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Abstract 

The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon 

uptake in boreal and tundra ecosystems is linked to the soil freeze-thaw state. We present 

evidence from diagnostic and inversion models constrained by satellite fluorescence and 

airborne CO2 from 2012-2014 indicating the timing and magnitude of spring carbon uptake in 

Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests 

typically occurs in late April (DOY 111±7) with a 29±6 day lag until photosynthetic onset. 

North Slope tundra thaws 3 weeks later (DOY 133±5) but experiences only a 20±5 day lag 

until photosynthetic onset. These time lag differences reflect efficient cold season adaptation 

in tundra shrub, and the longer dehardening period for boreal evergreens. Despite the short 

transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with 

snowmelt and landscape thaw delays the transition from net carbon loss (at photosynthetic 

onset) to net uptake by 13±7 days, thus reducing the tundra net carbon uptake period. Two 

global CO2 inversions using a CASA-GFED model prior estimate earlier northern high 

latitude net carbon uptake compared to our regional inversion, which we attribute to (1) early 

photosynthetic onset model prior bias, (2) inverse method (scaling factor + optimization 

window), and (3) sparsity of available Alaskan CO2 observations. Another global inversion 

with zero prior estimates the same timing for net carbon uptake as the regional model but 

smaller seasonal amplitude. Analysis of Alaskan eddy covariance observations confirms 

regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake 

occur up to 1 month earlier in evergreens than captured by models or CO2 inversions, with 

better correlation to above-freezing air temperature than date of primary thaw. Further 

collection and analysis of boreal evergreen species over multiple years and at additional sub-

Arctic flux towers is critically needed.   
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Introduction 

The future trajectory of the Arctic Boreal Zone as a net carbon (C) sink or source is of global 

importance due to vast quantities of C stored in permafrost (Hugelius et al., 2014). Climate 

warming threatens to thaw and release permafrost C back to the atmosphere as the 

greenhouse gases carbon dioxide (CO2) and methane, creating a positive feedback and 

promoting further global warming (Hinzman et al., 2013). At the same time, warming can 

lead to higher productivity (Natali et al., 2012), creating temporary C sinks via increased 

above-ground biomass and delayed decomposition, offsetting potential C losses. The 

remainder of this paper focuses on C in the form of CO2. 

The balance of net ecosystem C gain and loss processes is strongly modulated by land surface 

freeze/thaw dynamics, the timing and duration of seasonal soil thawing (defined as the 

transition from frozen to unfrozen soil water state), vegetation growing season, and surface 

moisture supply (Kim et al., 2014; Yi et al., 2014). In spring, plant productivity (denoted as 

gross primary production, or GPP) is hindered by cold temperatures and lack of liquid water 

in frozen soils and snow cover. Climate warming promotes earlier landscape thawing 

(Goulden, 1998), reduced spring snow cover duration (Lawrence & Slater, 2010), earlier 

budburst (Badeck et al., 2004), and longer growing seasons (Barichivich et al., 2013). These 

processes lead to higher GPP through simultaneous warming, CO2 fertilization, and increased 

woody biomass (Bhatt et al., 2010; Elmendorf et al., 2012; McGuire et al., 2012). Earlier 

spring snow melt and thawing also expose the land surface to increasing solar absorption 

resulting in a longer decomposition season, active layer deepening, an extended zero curtain 

period and talik formation, which can stimulate terrestrial ecosystem respiration (TER) 

through enhanced soil warming and water drainage (Lawrence et al., 2008; Romanovsky & 

Osterkamp, 2000). 

The impacts of changes in growing season length on annual C balance are not well modeled 

(Schaefer et al., 2012). In particular, Earth System Models used in IPCC climate assessments 

predict photosynthetic growing season onsets that are systematically early on local (Peng et 

al., 2015) to regional scales (Commane et al., 2017a). In turn, GPP biases propagate through 

the model and affect the timing and magnitude of estimated net biosphere production (NBP) 

(Wang et al., 2012), representing the balance of GPP and TER (NBP = GPP – TER). Because 

climate change at high latitudes promotes earlier and longer growing seasons (Barichivich et 

al., 2013; Kim et al., 2012), while the photoperiod remains fixed, models with early spring 

bias in the current climate are likely to under-estimate the photosynthetic response to future 
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warming. Consequently, errors in the simulation of growing season onset and duration 

provide a plausible explanation for the tendency of Earth System Models to underestimate 

peak growing season C uptake in response to climate warming (Graven et al., 2013). 

It is well known that changes in spring GPP onset in cold northern latitudes corresponds 

closely with changes in the date of soil thaw when liquid water becomes available (Troeng 

and Linder, 1982; Black et al., 2000; Goulden, 1998; Jarvis & Linder, 2000). In evergreen 

needleleaf forests (denoted evergreens), assimilated C initially accumulates as starch 

following soil thaw, and then is used to grow new foliage, branches, and stem during the 

growing season peak (Bergh et al., 1998). GPP onset can occur several weeks prior to 

changes in biomass in conifers (Ottander et al., 1995; Soukupova et al., 2008; Richardson et 

al., 2011), but the spring dehardening period, during which plants undergo the biochemical 

changes needed for green-up, can slow recovery from winter dormancy (Ensminger et al., 

2008). Land surface models that do not account for effects of frozen soils or recovery of 

photosynthetic capacity in spring and summer overestimate GPP gain by up to 10% across 

the entire permafrost domain (Jafarov & Schaefer, 2016) and up to 40% in boreal forests 

(Bergh et al., 1998). However, the relationship between spring GPP onset and soil 

freeze/thaw is complicated by confounding air temperature and snow cover effects, which 

can lead to GPP onset while soils are frozen (Esminger et al., 2004; Arneth et al., 2006; 

Jonsson et al., 2010; Gonsamo et al., 2012; Walther et al., 2016; Pulliainen et al., 2017).  

Tundra ecosystems in the far northern Alaskan and Siberian Arctic also show a pattern of 

increased GPP and NBP in spring with warming and earlier soil thaw and snowmelt (Griffis 

et al., 2000; Harazono et al., 2003; Arneth et al., 2006; Lafleur et al., 2007; Ueyama et al., 

2013). The length of time from soil thaw to onset of GPP and net C uptake (date when 

ecosystem shifts from net C source to net sink), however, varies under different 

environmental conditions and vegetation types. Simultaneous increases in soil respiration 

(i.e., TER) with GPP following thaw and snowmelt can delay daily net C uptake by 5-23 days 

depending on ambient temperature (Oberbaur et al., 1998; Lafleur et al., 2007). Ecosystem 

type and fraction of evergreen vs deciduous species is also important. Multi-year 

observations from a cluster of flux towers on the Alaskan North Slope show much stronger 

correlation of thaw date with heath and wet sedge tundra than with tussock tundra 

(Euskirchen et al., 2017). Likewise, evergreen mosses and lichens transition to net uptake 

within one week of snowmelt, while deciduous shrubs show a slower transition of 1-3 weeks 

(Lafleur et al., 2007). Direct observations of Sphagnum (moss) along the northern coast of 
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Alaska, near Barrow, show very weak levels of initial photosynthesis following snowmelt 

due to photoininhibition as a stress response to high radiation levels, causing a delay in net C 

uptake of ~3 weeks (Zona et al., 2011). The exact timing of spring GPP onset and transition 

to net C uptake in Arctic tundra and in boreal ecosystems is thus not well established at 

regional scale, in part due to sparse and variable results from field measurements, but also 

because reliable indicators of GPP onset are limited. 

Solar induced chlorophyll fluorescence (SIF) measures a direct outcome of foliar light 

absorption by chlorophyll and provides an important seasonal GPP proxy (Frankenberg et al., 

2011; Parazoo et al., 2014). Recent satellite SIF estimates have been used to accurately 

represent the timing of spring GPP onset and the duration of growing season C uptake in 

Alaskan ecosystems (Walther et al., 2016; Jeong et al., 2017; Luus et al., 2017; Commane et 

al., 2017a). In particular, Luus et al. (2017) show greenup and budburst to occur 1-2 weeks 

prior to SIF based GPP onset in northern high latitude deciduous tundra ecosystems. 

Moreover, leaf level SIF measurements show close correspondence to photochemical 

reflectance index and chlorophyll carotenoid index optical indices during spring 

photosynthetic activation (from gas exchange measurements) in boreal evergreens, reflecting 

a reversal of non-photochemical quenching and leaf pigments in spring with changes in 

chloroplast functioning during cold dehardening (Wong & Gamon, 2015; Springer et al., 

2017). Especially in evergreens, SIF remote sensing has potential to provide a powerful 

measure of the reactivation of photosynthesis in spring at large spatial scales, which is 

otherwise invisible and difficult to assess with reflectance-based optical indices (Wong and 

Gamon, 2015; Walther et al., 2016).  

Analysis of SIF-GPP relationships in Alaska has shed light on the effects of plant structural vs 

functional phenology changes on seasonal C fluxes across key Arctic biomes, and helped quantify 

Alaskan C balance (Commane et al., 2017a), but have not yet clarified links between plant phenology 

and environmental effects in driving seasonal onset of GPP and net C uptake. As such, our 

quantitative and mechanistic understanding of links between environmental forcing, phenology 

response, and plant C uptake across tundra and boreal ecosystems requires further refining, and 

improved estimates of the timing of thaw, GPP, and net C uptake at regional-scale. Here, we establish 

empirical relationships between spring thaw, GPP onset, and net C uptake at regional scale as derived 

from established GPP and NBP estimates constrained by satellite fluorescence and airborne CO2 

observations in Alaska (Luus et al., 2017; Commane et al., 2017a). We also analyze regional 

estimates against eddy covariance observations at boreal and tundra sites in interior and North Slope 

Alaska. By quantifying these relationships, we seek to determine the extent to which landscape thaw 
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controls the timing of GPP and net C uptake onset in northern ecosystems, and understand the 

ecosystem dependencies and physiological mechanism behind the timing and time lag of thaw and C 

fluxes. 

 

Materials and Methods 

Freeze/Thaw State Determination  

Daily 10-km resolution maps of the bulk freeze/thaw state of the Alaskan land surface were 

determined for 2012-2014 using passive microwave observations from the Advanced 

Microwave Scanning Radiometer-EOS (AMSR-E) and the Special Sensor Microwave 

Imager/Sounder (SSMIS-F17). The freeze/thaw mapping algorithm is based on wavelet 

analysis, which uses a time-series singularity classifier to identify the timing of freeze/thaw 

and snowmelt transitions (Steiner & Tedesco, 2014; Steiner et al., 2015; 2017). A brightness 

temperature gradient (K – Ka Bands), sensitive to transitions between frozen and liquid state 

of water caused by contrasts in the bulk landscape complex dialectric constant, is used to 

determine freeze/thaw status (Zhang & Armstrong, 2001). Peak diurnal difference brightness 

temperatures determine snowmelt status (Ramage & Isacks, 2002). Here, freeze/thaw state 

represents the transition of Alaskan landscapes from frozen to unfrozen conditions, and does 

not distinguish between landscape components (soil, vegetation, and snow).  

 

Regional GPP and NBP Flux Estimates  

Regional GPP is taken from the Polar Vegetation Photosynthesis and Respiration Model 

(PVPRM) (Luus & Lin, 2015a). PVPRM is a functional representation of ecosystem C fluxes 

parameterized using eddy covariance data for seven arctic and boreal vegetation types; it is 

applied regionally and temporally using monthly GOME-2 SIF and North American Regional 

Reanalysis (NARR) meteorology to obtain three hourly GPP, TER, and NBP at 1/6° latitude 

x ¼° longitude in Alaska. Phenology is driven by SIF from the Global Ozone Monitoring 

Experiment (GOME-2) satellite (Joiner et al., 2014; Luus et al., 2017). GOME-2 SIF at 740 

nm is derived using a statistically based retrieval, which optimizes model parameters for 

atmospheric absorption, surface reflectance, and fluorescence radiance using empirical 

principal component analysis, to enhance retrieval precision and reduce noise. Cloud 

screening is applied such that only pixels with cloud fraction less than 40% are retained, 

removing primarily heavily clouded (overcast) pixels within the 40x80 km GOME-2 

footprint. The main effect of the remaining clouds is a shielding effect, which masks a 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

fraction of the observed scene (80% of surface observed for 40% cloud cover and cloud 

optical thickness up to 10) but does not alter the spectral signature of fluorescence (Joiner et 

al., 2012; 2014). To alleviate reduced signal-to-noise soundings for low sun angles over snow 

and other high albedo surfaces in northern high latitude spring, GOME-2 SIF values are 

additionally screened for solar zenith angles less than 60° and cloud fractions below 20%, 

aggregated monthly and separately calculated for each vegetation class, then weighted 

according to component vegetation fractions at each PVPRM pixel (Luus et al., 2017). We 

refer to SIF driven GPP as PVPRM-SIF GPP. We also compare monthly constrained 

PVPRM-SIF GPP to 5-day mean SIF (same screening criteria) to assess the impact of 

monthly aggregation on seasonal transitions.   

PVPRM NBP in Alaska is further optimized using atmospheric CO2 vertical profiles obtained 

in the lower atmosphere across Alaska during the Carbon in the Arctic Reservoirs 

Vulnerability Experiment (CARVE) (Chang et al., 2014; Commane et al., 2017a). Profiles 

were acquired from Apr-Nov during CARVE campaigns from 2012–2014, and converted to 

mass-weighted, column-mean CO2 mole fraction in the atmospheric residual layer. The NBP 

optimization approach uses the CARVE Polar Weather Research and Forecasting—

Stochastic Time-Inverted Lagrangian Transport (PWRF-STILT) framework (Henderson et 

al., 2015) to calculate the influence function of land surface fluxes on CARVE profiles. 

Modeled partial column CO2 enhancements are obtained by convolving the land surface 

influence functions with NBP priors from PVPRM, which were aggregated to 0.5° x 0.5° for 

the CO2 inversion. For each 2-wk measurement period, additive corrections are made to 

PVPRM NBP that minimized the differences between modeled and observed column CO2 

enhancements, providing spatially explicit, data-constrained NBP for Alaska for each 

interval. Initial and final campaign dates varied each year, starting/ending on May 27 / Sep 26 

in 2012, April 2 / Oct 26 in 2013, and May 23 / Nov 9 in 2014, with a mean start and end 

dates on day of year (DOY) 127 and 293. We consider optimized NBP as most valid between 

mid-May and mid-October, although we note that CO2 fluxes in Jan-Mar compare well to 

near surface CO2 observations at CRV and BRW towers as determined from STILT 

footprints (Commane et al., 2017a). Additive flux corrections are linearly interpolated 

between aircraft measurement periods and use PVPRM prior flux for late winter when 

CARVE flights are not available (Dec-Mar) to obtain regional NBP for Alaska (daily, 

0.5°x0.5°). CARVE NBP estimates are denoted as CARVE-Opt (Commane et al., 2017b; 

https://doi.org/10.3334/ORNLDAAC/1389). 
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Commane et al. (2017a) account for uncertainties in observations, background, transport, and 

the model prior in CARVE-Opt using restricted maximum likelihood estimation, then 

generate 10,000 realizations of the additive flux correction. The standard deviation produces 

regionally aggregated errors of ~0.25 gC m-2 d-1 in spring and 0.50 gC m-2 d-1 in summer, 

which translates to a net C uptake onset error of 5-10 days on average (cf Fig. 3, Luus et al., 

2017 and Fig. 1, Commane et al., 2017a). We do not explicitly account for these uncertainties 

in our analysis, but consider this timing error in our qualitative analysis of Alaskan net C 

uptake onset.  

We provide an indirectly optimized estimate of TER as the difference between PVPRM-SIF 

GPP and CARVE-Opt NBP, replacing the unconstrained estimate provided by PVPRM. 

Given that PVPRM-SIF and CARVE-Opt are directly constrained by observations, we 

consider TER the more uncertain term in this analysis. Since NBP is a small number that 

balances larger GPP and TER components, small errors in NBP and GPP could lead to large 

compensating errors in TER. To reduce these compensating errors, we apply a constraint on 

the signs of TER and GPP to ensure the estimated TER is physically realistic (Bloom & 

Williams, 2015), and estimate TER as: 

TER = NBP*a + GPP*b 

where a and b reflect a range of possible scale factors based on estimated NBP and GPP 

normally distributed uncertainties of 50% (1-sigma range of 0.5 – 1.5 for a and b). We then 

sample 1000 samples of TER vectors, and reject unphysical values (TER < 0).  

We analyze CARVE-Opt NBP against an ensemble of 3 global inverse estimates constrained 

against satellite or surface CO2 observations: (1) NASA Carbon Monitoring System Flux 

(CMS-Flux) estimation and attribution strategy (Liu et al., 2014, 2017; Ott et al., 2015) 

constrained by column CO2 from the Greenhouse gases Observing SATellite (GOSAT) using 

the v7.3 ACOS retrieval algorithm; (2) CarbonTracker 2016 (CT2016) (Peters et al., 2007, 

with updates documented at http://carbontracker.noaa.gov) constrained by 124 datasets from 

a global network of tower, aircraft, and shipboard surface in situ CO2 observations; and (3) 

Jena CarboScope s04_v4.1 (Jena4.1) (update of Rödenbeck et al, 2003, 2005), constrained by 

surface observations at 59 sites. All inverse estimates are analyzed for the period 2012-2014.   

We also analyze simulated GPP and NBP from the CASA-GFED3 model (van der Werf et 

al., 2010), which is run at 0.5°x0.5° monthly resolution and scaled to 3-hour and 1°x1.25° for 

CO2 modeling studies (https://nacp-files.nacarbon.org/nacp-kawa-01/). Biomass burning and 
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fuel wood C emissions were estimated by the model on daily and monthly time step. These 

calculations are driven by analyzed meteorological data (MERRA) from the Goddard 

Modeling and Assimilation Office from 2003-2016. 

 

Flux Tower Site Description 

Data for this study were collected from eight eddy covariance towers across four sites on the 

North Slope and in Interior Alaska (Fig. 1). Brief site descriptions, including location, years 

analyzed, and references, are provided in Table 1. Tundra sites consist of five total towers at 

three sites in the North Slope of Alaska, including one tower each at Atqasuk (ATQ) and 

Ivotuk (IVO) and three towers at Imnavait Creek Watershed (IMN). Boreal sites include three 

towers at the Bonanza Creek Experimental Forest (BON) in Interior Alaska. NBP 

measurements were collected at each of the eight eddy covariance towers for at least one year 

during the period 2012-2014, and partitioned into GPP and TER components using the 

relation between NBP during the nighttime (PAR < 50 umol m-2 s-1) and air temperature 

(Euskirchen et al., 2017; Reichstein et al., 2005). An additional technique using daytime light 

partitioning at ATQ and IVO (Lasslop et al., 2010) is analyzed for comparison. All NBP and 

GPP estimates are processed as half-hourly means, then gap-filled and averaged daily. The 

data processing methodologies for BON and IMN are described in Euskirchen et al. (2014) 

and Euskirchen et al. (2017), respectively, and for ATQ and IVO in Goodrich et al. (2016). 

For each location, we sample PVPRM-SIF GPP and CARVE-Opt NBP only for years with 

available eddy covariance data from 2012-2014 (see Table 1).  

BON is our most southerly site, consisting of three stations in the boreal peatland lowlands of 

the Tanana Flats of interior Alaska within 0.5 km of each other (Euskirchen et al., 2014). 

These sites are ~30 km southeast of Fairbanks and vary in the presence and stability of 

permafrost. They include a black spruce ecosystem with cold soils and permafrost (BON-

Spr), a collapse scar bog representing recent permafrost thaw (BON-Bog), and a rich fen 

lacking permafrost (BON-Fen). BON-Spr is dominated by mature black spruce trees (Picea 

mariana, ~100 years old), with an understory consisting of shrubs, mosses, grasses, and 

lichens, and sits on an intact peat plateau that rises ~130 cm from the surrounding landscape. 

BON-Bog is a circular depression that formed through thermokarst, and contains active thaw 

margins with significant dieback of Picea mariana. BON-Fen is composed of grasses, 

sedges, and forbs. The sites are in close proximity (<0.5 km), and thus co-located within a 

single grid box of CARVE-Opt and PVPRM-SIF.  
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IMN is located in the northern foothills of the Brooks Range in northern Alaska (Euskirchen 

et al., 2017).  The watershed is underlain by continuous permafrost, with predominant soils 

containing 15–20 cm of organic peat underlain by silt and glacial till. The mean annual air 

temperature (MAT) from 1988–2007 was -7.4°C and the mean annual precipitation was 318 

mm, with about 40% occurring as rain and 60% as snow. The landscape is treeless, located 

approximately 100 km north from latitudinal treeline. IMN includes three stations across 

three unique tundra sites, including heath (IMN-Hth), moist acidic tussock (IMN-Tus), and 

wet sedge (IMN-Sed). These sites are also in close proximity (<0.5 km) and therefore share 

the same grid box. 

IVO is located ~300 km to the south of the Arctic Ocean at the foothills of the Brooks Range, 

with a MAT and summer precipitation of −8.9°C and 210 mm from 2003-2008. IVO 

vegetation is dominated by tussock-sedge, dwarf-shrub, and moss tundra, and represents the 

dominant vegetation type in Alaska (Zona et al., 2016). Tussock tundra on flat ground 

consists of 57% E. vaginatum tussocks, 42% inter-tussock vegetation (dominated by 

Sphagnum moss) and 1% moss-dominated hollows (Davidson et al., 2016). The most 

northerly site, ATQ, is ~100 km south of the Arctic Ocean. MAT and summer precipitation in 

ATQ are −10.8°C and 100 mm, respectively, for the 1999 to 2006 period. ATQ vegetation is 

dominated by tundra sedges, grasses, mosses, and some dwarf shrubs <40 cm tall. Tussock 

tundra on dry ridges and plateaus comprised 21% Eriophorum vaginatum tussocks and 79% 

inter-tussock areas, which are dominated by moss and evergreen dwarf shrubs (Davidson et 

al., 2016). ATQ has landcover typical of arctic wetlands (Zona et al., 2016). 

Analysis 

We analyze the period 2012-2014 in Alaska (58°N-72°N, 140°W-170°W) due to availability 

of CARVE-Opt data. All regional freeze/thaw, GPP and NBP datasets are aggregated to 

0.5°x0.5°, then averaged across years to provide a three-year climatology. This study focuses 

on climatological spatial patterns over this period, rather than year-specific patterns or 

interannual variability, to provide a first assessment of thaw-C uptake patterns over Alaska. 

We define seasonal onset dates for snowmelt, thaw, GPP and net C uptake for each grid point 

in the climatological mean. We acknowledge our short three year period provides a small 

sample of northern high latitude springs, but captures a range of variability including an 

average spring in 2012, cool and late spring in 2013, and warm and early spring in 2014 

(Davidson et al., 2016; Euskirchen et al, 2014; Cox et al., 2017; Commane et al., 2017a).  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Primary spring thaw is defined as the first DOY when a 14-day running filter contains at least 13 days 

when the land surface was classified as thawed. This high threshold (13 of 14 days, or 93%) 

discriminates against early ‘false thaws’ and extended diurnal thaw-refreeze cycles that characterize 

the Alaskan spring. Previous work (Kim et al., 2012) demonstrates that even an 80% threshold is 

insufficiently stringent and defines a growing season start date that is too early. Snow-melt date is 

identified as a one-time switch indicating wet snow with sensitivity to melt-refreeze cycles 

minimized. We analyze freeze/thaw date as the primary switch for GPP onset, but provide a brief 

analysis of snow-melt to provide context for spring respiration. We define the GPP onset date as the 

mean DOY when GPP is between 10-20% of GPPmax for that year, accounting for observation noise 

and range of transition dates from slow to rapid spring recovery in tundra and boreal ecosystems. We 

define the net C uptake start as the first DOY when NBP > 0 gC m-2 d-1.  

We analyze only grid points with average elevation < 1300 m (no alpine vegetation) and less 

than 60 days of reported thaw or snow-melt status from January 1 to spring thaw date as 

identified above. This filter isolates data with smooth seasonal transition between frozen and 

thawed conditions and clearly demarcated frozen winter soils from thawed summer soils. 

Results are analyzed separately for individual land cover types from Environmental 

Protection Agency Level 2 and 3 North America ecoregion maps (Fig. 1; 

https://www.epa.gov/eco-research/ecoregions), with high elevation pixels masked out in 

white. The primary land cover types analyzed are tundra and boreal, which are sub-divided 

into the following geographical sub-regions: Tundra Southwest (includes Seward Peninsula, 

Subarctic Coastal Plains, and Bristol Bay-Nashugak Lowlands), Tundra North Slope (Arctic 

Coastal Plain and Arctic Foothills), Tundra Brooks (includes Brooks Range), Boreal Interior 

in central Alaska (Interior Forested Lowlands, Uplands, and Bottomlands), and Boreal 

Mountains in southeast Alaska (Interior Highlands and Ogilvie Mountains).  

Results 

Flux Tower Evaluation 

Observationally constrained estimates of seasonal GPP and NBP (PVPRM-SIF and CARVE-

Opt, respectively) are sampled at and compared to eddy covariance towers (for years with 

available eddy covariance data, Table 1) for individual sites in Fig. S1 and S2, using native 

optimized grids (PVPRM-SIF: 1/6°x1/4°; CARVE-Opt: 0.5°x0.5°). PVPRM-SIF and eddy 

covariance GPP show high consistency of seasonal amplitude, including decreasing 

amplitude moving north from southern boreal (BON) to northern tundra (IMN, IVO). The 

high spatial resolution of PVPRM-SIF resolves spatial gradients across diverse landscapes 
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including low GPP (relative to surrounding pixels) at BON and relatively high GPP at IMN 

(Fig. S3). PVPRM-SIF overestimates growing season GPP at the northern most site (ATQ, 

Fig. S1H) by a factor of 2-3 depending on partitioning technique (larger error using daytime 

partitioning at IVO and ATQ). We note a possible calibration bias at ATQ linked to PVPRM 

model parameter calibration against 2005 ATQ data (Luus et al., 2015; evidence supporting 

this claim provided in Discussion). We find consistency in the seasonal phase, including 

timing of GPP onset, at all tundra sites (IMN, IVO, and ATQ), but delayed GPP onset in the 

lowland boreal landscapes at the BON towers (Fig. S1 A-C). At the BON towers and 

especially BON-Spr, eddy covariance GPP onset occurs ~1 month earlier than estimated by 

PVPRM-SIF or implied by GOME-2 SIF retrievals sampled at each site.  

CARVE-Opt NBP is less consistent with eddy covariance data (Fig. S2). Seasonal amplitude 

is overestimated at BON boreal sites, underestimated at IMN and IVO tundra sites, and 

overestimated at ATQ tundra. Reduced agreement of CARVE-Opt NBP (relative to GPP) is 

attributed to spatial aggregation errors, due to regridding of PVPRM NBP from its native grid 

(1/6°x1/4°) to the coarser 0.5°x0.5° grid used as the CARVE-Opt prior. The effect is seen 

clearly in maps of PVPRM NBP at native and aggregated resolutions (Fig. S4 and S5, 

respectively). Finer scale structure is ultimately smoothed out in CARVE-Opt NBP (Fig. S6). 

As such, sampling NBP at the native resolution produces higher agreement with tower data 

than prior and optimized NBP at coarser resolution (Fig. S2). 

Across-site averages of GPP and NBP for combined tundra (IMN, IVO, ATQ) and boreal 

(BON) sites are shown in Fig. 2. Here, PVPRM-SIF GPP and CARVE-Opt NPB are sampled 

at the eddy covariance tower. Spatial averaging improves the NBP comparison at all sites, but 

especially at IVO and IMN, which exhibit strong gradients of increasing NBP to the south. 

Estimates of the onset date for GPP and net C uptake are within range of eddy covariance 

observations at tundra sites, but one month late at BON. Tundra GPP onset is identical (DOY 

155), while CARVE-Opt net C uptake is only 6 days late (DOY 170 vs 164) despite a larger 

net C source through late spring. Boreal GPP onset is 32 days late (DOY 136 vs 104) and net 

C uptake 25 days late (DOY 153 vs 128). GOME2-SIF shows earlier recovery than PVPRM-

SIF, but the initial onset is still later than in eddy covariance data. Thaw onset (from AMSR-

E and SSM/I) occurs on average on DOY 102 at BON and DOY 130 at tundra sites.  

Overall, flux towers and observationally constrained estimates show consistent patterns of C 

flux onset when averaged across boreal and tundra locations. This includes earlier onset of 

GPP and net C uptake at our boreal location, and lag times of ~4 weeks between thaw and 
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GPP onset at tundra locations. We also find consistent time lags between onset of GPP and 

net C uptake, with shorter lags in tundra (15 vs 9 days for observationally constrained and 

eddy covariance estimates, respectively) and longer lags for boreal (17 vs 24 days).  

Focusing on the relative time lag between thaw and GPP onset shows very different patterns 

in boreal vs tundra; PVPRM-SIF shows similar time lags in boreal and tundra locations (~33 

days), whereas flux towers show no lag in boreal forests but a 33 day lag in tundra. These 

discrepancies are attributed primarily to late GPP onset bias in PVPRM-SIF in boreal forests, 

which is linked to  late morning GOME-2 SIF snapshots and thus unresolved diurnal 

photosynthetic signals in evergreens (e.g., Fig. S7). We elaborate on these discrepancies in 

the Discussion. Regional patterns of thaw and onset of GPP and net C uptake are examined in 

more detail below.    

Regional Analysis 

In contrast to eddy covariance data, regional analysis indicates a systematic pattern of 

reduced time until GPP onset for later thaw dates. Fig. 3a-c shows spatial gradients of spring 

onset dates for thaw, GPP, and net C uptake. Mean onset dates for boreal and tundra regions 

are summarized in Table 2. The spatial pattern is characterized by early thaw, GPP onset, and 

net C uptake in boreal forests (DOY 111±7, 141±5, 145±10 days in the 2012-2014 average, 

respectively), and delayed onset in tundra (DOY 127±10, 151±5, 163±10 days, respectively), 

consistent with warmer southern boreal climate and cooler northern tundra climate. 

Uncertainty is estimated here as sample uncertainties (standard deviation), with random 

errors in CARVE-Opt (~5 days) added to net C uptake date using sum of errors. Sub-regional 

variability is negligible in boreal forests, which is clumped in the interior and southeast, and 

strongly latitude dependent in tundra, which ranges from southwest to northern Alaska. In 

tundra, thaw (DOY 119±15, 126±5, 133±5), GPP onset (DOY 146±6, 150±3, 153±3), and net 

C uptake (DOY 159±11, 161±8, 168±9) become later moving north from Tundra Southwest, 

Brooks, and North Slope sub-regions.  

While thaw and GPP onset dates are later in tundra compared to boreal regions, the lag time 

between thaw and GPP onset (Fig. 3d) decreases slightly across the same regions. Lag times 

range from 40 days in the southern mountains (Alaska Range and Alaska Peninsula 

Mountains) to ~10 days along the west and north coast (Seward Peninsula and Arctic Coastal 

Plain), and correspond to average lag times of 29±6 days in boreal regions and 23±7 days in 

tundra. We also find a high correlation between thaw and GPP onset (R2 = 0.69; p-value < 
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0.001) with slope less than one (DOYthaw = 0.5*DOYGPP + 79.5, where DOYthaw and DOYGPP 

denote dates of thaw and GPP onset) and consistency across ecoregions (Fig. 4a). Seasonal 

change in incident shortwave radiation (derived from NCEP2 downwelling shortwave), 

which increases later in spring moving north, is consistent with the spatial pattern of GPP 

onset, but shows weaker grid scale correlation with GPP onset compared to thaw onset. We 

test this by regressing GPP onset against two shortwave onset metrics: (1) shortwave at the 

time of thaw onset, and (2) onset date of shortwave (10-20% of its annual peak). This 

analysis yields R2 = 0.30 and 0.31, respectively, representing weak correlations compared to 

thaw onset (R2 = 0.69). Furthermore, high latitude tundra receives higher radiation levels at 

thaw onset than forests to the south; on average, incident radiation along the North Slope 

exceeds Boreal Interior values by 20% (290±25 vs 241±26 Wm-2) due to later tundra thaw 

onset (DOY = 133 vs 110). The convergence of soil thawing and seasonal phenology with 

latitude suggest that tundra ecosystems are well adapted to take advantage of this extra light 

within 2-4 weeks of thaw onset (more detail on physiological mechanisms in Discussion).  

The magnitude of spring GPP and NBP also decrease with later thaw date, but their 

relationship to each other is ecosystem dependent (Fig. 4b-d). We analyze GPP sensitivity 

during the one month period from May 15 to June 15, following earliest ecosystem mean 

GPP onset (DOY 136 in Boreal Interior). May 15 also roughly corresponds to the mean date 

of first CARVE CO2 observations (DOY 128), ensuring that CARVE-Opt NBP results are 

consistent with available spring observations. Mean spring GPP decreases at a rate of -

0.8±0.03 gC m-2 for every 2 weeks of delayed thaw (R2=0.44). All ecosystems exhibit similar 

relationships, but the sensitivity of reduced GPP to delayed thaw date is three times stronger 

on average in boreal forests (e.g., -0.9±0.09 gC m-2 d-1 per 2 weeks) than in tundra (e.g., -

0.3±0.04 gC m-2 d-1 per 2 weeks). Spring NBP also decreases with later thaw (-0.5±0.02 gC 

m-2 d-1, Fig. 4c), but shows higher consistency (within a factor of 2 difference) across 

ecosystems (tundra = -0.2±0.06 gC m-2 d-1; boreal = -0.4 ± 0.04 g C m-2 d-1). As such, the 

sensitivities of GPP and NBP to thaw in tundra are of similar magnitude while sensitivities 

for boreal forest are 2-3 times weaker for NBP than GPP. The relationship between spring 

GPP and NBP for tundra and boreal ecosystems is summarized in Fig. 4d. Overall, NBP 

increases at half the rate of GPP (y=-0.5x+0.5), but with higher overall sensitivity in tundra (-

0.7±0.09) than boreal (-0.35±0.02), and reduced sensitivity for lower GPP (tundra=-0.6±0.1; 

boreal=-0.5±0.1). 
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The reduced sensitivity of NBP to GPP in boreal points to TER onset as a key factor also 

driven by thawing, and which offsets the initial spring GPP. Aggregated plots of TER (Fig. 

5a) show an initial increase between snowmelt and landscape thaw (DOY 100±10 and 111±7, 

respectively), ~4 weeks prior to GPP onset (DOY 141±5). The transition from onset of GPP 

to net C uptake (DOY 145±10) is short throughout boreal forests (Fig. 3f), but the C uptake 

rate is initially slow (-1.2 gC m-2 month-1) due to synchronous increases in GPP and TER 

following GPP onset. C uptake accelerates in early June as respiration levels off with 

substrate depletion and GPP fully recovers from winter.  

Regional mean onset dates for boreal GPP (DOY 141±5) and net C uptake (DOY 145±10) 

are early, and corresponding lag time (4±7 das) short, compared to eddy covariance 

observations at BOR (DOY 104 and 128, and 24 day lag, respectively). However, the lag 

time is highly variable at regional scale (±7 days). Further, the lag time sampled at the tower 

(17 days) corresponds more closely with eddy covariance data (20 days). This suggests that 

the dynamics driving net C uptake onset are not well captured by CARVE-Opt at BOR and 

potentially other boreal locations, due to sparse airborne CO2 coverage before mid-May and 

coarse spatial resolution of CARVE-Opt. Enhanced airborne sampling in after mid-May leads 

to improved representation of the transition from GPP to net C uptake onset. 

Respiration offsets an even larger fraction of spring GPP in tundra (Fig. 5b) due to early 

respiration in mid-April (similar timing to boreal) and delayed GPP onset (10 days later than 

boreal). The timing of TER onset corresponds closer to the mean onset date of snowmelt 

(DOY 112±12) than landscape thaw (DOY 127±10), consistent with onset of subnivean 

respiration. The GPP delay also causes a slight phase shift between GPP and TER seasonal 

cycles, increasing the transition time from onset of GPP (151±5) to net C uptake (163±10 

days) by a factor of 3 compared to boreal (13±7 days). Longer transition times are found 

throughout western and North Slope tundra, with longest times just north of the Brooks 

Range (Fig. 3f). Consequently, the transition time from thaw to net C uptake is delayed in 

tundra by 37±9 days (Fig. 3e), similar to the boreal transition (34±9 days), but leads to a 50% 

higher NBP following the transition to net C uptake (-1.8 gC m-2 month-1). Regional mean C 

flux onset dates and lag times in tundra are consistent and within the uncertainty of eddy 

covariance data analyzed in this study.   
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Analysis Against Other CO2 Inversion Systems 

Our reported spring C uptake patterns are specific to CARVE-Opt, which represents an 

estimate of Alaskan regional-scale dynamics complementary to global inversions due to the 

closer proximity of airborne CO2 measurements to regional flux and the higher resolution of 

atmospheric transport. Using CARVE-Opt as a benchmark, we compare the timing and depth 

of spring C uptake to global inverse estimates derived from near-surface CO2 observations 

from CT2016 and Jena4.1 (Fig. 5 c-d), which are reported daily, and satellite column data 

from CMSb7.3 (Fig. 5 e-f), which is reported monthly (15th of month).   

In boreal forests, global and regional inversions show general agreement of earlier and 

greater uptake compared to tundra. The inversions also show remarkable agreement in spring 

net C uptake onset and transition back to net source in fall. Global inversions do not show a 

boreal respiration pulse as seen in CARVE-Opt in mid-May in the three year average, 

although Jena4.1 does reflect this in individual years. Likewise, the presence of this pulse in 

CARVE-Opt is predicted by PVPRM in all years but only confirmed by CARVE airborne 

observations in 2013. The pulse is not detected in eddy covariance data at BON-Spr or BON-

Bog, but is observed at BON-Fen (Fig. S2). Thus, the repeatability of this pulse over multiple 

years and at regional scale is unclear.   

Jena4.1 estimates a smaller rate and depth of uptake in the early growing season compared to 

CARVE-Opt and CT2016. The smooth transition from March to July aligns well with BON-

Spr but not with BON-Fen or BON-Bog. The small seasonal amplitude in Jena4.1 is likely 

related to the model prior which, in contrast to both CARVE-Opt and the other global 

inversions, uses a constant zero prior in place of a modeled prior. 

The relative seasonal patterns across inversions are similar for tundra, but here we give more 

weight to CARVE-Opt due to the high agreement in phase and amplitude with eddy 

covariance data (Fig. 2d). CMSb7.3 and CT2016 capture the depth and rate of spring uptake. 

The sustained tundra efflux from late April to early June is absent from all methods. The true 

magnitude of the spring tundra source likely falls somewhere between CARVE-Opt (~0.5 gC 

m-2 d-1) and surface inversions (< 0.1 gC m-2 d-1) as suggested by eddy covariance data (~0.25 

gC m-2 d-1), although we note a stronger pulse at the representative tundra site of IVO (Fig. 

S2g), which peaks at 0.5 gC m-2 d-1 in mid June. Nevertheless, CT2016 and Jena4.1 capture 

the delayed timing of spring uptake in tundra. In contrast, CMSb7.3 has a pronounced early 

spring bias in tundra of ~3 weeks.  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

We investigate the CMSb7.3 spring bias in more detail by comparing posterior and prior 

NBP. Prior NBP is prescribed from CASA-GFED3, shown in Fig. 5e,f. Seasonal NBP 

amplitude in CMSb7.3 is much improved compared CASA-GFED3. However, the timing of 

the spring and fall transitions are generally fixed relative to CASA-GFED3, which is early 

compared to CARVE-Opt in spring. In contrast, CT2016 shows a shift in both the seasonal 

amplitude and phase relative to its prior, CASA-GFED4.1. Although CASA-GFED4.1 also 

has an early bias, CT2016 forces a delay in net C uptake onset in boreal and tundra regions in 

closer agreement with CARVE-Opt across the range of fossil fuel, ocean, and biosphere 

priors in the CT2016 ensemble. The inversion does not have substantial impact on the 

seasonal amplitude or duration of drawdown following peak uptake, which is underestimated 

compared to CARVE-Opt. An explanation of spring timing difference across inverse methods 

is provided in the Discussion.  

Finally, we examine the source of the early spring bias in CASA-GFED. Previous analyses of 

CASA in lower latitude boreal forests characterized GPP as generally well represented in 

satellite constrained diagnostic models, and that differential phasing of TER with respect to 

GPP is needed to accurately estimate NBP timing surrounding the growing season peak 

(Messerschmidt et al., 2013). Our analysis of cold northern boreal and tundra ecosystems 

suggests the opposite: The timing of spring TER onset is well represented in CASA-GFED, 

while GPP onset is systematically early in boreal and tundra regions (Fig. 6). In tundra in 

particular, CASA-GFED predicts an early initial GPP increase in late April, followed by a 

larger secondary jump in late May which increases more rapidly than suggested by PVPRM-

SIF. The timing is exacerbated by use of monthly mean normalized difference vegetation 

index and APAR in CASA, causing GPP to increase more instantaneously than a monthly 

interpolated change.  

Discussion 

Spring Photosynthetic Recovery in Alaska Tundra and Boreal Forests 

Our results indicate that the timing and magnitude of spring C fluxes in Alaska are correlated 

with landscape thaw and ecoregion. Tundra ecosystems thaw on average 2 weeks later than 

boreal forests, and require less time to transition to GPP onset. This pattern of later thaw and 

reduced lag time in tundra (23±7 days) compared to boreal forests (29±6 days) is consistent 

with eddy covariance data for eastern Canada and Sweden (Kim et al., 2012). The short time 

lag in Alaskan tundra, and especially North Slope tundra (20±5 days), is consistent with data 
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in Siberian tundra showing rapid physiological response to warming and snowmelt, a 

plausible adaptation of high latitude tundra ecosystems to the short growing season (Arneth et 

al., 2006). Interior boreal forests, on the other hand, have been found to require at least an 

extra week to reach 10-20% capacity due to pigment adjustments (e.g., Ottander et al., 1995).  

In Alaskan tundra, PVPRM-SIF indicates a weak physiological response for the first two 

weeks after thaw onset followed by a more rapid response, with 15% of peak annual GPP 

attained after three weeks and peak GPP after eight weeks. Low initial GPP, especially in 

northern Alaska, is attributed to high radiation exposure with later thaw; incident radiation 

along the North Slope and Brooks Range exceeds Boreal Interior values by 20% and 

represents a larger percentage of peak annual radiation (82% vs 67%). This apparent light 

stress, and subsequent rapid recovery, is supported by evidence from Sphagnum moss near 

Barrow, Alaska, which show low levels of photosynthesis early in the season due to 

photoinhibition, then development of subsurface moss layers and structural protection from 

high radiation later in the season, enabling increased photosynthetic capacity with reduced 

risk of light damage (Zona et al., 2011). High nitrogen (N) availability early in the growing 

season, driven by decreases in microbial biomass and release of N during snowmelt, provides 

further stimulus to photosynthesis under snow and following snowmelt (Brooks et al., 1998; 

Starr and Oberbaur, 2003; Larsen et al., 2007). The convergence of soil thawing and seasonal 

phenology with latitude thus appears to reflect the efficient adaptation of high latitude 

shrubby ecosystems to cold, high light, and nutrient rich environments and the need to 

maximize the number of growing days and soil liquid water availability during the short thaw 

season.  

These same factors (warm temperatures and high N availability at thaw onset) also stimulate 

decomposition of soil organic carbon by microbes, leading to simultaneous increases in soil 

respiration (Oberbaur et al., 1998; Lafleur et al., 2007). Further, competition for N by plants 

and microbes leads to a crash ~1 month following snow melt, such that tundra plants become 

N limited (Larsen et al., 2007). These studies are consistent with our finding of delayed time 

from GPP onset to net C uptake, roughly 2 weeks (14±8 days) in the Tundra North Slope.   

Although we estimate a longer time lag in boreal forests on average, we note the difference 

from tundra is within the statistical uncertainty, thus permitting cases where time lag is 

reversed and shorter in boreal forests. Evidence from mire (tundra) and pine (boreal) sites in 

Siberia sharing similar climate indicate a shorter time lag in the pine forest, which exhibits a 

rapid physiological response to above zero temperature even when there is snow on the 
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ground (Arneth et al., 2006; Eukskirchen et al., 2014). Needleleaf trees such as black spruce 

at Bonanza Creek show a negative lag (GPP reaches ~15% of peak prior to thaw) triggered 

by early warming (Fig. S7), with the first non-zero GPP values occurring in the afternoon 

(12–3 pm), prior to onset of primary thaw, on days with above freezing afternoon air 

temperature and near or below freezing morning temperature (9am–12pm). This early 

photosynthesis, at least in evergreens, represents a physiological adaptation to stress when 

sufficient radiation is already available and absorbed by green needles, and small amounts of 

plant available liquid water in soils can be transported through xylem in conifers and 

evaporated through leaf stomata as a cooling mechanism (Ishida et al., 2001). These results 

suggest that sunlight, air temperature, and xylem flow may be better predictors of 

photosynthetic onset in evergreens than date of primary thaw. However, we note that weak 

levels of photosynthesis have been observed during transient freeze/thaw cycles during the 

spring zero curtain preceding primary thaw (Tanja et al., 2003). Diurnal freeze/thaw data may 

therefore offer a useful indicator of initial photosynthesis, provided that the resolution is fine 

enough (< 10 km2) to distinguish between vegetation and soil landscape components.  

 

Limitations and Uncertainties for SIF and CO2 Observations 

In evaluating PVPRM-SIF and CARVE-Opt C flux patterns against eddy covariance data, we 

find good representation of tundra C flux seasonality and earlier GPP onset in boreal forests, 

but a potential late onset bias in the timing of spring onset of GPP and net C uptake in boreal 

forests. We analyze temperature forcing for a cold bias in PVPRM, which might lead to late 

GPP onset, but find good agreement to observed temperature at Bonanza Creek (Fig. S9). 

The following limitations in our use of satellite SIF for constraining spring onset of evergreen 

photosynthesis provides a more likely explanation: (1) GOME-2 overpass time, (2) assumed 

SIF-GPP linearity, and (3) monthly aggregation.  

First and foremost, we note that the GOME-2 SIF late morning overpass in Alaska (~11:30 

am) hinders observation of early season peak daytime photosynthesis in high latitude 

evergreens, which can occur even if morning or daily mean temperatures are below freezing 

(as discussed above), or under transitional (AM frozen, PM thawed) thaw events (Kim et al., 

2012). The switch from negative to positive SIF signals at Bonanza Creek occurs following a 

significant rise in morning temperature of 3-5C above freezing and near primary thaw (Fig. 

S7). As such, PVPRM-SIF is unlikely to capture early GPP onset in boreal evergreen forests 
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when constrained solely by spaceborne spectrometers with morning overpasses. Instruments 

with midday overpass, such as TROPOMI and OCO-2 (e.g., Guanter et al., 2015), are better 

suited to capture daytime signals, but inadequate by themselves to detect transitional thaw 

events, and thus cannot represent true daily mean SIF. OCO-2 also lacks the temporal 

resolution (16 day repeat cycles) to resolve the spring transition (e.g., Sun et al., 2018). 

Ideally, a harmonized product combining spatially resolved, polar orbiting instruments with 

morning (GOME-2, SCIAMACHY) and midday (TROPOMI, OCO-2) is needed.    

It is important to note, however, that SIF is not as well correlated with photosynthesis during the early 

growing season when leaf level photochemistry precedes increasing SIF emissions (Springer et al., 

2017). In evergreens, the SIF-GPP relation changes seasonally with changes in non-photochemical 

quenching (NPQ) and shifts in carotenoid pigments during transition seasons (Ottander et al., 1995). 

Increasing pigmentation in fall functions to shed more absorbed energy as NPQ than SIF over winter 

months (Ottander et al., 1995, Demmig-Adams and Adams, 1996; Porcar-Castell, 2011; Muller et al., 

2001) and in early spring with increasing exposure to harmful radiation (Arneth et al., 2006). 

Increases in absorbed light and temperature in spring during the cold de-hardening period cause 

relative declines in carotenoid pigments and increases in chlorophyll concentrations, leading to 

increasing photosynthetic activity, reduced NPQ, and increased dissipation of absorbed light as SIF 

(Wong and Gamon, 2015; Springer et al., 2017). The increase in SIF and GPP in evergreens is gradual 

due to the gradually changing pigment ratios of carotenoids and chlorophyll (Wong and Gamon, 

2015). Although a recent analysis of GOME-2 SIF has supported a temperature triggered early onset 

mechanism at pan-Arctic scale (Walther et al., 2016), our results suggest that true onset may occur 

several weeks earlier. We thus recommend the use of additional remote sensing indices such as 

chlorophyll carotenoid index (CCI) and photochemical reflectance index (PRI) with midday and 

morning SIF to interpret the full dynamical range of photosynthesis during spring onset (Springer et 

al., 2017). 

This research has also demonstrated that our method to aggregate GOME-2 SIF retrievals by month 

and biome class, with linear interpolation between values (Luus et al., 2017), is inadequate to resolve 

spring transitions at high latitudes. Analysis of 5-day mean SIF retrievals, for example, suggest earlier 

photosynthetic recovery at BON than in the regional average of Alaskan evergreens (Fig. 2a). Future 

efforts to reduce these errors and interpret patterns of thaw vs C flux onset requires at a minimum 

non-linear interpolation methods for monthly SIF, and ideally more spatiotemporal explicit 

application of satellite SIF data in light use efficiency models. More sustained early season, spatially 

intensive sampling of airborne CO2 (Parazoo et al., 2016) and longer-term eddy covariance fluxes and 

from additional sites in high northern boreal forests is also needed. 
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SIF based GPP onset biases in forests feed into NBP calculations and contribute to errors in 

seasonal amplitude and timing. NBP optimization by CARVE CO2 observations alleviate 

most errors at regional scale, but a few remaining grid scale errors persist at tundra and boreal 

locations. These are attributed to four key factors. First, as discussed above, is the high spatial 

variability and biome dependence of net C uptake onset. This has an especially large impact 

on NBP at tundra sites (IMN, IVO) located along the border of Brooks and North Slope sub-

regions. Second is the small sample size of boreal forest sites, represented only by BON-Spr. 

BON-Spr is also unique in its sudden shift in summer NBP magnitude during the two years of 

overlap with CARVE-Opt, switching from a large summer sink from 2010-2012 to a small or 

neutral summer sink from 2013-2016 (Fig. S8). We suspect the reduced summer sink is 

related to a local respiration source from underlying permafrost and thermokarst near the 

tower, which is undetected by CARVE flights. Third is the lack of consistent airborne CO2 

flights from early April through late May during the eddy covariance NBP transition. Thus 

our NBP estimate during this period relies on PVPRM, which estimates a delayed net C 

uptake onset following late GPP onset. Fourth is the relatively short three year record. 

Significant natural year-to-year variability in the onset of thaw, phenology, and gross/net C 

uptake at ecosystem and regional scale is common in Alaska (e.g., Kim et al., 2012; 

Commane et al, 2017a), and makes it difficult to examine climatological spatial patterns over 

short records. Although the focus of this research is regional scale and thus limited by data 

availability, we note that ongoing measurements of satellite SIF and airborne CO2 from the 

recent NASA Arctic-Boreal Vulnerability Experiment (ABoVE, https://above.nasa.gov) will 

provide a longer period of record to analyze interannual variability.  

 

Limitations and Uncertainties for Eddy Covariance Observations 

We also note the factor of 2-3 overestimation of GPP at ATQ by PVPRM-SIF. This error is 

attributed to two factors: (1) a calibration/validation inconsistency, with PRVPM parameters 

calibrated using year-round 2005 ATQ data but validated against 2014 ATQ data, and (2) 

representativeness of eddy covariance. The first factor would cause a high bias only if GPP 

and NBP in 2005 were higher than 2014 data shown here. Although 2005 data is not 

available for comparison, we can infer the tendency of GPP in 2005 vs 2014 using a very 

simple model of GPP as a function of thawing degree days (TDD), estimated as the sum of 

the mean daily temperature above 0°C and for which we have site level data available from 

2005-2014. This model assumes higher peak GPP for larger TDD. We find a TDD of 650 
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days in 2005 and 563 days in 2014, indicating higher productivity in 2005. Previous work 

using chamber data shows higher GPP in 2013 than in 2014 at ATQ (Davidson et al., 2016), 

consistent with higher TDD (720 days). These findings indicate higher GPP in 2005, which 

supports a calibration bias at ATQ and argues for an updated calibration of PVPRM using the 

longer record of data at existing eddy covariance towers (Luus et al., 2015) and inclusion of 

new tundra and boreal towers (http://ameriflux.lbl.gov/data/). 

With regard to the second factor (representativeness), eddy covariance is the most direct 

measurement of ecosystem fluxes available, however, several uncertainties should be 

considered in the interpretation of our results: (1) The tower footprint (~100 km2) is large 

compared to individual tree canopies (< 5 m), making it a challenge to disentangle 

contributions from different vegetation types and C sources in heterogeneous Alaskan 

landscapes. For example, moss contributions to total NBP range from 25% to 60% in mixed 

tundra landscapes (Zona et al., 2011) such as seen at Ivotuk (tussock-sedge, dwarf-shrub, and 

moss tundra) and Atqasuk (sedge, grass, mosses, and dwarf sedge). At the BON cluster, 

nearby thermokarst permafrost emissions have a substantial influence of C fluxes observed at 

BON-Spr (Fig. S8); (2) The tower footprint is much smaller compared to footprints for 

PVPRM-SIF (~102 km2), CARVE-OPT (~103 km2), and aggregated SIF soundings (~104 

km2). Although some effort is made to capture sub-grid variability by combining tower 

clusters (e.g., IMN, BON) and similar ecosystems (e.g., Fig. 2), and by examining sensitivity 

to spatial resolution (e.g., Fig. S1), we caution that spatial representativeness issues remain in 

the flux tower – model comparisons. Airborne eddy covariance surveys provide a viable 

option to increase footprint size toward regional scale (Wolfe et al., 2017); (3) Flux 

partitioning of eddy covariance NEE into GPP and TER also carries large uncertainties and 

can yield very different results depending on method (e.g., Fig. S1). This uncertainty in itself 

may explained the large time lags between thaw and GPP observed at Bonanza Creek. More 

work is needed to understand the sensitivity of nighttime vs daytime partitioning techniques 

in Alaska and impact on GPP seasonal onset/offset and amplitude, in particular as a function 

of length of day, and to compare flux partitioning algorithms to measured respiration form 

dark chambers across the Arctic. 
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Implications for Top-Down and Bottom-Up Estimates of Net Carbon Exchange 

Our results also indicate similar time lags from thaw to net C uptake onset in tundra and 

boreal (~5 weeks), such that net C uptake occurs later in tundra, with exact timing depending 

on vegetation type (wet sedge, heath, tussock) (Fig. S2). Delayed tundra uptake is captured in 

global inverse models, but with net C uptake onset too early in spring and too shallow in 

summer. Further assessment of CMSb73, which has the most severe spring timing bias, 

indicates a link to early net C uptake onset in the CASA-GFED prior, and exacerbated by 

estimation of monthly scale factors for net exchange and limited seasonal coverage of 

satellite observations. Since CMSb7.3 and CT2016 share a similar prior in CASA-GFED, we 

can identify three additional factors contributing to difference in spring timing across inverse 

methods: (1) observation source, (2) optimization method, indicating the application of scale 

factor correction to model priors, and (3) optimization window, representing the length of 

time in which scale factors are estimated in the optimization procedure.  

Regarding the first factor (observation source), CT2016 assimilates in situ data, which have 

continuous year-round coverage, whereas CMSb7.3 assimilates satellite observations derived 

from reflected sunlight, which have seasonal dependent coverage over high latitudes. As 

such, the correction to fluxes occurring during polar winter and during snow cover in spring 

is minimal in CMSb7.3, especially for North Slope and Brooks tundra. However, the 

enhanced spatial coverage of GOSAT in summer provides a boost in peak summer uptake 

compared to CASA-GFED. Combining high latitude flask, airborne, and satellite 

observations into a consistent global inversion framework will improve seasonal and spatial 

constraints, and retain the advantage of dense satellite observational coverage in summer.   

Regarding the second factor (optimization method), Jena4.1 has no prior flux information and 

thus does not apply scale factor orrection. This flexible approach produces an accurate 

representation of the seasonal transition in spring and fall, but with a trade-off in seasonal 

amplitude. CT2016 and CMSb7.3 optimize scale factors for NBP at regional and grid-scale, 

respectively, as corrections to prior fluxes, and thus are more strongly weighted by prior 

information. This less flexible approach produces more accurate representation of seasonal 

amplitude, but leads to errors in the seasonal transition timing, which is strongly weighted by 

prior information under reduced observational coverage.  
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Regarding the third factor (optimization window), CMSb7.3 uses a monthly window; 

CT2016 uses a weekly (8 day) window. We propose that the smaller 8 day window allows 

more flexibility for data assimilation to adjust the spring transition date, which greatly affects 

the interpretation of seasonal C uptake dynamics. Alternative inverse methods which estimate 

scaling factors for gross fluxes (Deng et al., 2016) or persistent grid scale biases (Lokupitiya 

et al., 2008; Parazoo et al., 2012) permit a shift in seasonal NBP phase relative to prior 

information.  

Early C uptake bias in CASA-GFED is consistent with CMIP5 model estimates of seasonal 

NBP in Alaska, which predict spring net C uptake onset to occur by an average of 18 days 

earlier than estimated by CARVE-Opt, with 7 of 10 models showing early bias exceeding 15 

days, and three models showing a bias exceeding one month (Commane et al., 2017a). In 

attributing the early C uptake bias, our analysis of GPP and TER fluxes in CASA-GFED 

indicates an accurate representation of the timing of TER in spring consistent with subnivean 

respiration, which is simulated in CASA-GFED as a function of soil moisture and 

temperature (Potter et al., 2013) and in PVPRM as a function of soil temperature (Luus & 

Lin, 2015b). Our results therefore suggest early GPP onset as the primary culprit in tundra 

ecosystems. Satellite constrained light use efficiency models that prescribe green biomass 

using reflectance based vegetation indices typically predict earlier GPP onset and larger 

spring C uptake in cold climate ecosystems compared to the same models constrained by SIF 

(Luus et al., 2017; Commane et al., 2017a). Prognostic and diagnostic models used in 

CMIP5, IPCC, and NACP reports also have a well-known early spring GPP bias (Peng et al., 

2015), especially for temperatures below freezing (Schaefer et al., 2012). It is critical for 

these models to account for survival adaptation under repeated exposure to frost, cold, and 

frozen soils, which limits root uptake of water and stomatal conductance (Strand and Öquist, 

1985; Waring and Winner, 1996; Bergh et al., 1998), and allows cold adapted plants to avoid 

spring frost damage after budburst (Jeong et al., 2012, 2013) and high radiation following 

snowmelt inhibiting photosynthetic C uptake (Zona et al., 2011), thus delaying or reducing 

initial GPP. Other factors such as incorrect prescription of plant functional type also have 

important effects. Some models such as LPJ-GUESS simulates herbs (grasses) as a proxy for 

tundra vegetation which in reality may consist largely of shrubs. Grasses have a low growing 

degree day sum threshold for leaf onset and high light use efficiency which may explain early 

GPP onset in tundra in Earth System Models. The same issue also applies to conifers and 

diffuse-porous broadleaves, to which most boreal zone broadleaves belong. Our regional and 
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site-level results support low levels of photosynthesis in tundra initially following snowmelt 

and leaf-out, as well as longer time lag of ~3 weeks for full phenological recovery.  

 

Outlook 

Climate models disagree on the trajectory of C balance in northern terrestrial ecosystems 

under future warming. The advance of spring C uptake observed over the past several 

decades in these ecosystems is a key climate change metric, but subject to high uncertainty in 

ecosystem model simulations, which systematically predict early growing season onset. Our 

results point to landscape thawing as a key driver of seasonal C cycle dynamics in cold 

northern ecosystems, and a likely factor contributing to early spring C flux biases reported in 

ecosystem models used in IPCC climate assessment reports for projections of future climate. 

Failure to account for cold season soil and biochemical processes will lead to biased model 

and empirical-based estimates of pan-Arctic C sinks which produce too strong of biogenic 

uptake. This would affect estimates of the timing and magnitude of the permafrost C 

feedback. Next steps are to quantify sensitivity of (1) spring thaw to meteorological inputs 

and soil physical processes, and (2) GPP onset to biological processes such as dehardening, 

xylem flow, and budburst. 
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Tables 

Table 1. Site Characteristics of Eddy Covariance Flux Towers for Alaska.  

 

Site Name/ID 
Ecosystem / 

Station ID 
Region 

Latitude, 

Longitude 
Elevation 

Site Years 

Analyzed 
Reference 

Bonanza Creek 
Experimental 
Forest  
(BON) 

Black Spruce 
Forest 
(BON-Spr) 

Interior 
Alaska 

64.696°N, 
148.323°W 

100 m 2012-2013 
Euskirchen 
et al., 2014 

Thermokarst 
Collapse Scar 
Bog 
(BON-Bog) 

Interior 
Alaska 

64.695°N, 
148.321°W 

100 m 2012-2013 
Euskirchen 
et al., 2014 

Rich Fen 
(BON-Fen) 

Interior 
Alaska 

64.703°N, 
148.313°W 

100 m 2012-2013 
Euskirchen 
et al., 2014 

Imnavait Creek 
Watershed 
(IMN) 

Wet Sedge 
Tundra 
(IMN-Sed) 

North 
Slope 
Alaska 

68.606°N, 
149.311°W 

920 m 2012-2014 
Euskirchen 
et al., 2017 

Moist Acidic 
Tussock 
Tundra 
(IMN-Tus) 

North 
Slope 
Alaska 

68.606°N, 
149.304°W 

930 m 2012-2014 
Euskirchen 
et al., 2017 

Heath Tundra 
(IMN-Hth) 

North 
Slope 
Alaska 

68.607°N, 
149.296°W 

940 m 2012-2014 
Euskirchen 
et al., 2017 

Ivotuk  
(IVO) 

Tundra 
dominated by 
tussock-sedge, 
dwarf-shrub, 
moss 

North 
Slope 
Alaska 

68.486°N, 
155.750°W 

543 m 2014 

Goodrich et 
al., 2016; 
Zona et al., 
2016 

Atqasuk 
(ATQ) 

Tundra 
dominated by 
sedge, grass, 
dwarf shrub 

North 
Slope 
Alaska 

70.469°N, 
157.409°W 

24 m 2014 

Goodrich et 
al., 2016; 
Zona et al., 
2016 
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Table 2: Mean (± SD) [Min Max] dates (DOY) for regional estimates of spring snow melt, 

landscape thaw, GPP onset, C sink onset and mean time lags (days) between thaw and GPP 

onset and between thaw and C sink onset. Results are shown at eddy covariance (eddy 

covariance) towers (eddy covariance observations shown in parentheses), EPA Level II and 

III ecoregions (rows 3-7), and for combined tundra and boreal ecoregions (rows 8-9).  

 

Region 
Snow-

Melt Date 

(DOY) 

Thaw 

Date 

(DOY) 

GPP 

Onset 

Date 

(DOY) 

C Sink 

Onset 

Date 

(DOY) 

Thaw-

GPP 

Lag  

(Days) 

Thaw-C 

Sink Lag 

(Days) 

GPP – C 

Sink Lag 

(Days) 

Tundra: 
IMN-ATQ-
IVO 

121 122 155 (155) 170 (164) 33 (33) 48 (42) 15 (9) 

Boreal: 
BON 

102 104 136 (104) 153 (128) 32 (0) 49 (24) 17 (24) 

Tundra 
North Slope 

117 ± 12; 
[84.2 153] 

133 ± 5; 
[118 148] 

154 ± 3; 
[144 160] 

167 ± 9; 
[147 182] 

20 ± 5; 
[9 31] 

36 ± 10; 
[16 50] 

14 ± 8; 
[2 27] 

Tundra 
Brooks 

112 ± 8;  
[94 127] 

126 ± 5; 
[113 132] 

150 ± 3; 
[142 156] 

161 ± 8; 
[139 180] 

24 ± 4; 
[17 33] 

35 ± 7; 
[16 50] 

11 ± 6; 
[-3 25] 

Tundra 
Southwest 

103 ± 12; 
[77 131] 

119 ± 15; 
[85 135] 

146 ± 5; 
[137 164] 

159 ± 11; 
[139 178] 

26 ± 11; 
[7 57] 

41 ± 10; 
[13 76] 

13 ± 8;  
[-3 36] 

Boreal 
Interior 

98 ± 8;  
[78 121] 

110 ± 7; 
[96 129] 

139 ± 3; 
[135 149] 

144 ± 7; 
[137 175] 

29 ± 5; 
[16 42] 

34 ± 6; 
[16 61] 

5 ± 5; 
[-2 30] 

Boreal 
Mountain 

102 ± 11 
[66 136] 

112 ± 7; 
[89 152] 

142 ± 5; 
[135 177] 

146 ± 12; 
[133 188] 

30 ± 6; 
[-2 67] 

34 ± 11; 
[5 82] 

4 ± 9; 
[-17 38] 

Tundra: 
North Slope 
+ Brooks + 
Southwest 

112 ± 12; 
[77 153] 

127 ± 10; 
[85 148] 

151 ± 5; 
[137 164] 

163 ± 10; 
[139 182] 

23 ± 7; 
[7 57] 

37 ± 9; 
[13 76] 

13 ± 7; 
[-3 36] 

Boreal: 
Interior + 
Mountain 

100 ± 10; 
[66 136] 

111 ± 7; 
[89 152] 

141 ± 5; 
[135 177] 

145 ± 10; 
[133 188] 

29 ± 6; 
[-2 67] 

34 ± 9; 
[5 82] 

4 ± 7; 
[-17 38] 
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Figure Captions 

 

Fig. 1: Map showing spatial pattern of vegetation and location of flux towers. Vegetation is 

derived from US EPA Level 2 ecoregion maps for boreal (reds) and tundra (blue). Tower 

sites include: Bonanza Creek (BNZ: 64.70ºN, 148.32ºW), Imnavait (IMN: 68.62ºN, 

149.30ºW), Ivotuk (IVO: 68.48ºN, 155.75ºW), and Atqasuk (ATQ: 70.47ºN, 157.40ºW). 

IMN and BON sites each include three additional eddy covariance stations (see Table 1). 

 

Fig. 2: Evaluation of observationally constrained estimates of seasonal gross primary 

production (PVPRM-SIF GPP, a-b) and net biome production (CARVE-Opt NBP, c-d) 

against tower eddy covariance data in interior and northern Alaska, averaged from 2012-

2014. Daily averages (symbols) and low pass filters (lines) are shown for flux towers (green 

= GPP, blue = NBP), and low pass butterworth filters (order 2, cutoff frequency = 0.1) for 

PVPRM-SIF (solid black, top) and CARVE-Opt (solid black, bottom). Boreal fluxes are 

averaged over the cluster of Spruce, Fen, and Bog sites at Bonanza Creek Experimental 

Forest (BON, 3 sites total). Tundra fluxes are averaged over the cluster of Hedge, Sedge, and 

Tussock sites at IMN and individual sites at IVO and ATQ (five sites total). CARVE-Opt and 

PVPRM-SIF are sampled at towers only for years when growing season eddy covariance data 

is available, which differs between sites (see Table 1).  Onset dates for snowmelt, thaw, GPP, 

and net carbon uptake shown in vertical dashed lines. 5-day mean retrievals of GOME-2 solar 

induced fluorescence (SIF) and standard error sampled in a 2º x 2º grid box surrounding eddy 

covariance tower and normalized by PVPRM-SIF are shown in grey in A-B. Thaw, GPP, and 

net C sink onset dates are provided in Table 2. Positive NBP values denote net sink of 

atmospheric CO2. Seasonal C flux dynamics are well represented by observationally 

constrained estimates in tundra, but show delayed spring onset compared to the black spruce 

forest.   

 

Fig. 3: Maps showing spatial patterns of spring onset dates for landscape thaw, GPP, and net 

C uptake at regional scale for Alaska. (A) Spring thaw date, representing the transition of the 

landscape from frozen to thawed conditions, is derived from AMSR-E and SSM/I. (B) Spring 

GPP onset, representing the date when ecosystem GPP reaches 10% of the growing season 

peak, is derived from PVPRM-SIF. (C) Net C uptake, representing the spring transition from 
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net C source in winter to net C sink in summer, is derived from CARVE-Opt, a regional flux 

inversion for Alaska constrained by airborne CO2 profiles. Number of days between thaw and 

GPP onset (D), thaw and net C uptake (E), and GPP onset to net C uptake (F) are estimated 

as the difference between maps in A-C. Values in A-C are plotted as day of year (DOY). This 

shows similar spatial patterns of the timing of spring thaw and GPP onset, and a decrease in 

the number of days from thaw to spring onset moving from south to north along the boreal-

tundra gradient.   

 

Fig. 4: Relationship between spring CO2 flux and landscape thaw. Scatter plots show 

regressions of (A) Spring GPP onset date vs thaw date, (B) Mean spring GPP from May 15 – 

June 15 vs thaw date, (C) Mean spring NBP from May 15 – June 15 vs thaw date, and (D) 

mean spring NBP vs GPP (g C m-2 d-1). Positive NBP denotes net C uptake by plants. 

Colors denote the 5 ecoregions of interest. Regression lines are plotted for each ecoregion in 

A. Regression statistics are reported for all points combined in each sub-panel. We note 

several emergent patterns: (1) the relationship between dates of spring GPP onset and 

landscape thaw are consistent across ecoregions, (2) the magnitude of GPP is more sensitive 

to thaw date in boreal than tundra, (3) NBP magnitude is equally sensitive to thaw date in 

boreal and tundra, and (4) NBP is more sensitive to GPP change, and hence thaw date, in 

tundra. 

 

Fig. 5: Seasonal GPP and NBP patterns for boreal and tundra ecoregions. (A-B) Seasonal 

GPP (solid) from PVPRM-SIF and terrestrial ecosystem respiration (TER, dashed) from the 

residual of CARVE-Opt NBP and PVPRM-SIF GPP. (C-D) Seasonal NBP derived from 

daily averages of CARVE-Opt (black), CT2016 ensemble (red), and Jena v4.1 (blue) 

posterior fluxes and CT2016 prior fluxes (red dashed). (E-F) Seasonal NBP (positive denotes 

net sink) derived from monthly averages of CARVE-Opt (black) and CMS b7.3 posterior 

(green solid) and prior (green dashed) fluxes. Results for boreal ecoregions shown in the left 

column, and tundra in the right column. X-axis labels represent middle of month. Shaded area 

shows valid range of climatological CARVE-Opt NBP for the period 2012-2014, 

representing CARVE campaign start and end dates (May 7 and Oct 20 on average). Vertical 

dashed lines denote mean date of snow-melt (cyan), landscape thaw (red), GPP onset (green), 

and net C uptake (blue) for each ecoregion. CT2016 and Jena v4.1 are global inverse 
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estimates derived from near-surface CO2 observations. CMS b7.3 is derived from satellite 

column integrated CO2. CT2016 results are shown for 8 ensemble runs driven by different 

combination of fossil fuel, ocean, and biosphere priors. The results show variable patterns of 

the amplitude and timing of seasonal CO2 exchange for each ecoregion and inversion method.  

 

Fig. 6: Errors in predicted seasonal GPP and TER. (A-B) Seasonal time series of daily 

optimized (solid) and simulated (dashed) GPP (green) and TER (red). (C-D) Regression of 

simulated and optimized GPP. (E-F) Regression of simulated and optimized TER. Optimized 

GPP is taken from PVPRM-SIF and TER as the residual of CARVE-Opt NBP and PVPRM-

SIF GPP. Values are reported every 5 days, with large symbols denoting mid-month. Model 

fluxes are taken from CASA GFED3. The results show a positive bias in spring GPP in 

boreal and tundra ecosystems, driven by early GPP onset, which leads to an early transition 

from net C source to sink compared to CARVE-Opt.  
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