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A new analytical model of axially-symmetric magnetic vortices with both a twisted fluid flow and a

magnetic field is proposed. The exact solution for the three-dimensional structure of the fluid velocity

and the magnetic field is obtained within the framework of the ideal magnetohydrodynamic equa-

tions for an incompressible fluid in a gravitational field. A quasi-stationary localised vortex arises

when the radial flow that tends to concentrate vorticity in a narrow column around the axis of sym-

metry is balanced by the vertical vortex advection in the axial direction. The explicit expressions for

the velocity and magnetic field components are obtained. The proposed analytic model may be used

to parameterise the observed solar tornadoes and can provide a new indirect way for estimating mag-

netic twist from the observed azimuthal velocity profiles. VC 2018 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5023167

The formation of steady state magnetic vortices is one

of the fundamental problems of plasma physics.1–6 The mag-

netic flux tubes with vortical motion are a fundamental

model for understanding solar tornadoes,7–10 astrophysical

jets11,12 and disks around rotating magnetised stars and black

holes13 as well as some configurations of confined laboratory

plasmas.14–16

Recent solar observations from the Atmospheric Imaging

Assembly (AIA) on board NASA’s space-based Solar

Dynamics Observatory (SDO) and the Crisp Imaging

Spectropolarimeter (CRISP) on the ground-based, Swedish 1-

m Solar Telescope have generated a lot of interest in solar

magnetic tornadoes as possible channels for energy transfer

into the solar corona.9,10 The acoustic gravity tornadoes
can also appear in the form of twisted density struc-
tures.17 In the present work, we propose a new model of

axially-symmetric steady-state magnetic vortex with helical

motion. In the framework of an ideal MHD, it is assumed that

the vortices are generated in convectively unstable plasmas in

a gravitational field where the upward moving plasma pene-

trates the surface of the Sun from the interior as a result of

thermal convection and is accelerated by the vertical pressure

gradient. The accelerating vertical plasma flows generate

converging radial fluxes of plasma due to incompressibility.

The dynamics of the developing vortices can be conditionally

divided into three stages: the rapidly developing generation

stage, the vortex in the quasi-stationary stage, and the vortex

damping due to dissipative processes. The generation stage is

similar to the one discussed previously by Ref. 18, see also

the references therein. In this paper, we focus on the quasi-

stationary stage by developing an axially symmetric model of

magnetic vortices derived from the ideal MHD equations.

This model may be used as a basis for parameterising

observed solar tornadoes19,20 and estimating, otherwise diffi-

cult to measure, magnetic twist profiles from azimuthal

velocities.

In the course of investigating axially-symmetric struc-

tures, we introduce the cylindrical coordinate system (r, /, z)

with the z-axis in the vertical direction and considering @/
@/¼ 0. As the initial equations, we use stationary (i.e., @/
@t¼ 0) magnetohydrodynamic equations for an ideal incom-

pressible fluid in the gravitational field

�v� ðr � vÞ þ 1

ql0
B� ðr � BÞ ¼ � 1

q
r pþ v2

2

� �

þ g

(1)

and

r � v ¼ 0; r � B ¼ 0; v� B ¼ 0: (2)

Here, v¼ (vr, v/, vz) is the velocity field, B¼ (Br, B/, Bz) is

the magnetic field, q is the constant density, p is the pressure,

g ¼ �gêz is the gravity acceleration, êz is the unit vector

directed along the z-axis, and l0 is the permeability of free

space. Chandrasekhar’s1 equipartition solution of Eqs. (1)

and (2) corresponds to
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v ¼ 6 B

ðql0Þ1=2
(3)

and from the r and z components of (1), we obtain the gener-

alised Chandrasekhar1 solution under hydrostatic pressure

p ¼ p0 1� z

L

� �

þ B2

2l0
; (4)

where L¼ p0/qg is the vertical atmosphere scale.

The most general divergence-free flow velocity v can be

decomposed into its poloidal vp¼ (vr, 0, vz) and toroidal

v/ê/ parts, i.e., v ¼ vp þ v/ê/. Here, vp ¼ r� ðw � r/Þ
¼ rw�r/. Furthermore, w(r, /, z) is the stream function

vr ¼ � 1

r

@w

@z
; vz ¼

1

r

@w

@r
: (5)

Similar to Ref. 18, as the model vortex stream function, we

use the following representation:

w ¼ v0 r
2 z

L
exp � r2

r20

 !

; (6)

where v0¼ const is the characteristic vortex velocity and

r0¼ const is the characteristic vortex radius. Making use of

Eqs. (5) and (6), we have

vr

v0

¼ � r

L
exp � r2

r20

 !

(7)

and

vz

v0

¼ 2
z

L
1� r2

r20

 !

exp � r2

r20

 !

: (8)

The magnetic field is also decomposed into its poloidal

and toroidal components, i.e., B ¼ Bp þ B/ê/. The poloidal

magnetic field is represented by Bp ¼ �� A with the vector

potential A(r, z), where the vector potential possesses only a

/ component

A ¼ ð0;A/ðr; zÞ; 0Þ: (9)

In this model, we consider that

A/

B0

¼ r
z

L
exp � r2

r20

 !

; (10)

where B0¼ const stands for the characteristic magnetic field

strength. Then, we find the following expressions for the

magnetic field components:

Br

B0

¼ � 1

B0

@

@
A/ ¼ vr

v0

¼ � r

L
exp � r2

r20

 !

(11)

and

Bz

B0

¼ 1

rB0

@

@r
rA/ð Þ ¼ vz

v0

¼ 2
z

L
1� r2

r20

 !

exp � r2

r20

 !

: (12)

The / component of the vector Eq. (1) can be repre-

sented as

vr

r

@

@r
rv/ð Þ þ vz

@v/
@z

¼ 1

l0q

Br

r

@

@r
rB/ð Þ þ Bz

@B/

@z

� �

: (13)

Equation (13) is an equation describing the dynamics of the

vertical vorticity. The term proportional to vr describes the

effect of the radial flow that tends to localise the vorticity

xz ¼ ð1=rÞ@ðrv/Þ=@r in a narrow column around the axis of

symmetry and the term vz@v/=@z describes the vorticity

advection along z. The stationary magnetised plasma vortex

arises when these two effects balance each other and Eq.

(13) determines the toroidal components of the velocity v/

and the magnetic field B/. From Eqs. (7), (8), (11) and (12),

we obtain the following relations between the toroidal mag-

netic field and the velocity components:

B/

B/0

¼ v/

v/0

¼ r

r0

z

L
exp � r2

r20

 !

; (14)

where B/0 and v/0 are the characteristic toroidal magnetic

field strength and the velocity, respectively. According to Eq.

(3), the characteristic velocity and the magnetic field are

related to each other as v0 ¼ B0=
ffiffiffiffiffiffiffiffi

ql0
p

and v/0 ¼ B/0=
ffiffiffiffiffiffiffiffi

ql0
p

.

The structure described by the obtained Br, B/ and Bz compo-

nents of the magnetic field is shown in Fig. 1.

Equations (4), (11), (12) and (14) are the exact vortex

solution of the MHD equilibrium equations for an ideal

incompressible plasma in a gravitational field. In the solar

context, relative to direct magnetic field measurements, it is

often easier to measure the radial profile of the toroidal

velocity of solar tornadoes (off-limb with Doppler velocities

and on-disc with Local Correlation Tracking (LCT) of inten-

sity). Hence, Eq. (14) could be exploited to indirectly esti-

mate the radial toroidal magnetic field profile, which can be

very challenging to measure directly, e.g., from the Zeeman

FIG. 1. Three-dimensional structure of the magnetic field plotted using Eqs.

(11), (14), and (12) for Br, B/, and Bz magnetic field components, respectively.

Here, we used B¼B/B0; X, Y¼ (x, y)/r0; and Z¼ 10z/L to satisfy z/L� 1.
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or Hanle effects, especially if the desired magnetic field

components are mostly perpendicular to the line-of-sight.

In summary, modelling the dynamics of solar tornadoes

is key to understanding their energy transfer between the

lower and upper atmospheres.10 The elementary model

described in this work of a steady state incompressible ideal

plasma vortex with twisted magnetic fields and flows is the

exact solution of the MHD equilibrium equations. As in a

Burgers vortex,21 the inward, radial flow tends to localise the

vorticity in a narrow column around the symmetry axis. At

the same time, the vertical flow tends to spread the vorticity

in the z-direction. The stationary vortex arises when the two

effects are balanced. Although an actual solar tornado is

likely to be more complicated than this axially symmetric

model, the proposed four parameters (v0 and v/0 are the char-

acteristic fluid motion velocities, r0 is the vortex radius, L is

the characteristic atmospheric scale height), serve as the the-

oretical foundation to help us start parameterising the

observed solar tornadoes.
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