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Abstract—Extended object tracking has become an integral
part of various autonomous systems in diverse fields. Although
it has been extensively studied over the past decade, many
complex challenges remain in the context of extended object
tracking. In this paper, a new method for tracking multiple
irregularly shaped extended objects using surface measurements
is proposed. The Gaussian Process Convolution Particle Filter
proposed in [1], designed to track a single extended/group object,
is enhanced for tracking multiple extended objects. A convolution
kernel is proposed to estimate the multi-object likelihood. A
target birth/death model based on the proposed method is also
introduced for automatic initiation and deletion of the objects.
The proposed approach is validated on real-world LiDAR data
which shows that the method is efficient in tracking multiple
irregularly shaped extended objects in challenging scenarios
involving occlusion, dense clutter and low object detection.

I. INTRODUCTION

Recently, extended object tracking (EOT) has become a

fundamental process in various autonomous systems. These

systems belong to a wide spectrum of fields such as navigat-

ing autonomous cars through traffic [2], autonomous human

and surrounding objects tracking based on Microsoft Kinect

sensors [3], tracking of hazardous clouds [4] and many more.

EOT requires estimation of the kinematics and the shape

of an object of interest from a sequence of noisy sensor

measurements. The kinematic states include the position of

the centre of the object and its higher order time derivatives.

The states related to the shape of the object are commonly the

extent of the object from the centre.

Object tracking is not a new area of research and dates

back to the times of the second world war. Traditionally,

object tracking has been referred to as multiple target tracking

(MTT) [5]. MTT deals only with the estimation of the ob-

ject kinematics. It is also referred as point objects tracking

(POT) [6] and [7]. The state estimation of the kinematics

states in the EOT is done using the methods similar to those

proposed in the traditional MTT literature [8], [9]. The focus

of the EOT research has been on the shape estimation methods

and the measurement models. The different methods proposed

over time have been extensively covered in the two overview

papers [6], [7]. Typically, the object kinematics are modelled

in the global frame while the object shape is modelled in the

object centered frame.

Similarly to the POT, the tracking of a single extended

object is comparatively simpler to the problem of tracking

multiple extended objects. A single EOT problem provides a

solution to the challenges of unknown object kinematics, shape

and shape dynamics, measurement error and uncertainty of the

measurements origin using Bayesian inference methods. The

object kinematics models are inherited from the literature of

the POT. Various shape models have been proposed for the

single EOT. These include techniques which model the object

shape as a basic geometric shape, e.g. tracking of a cyclist

using a stick model [7], a car using a rectangular model [10],

a ship using an ellipsoidal model [11] etc. Although these

methods have been proved to be simple and efficient on real-

world data, the shapes of these and other extended objects are

different to the basic geometric shapes. The tracking accuracy

increases as the precision of the shape estimation increases [7].

Some advanced shape estimation methods have also been

proposed for tracking the object as an irregularly shaped (star-

convex) object. These include the random hypersurface model

(RHM) [12], Gaussian Process (GP) based models [13], [1]

and mixture of sub-objects [14].

The measurement models include the measurement source

and clutter model and the sensor measurement error model.

The complexity of the methods increases when the measure-

ments are received from the surface of the object. In such

scenarios, the RHM and the GP model of [13] are sensitive to

the statistical properties of the measurements coming from the

object, which might be unknown in real-world scenarios. The

analytical expression of the measurement likelihood is also not

available due to the non-linearity of the problem. The Gaussian

Process Convolution Particle Filter (GPCPF) [1] does not

require any prior knowledge of measurement statistics and

an analytical expression of the likelihood function. Moreover,

unlike the method proposed in [13], this method can track a

single object moving in clutter.

The multiple EOT provides a solution to the unknown

number of objects and the data association problem in addition

to the problems of the single EOT. To solve the problem

in a reasonable amount of time using the computational

power, the process of clustering measurements is done prior

to the multi-object state estimation. The estimation accuracy

is therefore sensitive to the clustering technique and a lot

of research is done in measurement partitioning methods.

The DBSCAN [15] based clustering method provides good



performance for classification of multiple objects. However,

advanced clustering and inference techniques are required

when the objects come close or cross each other. In such sce-

narios, the most likely sets of measurement clusters are used

for inference. A stochastic optimisation based method [16]

has been demonstrated to track closely moving objects by

proposing an efficient method to determine the most likely

sets. In this paper, a GPCPF based method is proposed for

tracking of multiple extended objects with non-regular shapes.

A. Contributions

The contributions of this work are as follows; (i) A

new Gaussian process convolution particle filter (GPCPF)

based approach for tracking multiple extended objects having

non-regular shapes is proposed. A GPCPF for tracking a single

extended object is proposed in [1]. (ii) A new convolutional

kernel is proposed to track different complex shaped objects

using surface measurements without any prior knowledge

of the measurement statistics. The typical complex-shaped

multiple extended objects tracking methods require prior in-

formation of the object size or the statistical properties of

the measurements [17], [18]. (iii) A new object birth/death

model based on the likelihood estimation using convolu-

tion kernel is proposed. This framework treats the object

detection, false-alarm rejection, object existence and death

in a probabilistic framework without the requirement of an

explicit likelihood function. (iv) The performance validation

of the proposed method on real data from extended objects is

presented in the results section.

The structure of the paper is as follows. The system

dynamical model is presented in Section II, the theoretical

background of GP and GPCPF is described in Section III,

the proposed multiple EOT GPCPF is given in Section IV,

the performance validation and results are given in Section V

followed by conclusions in Section VI.

II. SYSTEM MODEL

A. System Dynamics Model

The dynamics of the centre of the object (COO) are assumed

independent of those of the object shape. The discrete time

COO state update equation is given below:

ck = (INg,k
⊗ F c)ck−1 +wc

k−1, (1)

where ck =
[

(

c1k
)T

,
(

c2k
)T

, · · · ,
(

c
Ng,k

k

)T
]T

represents the

multiple objects COO state vector, In represents an n-

dimensional identity matrix, (·)T represents the transpose

operation, Ng,k represents the number of extended objects at

time k, F c represents the single object COO state transition

matrix, wc

k−1 ∼ N
(

0, INg,k
⊗Qc

)

represents the COO model

process noise, Qc represents the process noise covariance of

the COO of a single object and (.)k represents that the vector

/ matrix corresponds to time k. The extent states dynamics

is modelled as a random walk [1] and is described by the

following equation:

sk = (INg,k
⊗ IB)sk−1 +ws

k−1, (2)

where sk =
[

(

s1k
)T

,
(

s2k
)T

, · · · ,
(

s
Ng,k

k

)T
]T

represents the

multiple objects extent state vector, ws

k−1 ∼ N
(

0, INg,k
⊗

Qs
)

represents the extent dynamics model noise, Qs repre-

sents the process noise covariance of a single object extent

dynamics. The Qs can be modelled based on the prior

knowledge of the objects being tracked, e.g. if the objects are

axis-symmetric then an axis-symmetric covariance kernel can

be used to determine this matrix. If there is no prior knowledge

of the object shape, then it can be modelled as given below [1]:

Qs = σ2
eIB , (3)

where σ2
e represents the variance of the change in extent per

sample time.

B. State Vector

The multiple objects state vector Xk is given below:

Xk=
[

(x1
k)

T (x2
k)

T · · · (x
Ng,k

k )T
]T

, (4)

xi
k=
[

(cik)
T (sik)

T
]T

, (5)

where xi
k represents the ith object state, cik represents the

states related to the centre and sik denotes the states related to

the shape (extent) of the ith object. The extent states consist

of the radial extent of the object at B different angles from

the COO. The COO and the extent states are given below:

cik =
[

xi
k ẋi

k yik ẏik
]T

, (6)

sik =
[

ri,1k ri,2k · · · ri,Bk

]T
. (7)

where (xi
k, y

i
k) and (ẋi

k, ẏ
i
k) represent the position and velocity

of the ith object’s COO. ri,jk represents the radial value of the

ith object at the jth angle of the input vector θb. The input

angle vector is given below:

θb =
[

θ1 θ2 · · · θB
]T

, θl = (l − 1)
2π

B
. (8)

C. Shape Model and the GP

The shape of the object is assumed to be star-convex1 and

is modelled using a Gaussian Process (GP) model as proposed

in [13]. The extent is modelled as a function of the angle from

the COO. This mapping function for an ith object is given by

the following equation:

ri = f i(θ), (9)

where ri represents the true radial values and f i represents the

true mapping function of the ith object. The function maps the

continuous domain θ to the ranges r. As the object can have

any arbitrary shape hence f i is a non-linear function and a

GP is used to estimate this mapping function. This is further

realised in Figs 1a and 1b. A Von Mises covariance kernel [1]

is used:

kvm(θi, θ
′

j) = σ2
fe

σ2

acos(θi−θ′

j), (10)

where σ2
f , σ

2
a control the magnitude and the length-scale of

the kernel, respectively.

D. Measurement Model

The sensor reports measurements in Cartesian coordinates

and the measurement noise is assumed to be independent and

identically distributed Gaussian. The measurement equation is

given below:

zk = H(Xk) + vk, vk ∼ N (0,Σk), (11)

Σk = diag(R1,k,R2,k, · · · ,RNk,k), (12)

1A polygon is called star-convex, if all line segments from its center to the
boundary lie inside the same polygon.



x(Global)

y(Global)

x
i,p
k

y
i,p
k

b

xm,k

ym,k

θ
i,p
m,k

(0, 0)

r
i,p
m,k = f i,p(θi,pm,k) =

xm,k−x
i,p
m,k

cos(θi,pm,k)

Origin

r
i,p
m,k

(a) Extended object model

b

0 2π

r
i,p
m,k

θ
i,p
m,k

θi,p

ri,p

ri,p = f i,p(θi,p)

(b) Visualisation of f i,p

Fig. 1: (a) Fig. 1a shows an ith extended object (thick solid

line) in the global Cartesian frame. The sensor measurements

and the COO kinematics are modelled in the global frame.

The extent states are modelled in the polar frame local to

each object. The ith object’s local frame has origin located

at (xi,p
k , yi,pk ). The radial extent r of the object is modelled

as a function f of the angle θ in the local frame given

by r = f(θ). The coordinates of the mth measurement are

shown in the global and the ith objects local frame. The non-

linear relation between the two frames is also presented for

this measurement. (b) Fig. 1b visualises the non-linear radial

function f of Fig. 1a. The origin corresponds to the centre of

the ith object. The mth measurement is shown for comparison.

where zk = [zT
1,k, z

T
2,k, · · · , z

T
Nk,k

]T denotes the measure-

ment vector, Nk represents the total number of measurements,

H(·) represents the non-linear measurement function, vk is

the measurement noise vector, Σk is the measurement noise

covariance matrix, zm,k = [xm,k, ym,k]
T represents the mth

measurement, (xm,k, ym,k) are the Cartesian coordinates of

the mth measurement, Rm,k = diag(σ2
xm

, σ2
ym

) is the cor-

responding measurement noise covariance matrix, σ2
xm

, σ2
ym

represent the sensor noise variances in the x and y dimensions,

respectively and diag(·) represents a diagonal matrix.

III. THEORETICAL BACKGROUND

A. Gaussian Process

A GP is a stochastic process for mapping non-linear func-

tions from an input to an output space. The GP is defined by

a mean and a covariance kernel. The parameters of the mean

and the covariance kernel are called hyperparameters. These

hyperparameters are learned using training data. A trained

and learned GP can be used to determine the output at input

locations other than those present in the training data. An

elaborate account of the GP and its applications can be found

in [19].

Let the input and output spaces be represented by the

random vectors θ and r, respectively. A GP, mathematically

represented as GP (µ(θ),C(θ,θ′)), is described by a non-

linear function f given below:

r = f(θ), (13)

C(θ,θ′) =











k(θ1, θ
′
1) k(θ1, θ

′
2) ... k(θ1, θ

′
N )

k(θ2, θ
′
1) k(θ2, θ

′
2) ... k(θ2, θ

′
N )

...
...

...
...

k(θN , θ′1) k(θN , θ′2) ... k(θN , θ′N )











, (14)

where the mean of the GP is generally modelled as a constant,

C(θ,θ′) is the covariance matrix of the GP and k(·, ·) is the

TABLE I: GP-CPF Recursion

1 for k ≤ 2, θB = 0 : 360/B : 360 Initialise state x0

2 for k = 3 find x̃
n
0
= N (x0, σ2

x0
), wn

0
= 1

N

3 for k > 3 Re-sample : Residual Re-sampling as in [20].

4 for k ≥ 3

4a State Sample: for n = 1, 2, ...N

x̃
n
k = F x̃

n
k−1

+wk

4b Measurement Simulation : Simulate measurements using

the measurement model

4c Measurement Gating : A measurement is considered gated

if it lies within the region of the measurement sample

4d Weight Update : for n = 1, 2, ...N find

wn
k
=

∏L
l=1

Kz

h
(zk,l)× wn

k−1

4e Normalise Weight : for n = 1, 2, ...N determine

wn
k
=

wn
k∑

N
n=1

wn
k

4f Estimation : pn
k
(xk|z1:K) =

∑N
n=1

wn
k
x̃
n
k

corresponding covariance kernel. Let θ′ ∈ R
N and r′ repre-

sent the training data input and output vectors, respectively.

The GP regression equation for an unknown input vector θ⋆

is given below:

p(r⋆|θ⋆) = N (Cθ⋆θ
′(Cθ

′
θ
′ + σ2IN )−1r′,Cθ⋆θ⋆

−Cθ⋆θ
′(Cθ

′
θ
′ + σ2IN )−1Cθ

′
θ⋆), (15)

where r⋆ represents the output vector, (·)−1 represents the

matrix inverse and σ2 is measurement noise variance.

B. Gaussian Process Convolution Particle Filter

The GPCPF [1] tracks an irregularly shaped extended object

moving through clutter using noisy sensor measurements orig-

inating from the surface of an extended object. The filter has

two major components namely the GP model for the object

shape and the CPF for the posterior density estimation. The

GPCPF recursion is summarised in Table I.

IV. MULTIPLE GROUP OBJECTS TRACKING USING

GAUSSIAN PROCESS CONVOLUTION PARTICLE FILTER

The multivariate density of the multiple extended objects

states is multimodal. Each mode of the density corresponds to

an extended object in the real-world. The number of objects

and hence the number of modes is assumed unknown. Fur-

thermore, the measurements origin and the object kinematics

(both of the COO and the extent) are also assumed unknown.

The sensor data is assumed to be noisy, gives multiple surface

measurements per extended object and reports measurements

from the extended objects as well as clutter. The existence,

birth and death probabilities of the objects are also unknown.

The Gaussian Process Convolution Particle

Filter (GPCPF) [1] has been shown to be able to track

a single irregularly shaped extended object moving through

clutter. In this work, the GPCPF is extended to track multiple

extended objects from measurements with clutter. The

multivariate density function is determined using the system

dynamics defined by equations (1) and (2). The samples are

drawn from (1) and (2) assuming Gaussian process noise. As

a result, the proposed density estimation is performed using a

mixture of Gaussians. These (Gaussian) samples are mapped

as irregularly shaped regions in the measurement space after

the measurement sampling is done. The sensor measurements



are then used to update the posterior density estimation using

the CPF measurement kernel.

A. The Convolution Particle Filter Kernel

The CPF kernel is used for the multi-modal density es-

timation. The CPF in a state space setting for the multiple

objects tracking relies on two kernels. The first kernel KX

hX

is defined for the predictive distribution in the state space of

state vector X . The second kernel is defined for the likelihood

estimation in the measurement space Kz

hz
of the measurement

vector z. The hX and hz represent the predictive and the

likelihood kernel bandwidths, respectively. As proposed in [1],

the state vector Xk maps to multiple independent regions in

the measurement space and is equivalent to the functional-

ity of the kernel KX

hX
. Hence, KX

hX
is not required to be

defined explicitly. The likelihood kernel Kz

hz
is defined for

measurements originating from the objects as well as clutter.

This kernel has the form:

Kz

hz
(zm − Z̃

i,p

k ) =

{

UZi,p(z), zm ∈ Zi,p

UV(z), zm /∈ Zi,p
, (16)

where zm represents the mth measurement, Z̃
i,p

k represents

the measurement sample of the pth particle and the ith object,

UR represents a uniform distribution supported by the region

R, V represents the sensor coverage and Zi,p represents the

ith region in the measurement space of the pth particle. Each

particle creates Ng,k regions in the measurement space. The

uniform kernels described in (16) are given below:

UZi,p(z) =
1

Area(Zi,p)
, UV(z) =

1

Area(V)
, (17)

where Area(·) returns the area of the region within brackets.

B. State Sampling

The state sample of a pth particle at time k is given below:

X̃
p

k =
[

(x̃1,p
k )T (x̃2,p

k )T · · · (x̃
Ng,k,p

k )T
]T

, (18)

x̃
i,p
k =

[

(c̃i,pk )T (s̃i,pk )T
]T

, (19)

where X̃
p

k represents the multiple objects state sample, x̃
i,p
k

represents the ith object state and c̃
i,p
k and s̃

i,p
k represent the

ith object COO and the extent states sample of the pth particle.

The COO and the extent states samples are determined using

equations (1) and (2), respectively.

C. Measurement Sampling

The measurement sample is given below:

Z̃
i,p

k =
[

(z̃i,p
1,k)

T (z̃i,p
2,k)

T · · · (z̃i,p
B,k)

T
]T

, (20)

where z̃
i,p
b,k represents the measurement sample of the bth

extent state and is determined as follows:

z̃
i,p
b,k = [x̃i,p

k , ỹi,pk ]T + [cos θb, sin θb]T ⊙ s̃
i,p
b,k + vb,k, (21)

vb,k ∼ N
(

0, diag(σ2
x, σ

2
y)
)

,

where (x̃i,p
k , ỹi,pk ) represent the positional samples of the c

i,p
k ,

s̃
i,p
b,k represents the bth extent state sample of s

i,p
k , ⊙ represents

element-wise product, vb,k represents the sensor noise and

σ2
x, σ

2
y represent the sensor noise variances, respectively. The

measurement sample Z̃
i,p

k is a collection of points in the

measurement space. These points are used to train the GP

of the ith object and the pth particle. The GP regression (15)

is then used to define a region in the measurement space for

the ith object and the pth particle denoted as Zi,p .

D. Likelihood Calculation / Weight Update

Consider Nk measurements are received at time k from

the sensor in Cartesian coordinates. To perform the likelihood

calculation and the weight update, the measurements are first

gated with the particle measurement samples. This gating is

done in two steps. First, the measurements are gated based on

their locations and subsequently, the measurement clustering

information is included to improve the gating process.

As soon as the measurements are received, the measure-

ment vector zk is clustered using DBSCAN [15]. For each

measurement m the polar coordinates are determined as given

below:

θi,pm,k = tan−1

(

ym,k − ỹi,pk

xm,k − x̃i,p
k

)

, (22)

ri,pm,k =

√

(xm,k − x̃i,p
k )2 + (ym,k − ỹi,pk )2, (23)

where (θi,pm,k, r
i,p
m,k) represents the polar coordinates of the mth

measurement in the local frame of the ith object and the pth

particle. The GP is used to predict the range of the ith extended

object of the pth particle at an angle θi,pm,k as given below:

r̃i,pm,k = C
θ
i,p

m,k
θbC

−1
θbθb s̃

i,p
k , (24)

The measurement is considered belonging to the ith extended

object of the pth particle if ri,pm,k ≤ r̃i,pm,k. The cluster identifier

vector zc of all the gated measurements is formed. The gated

measurements are declared not-gated with the ith extended

object of the pth particle if the cluster identifier is different

from the mode of zc or more than 15% of the measurements

with same cluster identifier are not gated. The particle weights

update equation is as follows:

wi,p
k = wi,p

k−1

Nk
∏

m=1

Kz

hz
(zm − Z̃

i,p

k ), (25)

where wi,p
k represents the weight of the ith object and the

pth particle. The measurements gated with one object are not

considered for updating the other objects.

E. Estimation

The conditional multi-object state density can be written as:

p(Xk|Z1:k) =
p(Xk,Z1:k)

∫

p(Xk,Z1:k)dXk

, (26)

where Z1:k represents all the measurements from time-step

1 to k. Along the lines of adaptive CPF modelled in [21],

the kinematic and extent states are sampled separately. The

estimate equations are given below:

pPk (Xk|Z1:k) =

Ng,k
∑

i=1

pPk (x
i
k|Z1:k), (27)

pPk (x
i
k|Z1:k) =

∑P
p=1 w

i,p
k x̃

i,p
k Kz

hz
(Z1:k − Z̃

p

i,k)
∑P

p=1 K
z

hz
(Z1:k − Z̃

p

i,k)
, (28)

and the kernel is represented as:

Kz

hz
(Z1:k − Z̃

p

i,k) =

k
∏

j=1

Kz

hz
(zj − Z̃

p

i,k), (29)



TABLE II: Existence processes

Process eg,k eg,k−1

Pre-birth 0 0

Birth 1 0

Existing 1 1

Death 0 1

False alarm 2 0

where P is the number of particles. The ith object state

estimate is given below

x̂i
k =

∑P
p=1 w

i,p
k x

i,p
k

∑P
p=1 w

i,p
k

. (30)

F. Object Existence / Birth / Death Model

The objects enter, pass-through and leave the area of inter-

est. The sensors can also report clutter. These are represented

by different processes which are a modification of the method

proposed in [22]. The entry is modelled by a pre-birth and birth

process, the pass-through is modelled by an existence process

while exiting is modelled by a disappearance/death process.

The sensor clutter is modelled as a false alarm process. Each

extended object state is augmented by an existence variable

eg,k ∈ {0, 1, 2} which specifies the existence state of the gth

extended object at time k. The relation between the different

processes and the existence variable is shown in Table II.

The existence variable is assigned a value based on the object

likelihood λg,k and is given below:

λg,k =

∑P
p=1 w

p
k

∏M
m=1 K

z

hz
(zm − z̃

g,p
k )

∑P
p=1 w

p
k

. (31)

Two thresholds are defined to detect the object process. These

are the birth threshold Tb and the death threshold Td. The

thresholds are related to the existence variable as given below:

eg,k =































1 λg,k ≥ Tb, eg,k−1 = 0

0 λg,k < Tb, eg,k−1 = 0

0 λg,k ≤ Td, eg,k−1 = 1

1 λg,k > Td, eg,k−1 = 1

2 λg,k ≤ Td, eg,k−1 = 0

(32)

At any given time, the pre-birth, birth and the existing objects

are part of the extended object state vector Xk. The death and

false-alarm objects are removed from this state vector at the

end of the processing step. As a result, the size of this state

vector changes, which is also depicted by the time-dependence

of Ng,k.

The objects can appear from a region called birth region

e.g it can be a door to the building entrance in a crowd

tracking in a building problem. There are Nb number of birth

regions in the area of interest. Each birth region is defined

by a centre (xb, yb), which specifies the location of the centre

of the birth objects, an initial velocity (ẋb, ẏb) and a circular

region of radius rb, which specifies the initial shape of the

object. The values of these parameters can be tuned according

to the application.

G. Object Merging / Splitting / Spawning

The object merging occurs by design through the gating pro-

cess. The splitting/spawning can be included through a modifi-

cation of the birth process. All the un-associated measurements

in a particular scan are classified using DBSCAN clustering

method. All the clusters are considered as birth regions for the

next scan. The mean and the variance of the measurements

position are used to define the centre and the size of the birth

region. As a result, the object splitting/spawning is achieved.

V. PERFORMANCE VALIDATION

A sample of publicly available real-world data is considered

for the performance validation [23]. This is a recorded data of

the sensors installed on a car for real-world computer vision

benchmarking. The benchmarking problems are related to an

autonomous vehicle project. Multiple sensors data, installed

on an observer vehicle, is available for various scenarios. The

sensors include two gray-scale cameras, two colour cameras

and one laser scanner. The data of the laser scanner (HDL-64E

LiDAR) sensor is considered for the performance evaluation of

the proposed approach. The ground truth data is not available

and is constructed manually using the image data from one of

the colour cameras. The ground truth of the states is calculated

only for those time samples when the complete object is visible

in the image data.

The 3D LiDAR data is reported in the body-fixed frame of

the observer vehicle. The data is synchronised with the images

obtained from the cameras. A 3D to 2D transformation matrix

is used to project the data on the 2D image frame. The EOT is

done in the image frame and compared with the ground truth

data, which is also available in the image frame.

The given data sample consists of static and moving ex-

tended objects. The moving objects are considered as objects

of interest for the performance validation. Hence, the static

extended objects are treated as clutter. Four moving objects

(cars) cross in front of the observer vehicle during a total of 66
time samples. These are available in the scene at different time

instants which are explained next. The first object in samples

k = 1− 8, the second in k = 1− 22, the third in k = 18− 43
and the fourth in k = 35 − 60. The time samples when the

objects are completely visible are as follows. The first object

in samples k = 1 − 3, the second object in k = 3 − 20, the

third in k = 23− 39 and the fourth in k = 39− 55.

The different challenges in the data are a large number of

the LiDAR data i.e. on average 0.1 million measurements are

received per time sample, dense (static) clutter, occlusion and

one of the objects is not perfectly detected by the sensor i.e.

it is a stealthy object. This stealthy object poses an additional

challenge of tracking similar extended objects having different

measurement statistics.

The evaluation of the multiple objects state is done using

the mean cardinality cardµk comparison, the positional and

velocity root mean square errors (RMSE) of the COO and the

mean shape precision and recall in 200 Monte Carlo runs. The

shape recall and precision has been used in computer vision for

evaluating rectangular objects detection performance [24]. The

RMSE errors and the shape recall and precision are calculated



as given below:

Êa
k =

1

NMC

NMC
∑

i=1

(aik − âik)
2, (33)

Rµ
k =

1

NMC

NMC
∑

i=1

Area(T i
k ∩ Ei

k)

Area(T i
j )

, (34)

Pµ
k =

1

NMC

NMC
∑

i=1

Area(T i
k ∩ Ei

k)

Area(Ei
k)

, (35)

where Êa
k represents the RMSE of the evaluation parameter

a at time k, aik represents the true and âij represents the

estimated value, Rµ
k and Pµ

k represent the mean shape recall

and precision at time k, T i
k represents the true shape, Ei

k

represents the estimated shape, ∩ represents the intersection

of two star-convex polygons and Area(p) represents the area

of the polygon p.

A. System Dynamics

The COO dynamics are modelled using a nearly constant

velocity (NCV) motion model as given below:

F c = diag(F ′,F ′), F ′ =

[

1 ∆T
0 1

]

, (36)

Qc = diag(σ2
vx
Q′, σ2

vy
Q′), Q′ =

[

∆T 3

3
∆T 2

2
∆T 2

2 ∆T

]

, (37)

where F ′ and Q′ represent the state transition matrix and

the process noise covariance matrix in one dimension, respec-

tively, ∆T represents the sampling time, σ2
vx

and σ2
vy

represent

the variances of the COO velocities. The extent process noise

covariance is modelled using a periodic covariance kernel [19]

and is given below:

Qs = C
per

θbθb , kperθ (θ, θ′) = σ2
fe

−
2sin2

(

θ−θ′

2

)

l2
θ , (38)

where C
per

θbθb represents a GP covariance matrix calculated

using a periodic covariance kernel kperθ (θ, θ′) and (14), σ2
f

represents the magnitude and l2θ represents the lengthscale

hyperparameter.

B. Birth/Death Model

The objective is to track the moving objects of interest i.e.

pedestrians, cyclists, vehicles etc. The birth/death model is

enhanced based on the problem at hand. In order to detect

and track only the moving objects, two speed thresholds are

introduced in the birth/death model. These are the low speed

threshold Vl and high speed threshold Vh. The objects of

interest move with speeds higher than Vl and lower than Vh.

C. Measurement Clustering

The LiDAR data is in 3D. The measurements coming from

the ground and from very high objects (which cannot be

considered moving objects on the roads) are filtered based on

the height information. The filtered data is clustered based on

the depth value using 1D DBSCAN clustering. The measure-

ments are then projected to the 2D image frame. The projected

measurements are clustered using 2D DBSCAN clustering.

D. Parameters

The filter parameters are given as follows. The total number

of time samples are K = 66, the sampling time is ∆T = 0.1s,

the velocity standard deviations are σvx = 250p/s2 and

σvy = 25p/s, the hyperparameters of the extent process noise

covariance kernel are σ2
f = 10 and lθ = 0.2, the surveillance

volume is Area(V) = 1242p× 345p. The hyperparameters of

the GPCPF kernel are σ2
a = 1

40 , σ2
r = 1 and σ2

f = 30. The

number of particles is N = 500, number of basis is B = 36,

the birth threshold is Tb = 0.01, death threshold is 0.001,

the low speed threshold is Vl = 200p/s and the high speed

threshold is Vh = 1000p/s. The 1D DBSCAN clustering

parameters are epsilon = 1.25 and the minimum number of

points are 24. The 2D DBSCAN clustering parameters are

epsilon = 50 and the minimum number of points are 80. The

sensor noise variances are σ2
x = σ2

y = 0.0025.

E. Results

The challenging scenarios and the tracking results at three

chosen time samples are shown in Fig 2. The statistical

properties of the sensor measurements coming from object

3 (black car), shown in Fig. 2c, are different from those of

the other three objects. The measurement density is different

from the other similar objects. The proposed algorithm detects

and tracks this object, which shows that the proposed method

is not sensitive to the statistical properties of the sensor

measurements.

The mean cardinality results are shown in Fig. 3. A delay in

the object detection can be observed for all four objects. This

is due to the fact that the shape is not detected in the initial

time steps as the complete object is not visible. Moreover, a

moving object can be determined from the data of minimum 2
time samples. An error in the cardinality is observed between

samples 20 − 25. It is due to the fact that the measurement

statistics of the black car change considerably during these

time samples. A large number of particles can be used to

improve the cardinality at these time samples at the expense

of computational time. The average state estimate errors are

shown in Fig. 4. The positional RMSE in x is less than 25p, y
is less than 7p, ẋ is less than 110p/s and ẏ is less than 30p/s.

The mean shape recall is greater than 0.9 for most of the time

steps, which shows that more than 90% of the true shape has

been recalled all the time. The mean shape precision is more

than 0.8 most of the time which shows that less than 20% of

the estimated shape is false.

The program was run on MATLAB R2016b and a Win-

dows 10 (64 bit) Desktop computer installed with an In-

tel(R) Core(TM) i5-6500 CPU @ 3.20GHz(4 CPUs) and 8GB

RAM. The computational time is 52s per time sample for

N = 500 particles. This is due to the large number of sensor

measurements received at each time sample. The processing

time is improved to 4.5s using N = 50 particles. The mean

cardinality and the state estimate errors for N = 50 are also

given in the Figs 3 and 4, respectively. It can be observed

that all four objects are tracked and there is no false alarm.

The performance of the state estimates is almost similar and

the cardinality estimates are slightly degraded. The processing

time can be further improved by optimizing the code and

running in C++.

2p represents pixel.



(a) Multiple extended objects

(b) Occluded Object

(c) Stealthy Object

Fig. 2: Challenging scenarios. The projected LiDAR data

(cyan dots) is overlayed on the camera image. The ground truth

object is represented by the (green) solid line and the estimated

object is represented by (yellow) dotted lines. The ground truth

COO is represented by (green) plus and the estimated COO

is represented by (yellow) diamond. (a) Two moving extended

objects (cars) are tracked whereas the static extended objects

(signal post, trees etc.) are treated as clutter. (b) The moving

object (white car) is occluded by two static extended objects.

(c) The front half of the car is picked up by the sensor while

few measurements are reported from the back half of the car.

The statistical properties of the sensor measurements are also

different from the other moving and static extended objects.

VI. CONCLUSIONS

The paper proposes a novel GPCPF based approach for

tracking irregularly shaped multiple extended objects moving

through clutter. The GPCPF along with measurement clus-

tering track the extended objects as a mixture of Gaussian

state samples and measurement simulations. The performance

evaluation of the approach is done on real-world data. The

proposed filter is able to track non-regular shaped objects in

challenging scenarios like dense clutter, occlusion and low

detection. In future, the GPCPF will be enhanced to the

tracking scenarios involving closely moving irregularly shaped

extended objects.
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Fig. 3: Mean cardinality. The figure shows the true (blue

thick line) and mean estimated cardinality using N = 500
(green circle line) and N = 50 (red dot line). It can be

observed that although dense clutter is present, no false alarms

are observed.
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