dashed line represents the median time to our
composite endpoint (34-7 months). A large proportion of patients deviates from the median time to reach our composite survival endpoint (at group level): six patients (24%)
have a 75% chance of dying, having tracheostomy, or having NIV >23 hours/day before the median time to our composite endpoint while eight other patients (32%) have a
75% chance of living without thracheostomy or NIV >23 hours/day longer than median time to our composite endpoint. Predicted times to our composite endpoint differ
significantly between patients, reflecting both heterogeneity in ALS as well as the ability of the proposed model to stratify patients according to their characteristics.
Abbreviations: + = present; - = absent; ALSFRS-R slope is in points decrease of the ALSFRS-R score per month; diagnostic delay is in months; age at onset is in years; FVC
is forced vital capacity and is expressed as percentage of predicted (corrected for age, sex and body height); ‘definite’ ALS is according to the El Escorial criteria; FTD is
presence of frontotemporal dementia; C9 is presence of a C9orf72 repeat expansion.
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Discussion

On the basis of data from 11,475 ALS patients, collected across Europe, we have developed and
externally validated a model for prediction of survival without tracheostomy or non-invasive
ventilation more than 23 hours/day in individual ALS patients. Using recently developed state-of-the-
art methods, we derived ranges of predictive performance across different settings and patient
populations, thereby providing evidence for the potential generalisability of our model. We
implemented our model in a free online tool for medical doctors to provide estimates of prognosis in
individual ALS patients, with the aim of facilitating its use in clinical practice and in innovative trial
design.

Associations between predictors and survival ourcomes in ALS have previously been reported at group
level.® Attempts to translate predictive associations into estimates of survival outcomes in individual
ALS patients are, however, infrequent, and external validation of such models remains elusive.® It is
acknowledged that the development of reliable prediction models requires access to large datasets, with
at least 200 events for validation.® Hence, the current IPD meta-analysis, including more than 11000
subjects, is the first study in ALS to enable the investigation of a relatively large number of predictors,
combining them in a prediction model. This is the first prediction model in ALS that rigorously
assessed discrimination and calibration performance across different populations. We implemented
recent methodology to identify sources of heterogeneity across the European cohorts, and addressed
transportability issues of the model.>**! This enabled us to determine the likely performance when
applying the model in clinical practice, and thus to assess its clinical utility in local circumstances.
Dependent on requirements and clinicians’ or patients’ preferences, the model can be applied using
probabilities of survival without tracheostomy or non-invasive ventilation more than 23 h per day,
prognostic groups or point estimates. For care, we prefer the first two options, because these provide
the possibility of being realistic without driving a patient to despair (see appendix section VIII for
worked examples). Because of the probability distributions for times to our composite endpoint (Figure
2), which are also skewed, point estimates may not be preferred for predictions in individual patients.
Ranges will become wider for subjects with longer times to our composite endpoint (Figure 2) due to
less steep prognostic curves.

Large-scale European Union funded collaborative projects, such as Euro-MOTOR
(www.euromotorproject.eu), SOPHIA (www.sophiaproject.eu) and NETCALS (www.jpnd.eu),
encourage standardised and harmonised data collection between three population-based (n=4776, 42%)
and 11 referral-based patient registries in this study (Table 1).3%%" Differences in standard of care, or
cultural or genetic background between registries were taken into account in our model by allowing
cohort-specific adjustments for estimation of prognosis in individual patients.

Predictors and times to our composite endpoint are likely to differ between different populations as
shown in our study (Table 1). This might be due to real differences between populations. Other
possibilities may be referral-bias in referral-based versus population-based registries, variable
interpretation of (diagnostic) criteria, differences in standard care, cultural or genetic background, or a
combination of these. In our study we focussed on developing and validating a generalisable prediction
model for ALS. Importantly, state-of-the-art IECV in our study did not reveal that differences between
populations affected predictive performance of our model. Furthermore, differences in times to our
composite endpoint between cohorts could not be interpreted as being caused by a specific cohort.

A weakness of our study is that we did not include treatment with riluzole, the only effective drug with
proven effect on survival, as a predictor in our model. Reliable information about its usage is missing
in most registries, but is estimated to be at least 75% in Europe.!” Although the effect of riluzole on
survival (pooled HR 0-84, based on a Cochrane meta-analysis)'® is more than ten times smaller than the
combined effect of predictors in our proposed model (HR up to 15:29), incorporating riluzole use as
well as other treatments, such as ventilation or gastrostomy, into our model will allow further tailoring
of predictions.

Missing data, which is inherent to observational data, can lead to biased results when not appropriately
addressed. We therefore used recently developed imputation methods, which are proven to prevent
such biases, even if a predictor is completely missing from one or more cohorts.?® Using IECV, we
rigorously assessed the model’s predictive performance in external datasets. This approach not only
allows one to evaluate the model's overall performance in new patients, but also to establish whether
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performance is consistent across the different cohorts. It therefore helps to determine to what extent
model generalisability may be affected by differences in definition of endpoint, in collection of FVC
versus SNIP or ALSFRS versus ALSFRS-R data, in possible recall bias of disease onset, in recruitment
of patients between cohorts, in heterogeneity of disease characteristics between cohorts or in the
presence of unmeasured confounders. Although we did not aim to study such differences between
cohorts and we can only speculate about possible causes (e.g. ‘intrinsic’ differences of ALS between
cohorts, or ‘extrinsic’ due to possible differences in, for example, clinical care), these differences did
not appear to reduce the predictive performance of our proposed prediction model, as demonstrated by
IECV.

Our newly developed online tool is ethically sensitive and demands thoughtful implementation. The
tool may support patients in maintaining a degree of autonomy and help them in planning their lives.
Our survey demonstrated that there is a group of patients who prefer to be informed about their
personalised life expectancy. This is in line with previous publications in cancer medicine.* The
ethical aspects of tailored predictions in ALS or other neurodegenerative diseases have not been
studied before, but from cancer medicine it is known that early discussions about goals of care are
associated with better quality of life, reduced use of non-beneficial medical care near death, enhanced
goal-consistent care, positive family outcomes, and reduced costs.?* On the other hand, many cancers
have multiple modes of therapy, whereas ALS is still an incurable disease. Furthermore, the outcomes
of the administered questionnaire might differ in patients from other cultural backgrounds; a selection
bias might be present in the patients who responded to the survey; patients may not oversee all
consequences of the acquired knowledge and may regret asking to be informed if the predicted time to
death, tracheostomy, or NIV >23 hours/day they receive is shorter than expected. To minimise the risk
of such potential harm, the online tool will only be accessible to medical doctors, who have to register
and sign before access is provided (i.e. controlled access). Professional health care providers may use
our model to determine the intensity of care pathways, and to tailor counselling of individual patients
and their caregivers. Prediction models might improve clinical trial design (1) by using the predicted
outcome as inclusion criterion instead of arbitrary eligibility criteria (such as pulmonary function), and
(2) by improving stratified randomisation using predicted prognosis instead of a limited set of
prognostic variables, thereby creating more homogeneous strata and greater statistical power to detect
an effect. This was, for example, previously shown in glioblastoma patients with methylation of the
MGMT (O%-methylguanine-DNA methyltransferase) gene, illustrating that prediction might be a
promising tool for future clinical trials.*’

In accordance with the TRIPOD statement,'° all parameters and equations of our model are provided
(appendix section I11.4 and II1.9) to allow improvement of predictions through continuing research into
other prognostic factors, such as wet or imaging biomarkers, or newly discovered genetic mutations, or
to implement outcome measures other than our composite survival endpoint, e.g. being wheelchair-
bound or other specific loss of function. This also facilitates validation of our model in registries from a
non-European background and its application in trial populations.

In conclusion, we have developed a model for prediction of survival free of tracheostomy or non-
invasive ventilation more than 23 hours/day in individual ALS patients and externally validated this
model multiple times. We have demonstrated the generalisable and robust predictive performance of
this model and made it freely available as an easy-to-use online tool
(http://www.encalssurvivalmodel.org). The outcomes of this study will facilitate tailored care and trial
design, which will hopefully lead to a more successful discovery of effective treatments for patients
suffering from this devastating disease.
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