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Key points: 19 

• Observations suggest that CO2 in the lower thermosphere has increased rapidly 20 

since the early 2000s. 21 

• The observed behavior cannot be simulated by a comprehensive climate-chemistry 22 

model. 23 

• Model and observations could be reconciled if vertical eddy mixing has increased 24 

by about 30% per decade.  25 
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Abstract 26 

 27 

An analysis of recent observations (2004-2013) made by the ACE-FTS instrument 28 

indicate that total carbon (COx = CO + CO2) has been increasing rapidly in the lower 29 

thermosphere, above 10-3 hPa (90 km). The estimated trend (~9% per decade) is about a 30 

factor of two larger than the rate of increase that can be ascribed to anthropogenic 31 

emissions of CO2 (~5% per decade).  Here we investigate whether the observed trends of 32 

CO2 and COx can be reproduced using the Whole Atmosphere Community Climate Model 33 

(WACCM), a comprehensive global model with interactive chemistry, wherein vertical 34 

eddy diffusion is estimated from a parameterization of gravity wave breaking that can 35 

respond to changes in the model climate. We find that the modeled trends of CO2 and COx 36 

do not differ significantly at any altitude from the value expected from anthropogenic 37 

increases of CO2, and that WACCM does not produce significant changes in eddy 38 

diffusivity. We show that the discrepancy between model and observations cannot be 39 

attributed to uncertainties associated with geophysical noise and instrumental effects, to 40 

difficulties separating a linear trend from the 11-year solar signal, or to sparse sampling by 41 

ACE-FTS.  Estimates of the impact of vertical diffusion on CO2 in the model indicate that a 42 

large increase in Kzz (~30% per decade) would be necessary to reconcile WACCM results 43 

with observations.  It might be possible to ascertain whether such a large change in vertical 44 

mixing has in fact taken place by examining the trend of water vapor in the upper 45 

mesosphere.46 



1. Introduction.  47 

Emmert et al. (2012) calculated the global linear trend of COx (the sum of CO and 48 

CO2) from observations made by the Atmospheric Chemistry Experiment Fourier 49 

Transform Spectrometer (ACE-FTS) between April 2004 and September 2011, and 50 

documented a very fast rate of increase at altitudes above about 10-3 hPa (~90 km). Near 51 

100 km, the linear trend of COx was approximately 9% per decade, which is much faster 52 

than the anthropogenic rate of increase of CO2 in the lower atmosphere for the period in 53 

question (~5% per decade). Emmert et al. analyzed the trend in COx in order to minimize 54 

the effects of the solar cycle on CO2, since the photolysis of this gas by UV radiation 55 

(which produces CO) becomes important above 90 km and varies strongly with solar 56 

activity.  Insofar as CO2 represents the bulk of COx below about 100 km, Emmert et al. 57 

ascribed the trend in COx to increases in CO2.  They also showed, using a one-dimensional 58 

model with interactive chemistry [Roble, 1995], that the observed trend in COx could be 59 

due to a corresponding trend in vertical eddy diffusion of 15% per decade, since such a 60 

trend would increase the rate of transport of CO2 into the lower thermosphere.  Indeed, 61 

Garcia et al. [2014] have shown that, in the range of altitude 90-105 km (about 10-3 to 10-4 62 

hPa), the mixing ratio of CO2 is controlled principally by the competition between eddy 63 

diffusion and molecular diffusive separation. 64 

Emmert et al.’s conclusions regarding a fast rate of increase of CO2 in the lower 65 

thermosphere are supported by the recent study of Yue et al. [2015], who used SABER 66 

(Sounding of the Atmosphere by Broadband Emission Radiometry) observations from 2002 67 

through 2014, and estimated a rate of increase of CO2 exceeding 10% per decade above 68 

100 km.  While SABER observations do not include CO, Yue et al. performed a multiple 69 
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linear regression that included the solar 10.7 cm radio flux as a predictor to account for the 70 

influence of solar activity on CO2. 71 

Here we investigate whether the large trends of CO2 and COx in the upper atmosphere 72 

derived from observations can be reproduced in simulations made with the Whole 73 

Atmosphere Community Climate Model (WACCM), a three-dimensional, global climate 74 

model with interactive chemistry.  The model is discussed briefly in Section 2, with 75 

emphasis on the question of transport in the mesosphere and lower thermosphere (MLT), 76 

which is dominated by the divergence of vertical eddy fluxes due to breaking gravity 77 

waves. While these small-scale waves cannot be simulated explicitly at the relatively coarse 78 

spatial and temporal resolutions used in a climate model, they are parameterized in such a 79 

way that they can respond to changes in the model’s climate.  80 

In Section 3, we compare updated ACE-FTS observations that span the period 2004 81 

through 2013 with WACCM simulations of the same period to show that the simulated CO 82 

and CO2 agree well with the observations in the lower thermosphere. In Section 4, we 83 

derive trends in COx and CO2 from the ACE-FTS data and compare them with trends 84 

derived from WACCM output, and with the earlier estimates of Emmert et al. [2012].  The 85 

trends derived from the data are consistent with the findings of Emmert et al., and are much 86 

larger than the model trends above 90 km.  In fact, WACCM-derived trends in the lower 87 

thermosphere are not significantly different from the trends below the mesopause, which 88 

are ascribable to anthropogenic emissions of CO2.  We go on to examine several possible 89 

sources of uncertainty that might account for the discrepancy between observed and 90 

modeled trends, and conclude that none can explain the differences between the model and 91 

the observations. Finally, we estimate the impact of increases in vertical eddy diffusion on 92 
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the trends computed with WACCM, and find that a rather large Kzz trend, of over 30% per 93 

decade, would be needed to reconcile the model with the observations. In Section 5, we 94 

summarize our findings and suggest additional observations that might be useful for 95 

ascertaining whether such increases in vertical eddy diffusion might have taken place in the 96 

Earth’s upper atmosphere.  97 

2. Numerical model  98 

The Whole Atmosphere Community Climate Model (WACCM) is a global climate 99 

model with interactive chemistry that spans the range of altitude 0-140 km.  In this study, 100 

we use the “specified dynamics” version (SD-WACCM), described by Garcia et al. [2014].  101 

In SD-WACCM, winds and temperature are constrained by NASA’s Modern-Era 102 

Retrospective Analysis (MERRA) data [Rienecker et al., 2011] everywhere below 103 

approximately 1 hPa, using the procedure discussed by Kunz et al. [2011]. The use of SD-104 

WACCM for the present investigation is motivated by the desire to study the particular 105 

period, 2004 through 2013, covered by the ACE-FTS observations described in the next 106 

section. While SD-WACCM is free running above 1 hPa, Liu et al. [2009] have shown that 107 

the dynamics of the mesosphere and lower thermosphere are strongly influenced by the 108 

behavior of the lower atmosphere.  In the remainder of this paper, we refer to the model 109 

simply as WACCM, with the understanding that all simulations have been carried out with 110 

the specified dynamics version. 111 

The reader is referred to the study of Garcia et al. [2014] for additional details of the 112 

specified dynamics configuration.  Here, we emphasize only the parameterization of small-113 

scale gravity waves, since vertical mixing due to gravity wave breaking is the principal 114 
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upward transport mechanism in the lower thermosphere, below 10-4 hPa, particularly in the 115 

global-mean sense. The gravity wave parameterization attempts to take into account the 116 

excitation of mesoscale waves by various physical mechanisms, such as flow over 117 

orography, deep convection, and frontal zones.  Non-orographic gravity wave source 118 

spectra are dependent on convective heat release in the Tropics and frontal zones diagnosed 119 

in extra-tropical latitudes, as described in detail by Richter et al. [2010].  Because 120 

parameterized gravity wave sources are related to physical processes simulated in the 121 

underlying global model, their behavior can potentially change as the model climate 122 

changes.  For example, the source spectra will change if the characteristics of convection or 123 

the frequency or intensity of fronts diagnosed in the model changes; and the propagation of 124 

the waves to the MLT will be influenced by the behavior of the zonal-mean zonal wind 125 

systems in the stratosphere.   126 

We note that the effective value of Kzz calculated with WACCM depends also on the 127 

value assumed for the Prandtl number, Pr, which describes the ratio of the eddy momentum 128 

flux to the eddy flux of potential temperature or chemical species [see Garcia et al., 2007]. 129 

The value used in the study of Garcia et al. [2014] was Pr = 4. As discussed in that study, 130 

comparison of simulated and observed CO and CO2 suggests that a smaller value, Pr = 2, 131 

might be more appropriate; therefore, we use simulations made with Pr = 2 to compute 132 

model trends in this study. Nevertheless, in Section 4 we use results from our earlier 133 

simulation with Pr = 4 to estimate the potential impact of changes in Kzz on the trends of 134 

COx and CO2. (It should be notedemphasized, however, that the trends of CO2 and COx in 135 

WACCM are insensitive to Pr as long as the value of Pr is constant throughout the 136 

simulation).   137 
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3. Comparison of observed and modeled CO and CO2 138 

The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) 139 

on SCISAT-1 has been making solar occultation measurements of CO and CO2 since 2004 140 

[Boone et al., 2005; Clerbaux et al., 2008; Beagley et al., 2010].  CO2 volume mixing ratio 141 

(vmr) is retrieved from 50 to 120 km; the vertical resolution averages 3-4 km, varying from 142 

2 to 6 km depending on the time of the year.  Random errors are 2.5-5%, depending on 143 

latitude, and systematic errors range from 2% at the low altitudes (50-70 km) to about 5% 144 

at 90 km, 9% at 100 km, and 16% at 118.5 km [Beagley et al., 2010]. CO vmr is retrieved 145 

in the range from 8 km to about 100 km [Clerbaux et al., 2008]. The vertical resolution 146 

above about 1 hPa is about 4 km, degrading to 6 km in the upper mesosphere. The random 147 

errors of the CO measurements are < 10% in the mesosphere and lower thermosphere; 148 

systematic errors are < 25% from 30 to 100 km.  The ACE-FTS observations, as well as the 149 

data screening procedures employed, are discussed in more detailed by Garcia et al. 150 

[2014].  The data used here is version 3.5 [Boone et al., 2013] and was obtained from the 151 

ACE Science Team at the University of Waterloo, Canada. We note that ACE observations 152 

are processed in geometric coordinates. However, the final data products are provided in 153 

both geometric and pressure coordinates, and we use data in pressure coordinates in all 154 

comparisons with WACCM. 155 

CO has also been observed by the Michelson Interferometer for Passive Atmospheric 156 

Sounding (MIPAS) using the “middle atmosphere” and “upper atmosphere” modes 157 

[Oelhaf, 2008], which cover the altitude ranges 20-102 km and 40-170 km, respectively. 158 

The vertical resolution of the MIPAS CO profiles is 4–7 km below 60 km at night and 159 

below 95 km during daytime, and 7-14 km above those altitudes.  The single-measurement 160 
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precision (noise error) is 40-80% below 60 km, and 30-60% above, while the systematic 161 

error is estimated to range between 8 and 15 % [Funke et al., 2009]. The MIPAS data are 162 

also discussed in detail by Garcia et al. [2014].  163 

Figure 1 shows time series of WACCM CO and CO2 together with observations at 164 

several levels in the lower thermosphere:  6 x 10-5 hPa (~108 km), 2 x 10-4 hPa (~100 km) 165 

and 10-3 hPa (~90 km).  For CO2, WACCM is within 10% of the ACE-FTS observations at 166 

all levels except 6 x 10-5 hPa, where the differences reach 15-20%. While the discrepancies 167 

are not large compared to the measurement errors for ACE-FTS, WACCM results for CO2 168 

are uniformly low in all cases.  For CO, the WACCM simulation is generally closer to 169 

observations, especially given the large measurement errors.   However, at 10-3 hPa, 170 

WACCM CO is systematically higher than both ACE-FTS and MIPAS.  In spite of these 171 

discrepancies, WACCM reproduces well the long-term variability of the data, which is 172 

dominated by the solar cycle, in particular at the higher altitudes.  173 

The effect of the solar cycle can be largely removed by considering total carbon, COx, 174 

which in the lower thermosphere is essentially the sum of CO and CO2.  Figure 2 shows a 175 

comparison of modeled and observed COx at 10-3 and 2 x 10-4 hPa, two levels where both 176 

CO and CO2 are measured by ACE-FTS.  Since COx at these levels is dominated by CO2, 177 

the agreement is within 10%, as was the case for CO2 in Figure 1, with WACCM being 178 

systematically low compared to ACE-FTS.  In both model and observations, the evolution 179 

of COx shows mainly an increasing trend, with no indication of any solar cycle influence.  180 

The rate of increase of COx is clearly faster in ACE-FTS than in WACCM, and this 181 

difference will be quantified in the next section, where we calculate linear trends.  An 182 

additional difference between model and observations, both for COx and for CO and CO2 183 
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individually, is that the observations exhibit considerably larger short-term variability than 184 

the model.  The potential effect of this difference on the calculation of trends from 185 

WACCM output will be addressed below.  186 

4. Calculation and comparison of linear trends 187 

Time series of COx in WACCM are constructed from monthly-mean, globally 188 

averaged output for CO and CO2. The model output was de-seasonalized by subtracting the 189 

composite monthly seasonal cycle for the period 2004-2013 at each model level. ACE-FTS 190 

data were treated here in the same way as the WACCM output; that is, de-seasonalized, 191 

global monthly averages were calculated from the data on each pressure level.  This differs 192 

from the procedure employed by Emmert et al. [2012] but yields very similar trends, as 193 

shown below.  194 

We characterize the long-term behavior of COx in the 10-year period 2004 to 2013 in 195 

terms of the linear trend obtained from a multiple linear regression (MLR). The regression 196 

model used is: 197 

  ߰ ൌ ܽ ൅  ܾ ڄ ݐ ൅ ܿ ڄ ሻݐሺݏ ൅ ݀ ڄ ሻݐଵሺ݋ܾݍ ൅ ݁ ڄ  ሻ   (1) 198ݐሺʹ̴݋ܾݍ

where t is time; s is a solar cycle predictor, here taken to be the 10.7 cm radio flux; and 199 

qbo1, and qbo2 are two linearly independent indices of the quasi-biennial oscillation (QBO), 200 

represented by the zonal-mean zonal wind at 10 and 30 hPa, respectively. The 201 

autocorrelation of the residuals of the fit was taken into account when estimating the 202 

uncertainty of the trend [Tiao et al., 1990]. No attempt was made to include in the MLR 203 

predictors for ENSO (El Niño-Southern Oscillation) or for volcanic eruptions. In practice, it 204 

turns out that even the QBO predictors explain a negligible fraction of the variance of COx 205 
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in the lower thermosphere.  Likewise, the solar predictor turns out to be relatively 206 

unimportant at the altitudes (below about 105 km) where COx data are available from ACE-207 

FTS.  Note that this is not true of CO2 alone, which is photolyzed by UV radiation to 208 

produce CO. However, the combination of CO and CO2 into a total carbon variable, COx, 209 

has the desirable effect of minimizing the impact of the solar cycle on the MLR. 210 

Figure 3 compares the vertical profile of the linear trend coefficient, b, obtained when 211 

the MLR defined by Eq. (1) is applied to ACE-FTS observations and to WACCM output.  212 

Three things are immediately obvious from the figure: The trend calculated from ACE-FTS 213 

measurements reaches a maximum of 8.5% at 95-100 km, consistent with the results of 214 

Emmert et al. [2002], who analyzed a shorter period (2004-2011); the trend calculated from 215 

WACCM output in the lower thermosphere is statistically indistinguishable from the trend 216 

at lower altitudes; and the WACCM trend is significantly different from that derived from 217 

ACE-FTS observations in the lower thermosphere, between 2 x 10-3 hPa (~85 km) and 2 x 218 

10-4 hPa (~100 km).  As in Emmert et al., our estimate of the ACE-FTS trend below 80 km 219 

(~10-2 hPa) is influenced by a priori assumptions about CO2 inherent in the ACE-FTS 220 

retrieval, which yield too low a trend for the period under examination. However, as noted 221 

by Emmert et al., this does not affect the estimate of the trend above 90 km (~10-3 hPa). 222 

We consider next whether the statistical significance of the WACCM-ACE differences 223 

might be exaggerated because WACCM COx has substantially less short-term variability 224 

than ACE-FTS data. Specifically, the WACCM time series shown in Figures 1 and 2 are 225 

constructed from true zonal means averaged globally over latitude, whereas ACE-FTS solar 226 

occultation observations are much more sparse, both in longitude and latitude, and in time, 227 

and they are subject to measurement errors not present in WACCM.  A cursory 228 
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examination of Figures 1 and 2 reveals that the high-frequency variability is about a factor 229 

of 2 larger in the ACE-FTS time series than in the WACCM time series.  We therefore test 230 

the sensitivity of the WACCM trends to the addition of  “random noise”, which we 231 

simulate simply by adding to the time series of WACCM CO and CO2 a series of normally 232 

distributed pseudo-random numbers, multiplied times the standard deviation of the original 233 

time series at each altitude; this has the effect of increasing the standard deviation of the 234 

resulting “noisy” time series by about a factor of ξʹ compared to the original. As a result, 235 

the high-frequency variability of the treated WACCM output is similar to that seen in ACE-236 

FTS data (not shown). The linear COx trend profile extracted from the WACCM output 237 

with added noise is shown in Figure 4. While the uncertainty of the trend is much larger 238 

than for the original WACCM output (Figure 3) the trend in the thermosphere remains 239 

statistically undistinguishable from the trend at lower altitudes, and statistically different 240 

from the ACE-FTS trend between about 85 and 100 km.   241 

We have also tested whether uncertainties in our knowledge of 11-year solar variability 242 

at UV wavelengths might influence the COx trend derived from WACCM.  As discussed by 243 

Ermolli et al. [2013], recent measurements of spectral solar irradiance (SSI) variability 244 

differ substantially from estimates based on empirical models. In particular, Ball et al. 245 

[2014] show that the 11-year variability observed by the SOLSTICE instrument onboard 246 

NASA’s SORCE satellite is much larger at wavelengths < 300 nm than predicted by 247 

models such as NRLSSI [Lean et al., 1997] and SATIRE [Krivova et al., 2011].  For COx, 248 

we are interested in the range of wavelength 121-200 nm, which dominates CO2 photolysis 249 

below ~105 km [cf. Garcia et al., 2014; their Figure 1].  At these wavelengths, SSI changes 250 

over the 11-year solar cycle are about a factor of two larger in SOLSTICE observations 251 
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than in either of the aforementioned models.  SSI in WACCM is prescribed using the 252 

NRLSSI model, so we adjusted SSI variability in the range 120-200 nm to be twice as 253 

predicted by this model, with no changes elsewhere in the spectrum, and carried out a new 254 

simulation of the period 2004-2013. The resulting COx trend profile is compared with the 255 

original trend profile in Figure 5. It is evident that the larger SSI variability at 120-200 nm 256 

introduces little additional uncertainty in the WACCM COx trend, even at 100 km. This is 257 

not wholly surprising because the use of COx is intended to minimize the effect of solar 258 

variability on the estimate of the long-term trend.  In addition, as shown by Garcia et al. 259 

[2014] (cf. their Figure 9), the mixing ratio of CO2 below 10-4 hPa (~105 km) is determined 260 

mainly by the competition between vertical eddy diffusion due to gravity wave breaking 261 

and molecular diffusive separation, with a smaller influence from UV photolysis. 262 

Finally, we have considered whether the sparse sampling inherent in solar occultation 263 

observations might contribute to the differences in the trend profiles derived from ACE-264 

FTS and WACCM. To investigate this possibility, we extracted WACCM vertical profiles 265 

of CO and CO2 at the geo-locations (longitude, latitude, and time) nearest to ACE-FTS 266 

observations for the period 2004-2013. We then performed a trend analysis after processing 267 

the data as described by Emmert et al. [2012], with one exception: we regressed the 268 

WACCM output on both time (the linear trend) and on the solar f10.7 cm radio flux.  As 269 

noted previously, regression on a solar predictor does not affect the results below 10-4 hPa 270 

(~105 km), although it becomes increasingly important at higher altitudes, where COx is no 271 

longer conserved due to differences in molecular diffusion between CO and CO2. The 272 

resulting trend profile is shown in Figure 6. It is clear that, even when the model is sampled 273 
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using the ACE geo-locations, the WACCM trend is significantly smaller than the ACE-FTS 274 

trend at altitudes between about 85 and 100 km. 275 

5. Summary and Discussion  276 

The results presented above show that the global trend of COx in the lower 277 

thermosphere calculated with WACCM is not significantly different from the trend 278 

ascribable to anthropogenic increases in CO2, and that this trend (nowhere larger than 279 

5.5%) is much smaller than the trend calculated from ACE-FTS observations (8-9% per 280 

decade in the lower thermosphere).  We have also shown that, even when we consider 281 

several plausible sources of uncertainty that might affect the WACCM COx trend, that trend 282 

remains smaller and statistically different from the ACE-FTS trend in the lower 283 

thermosphere. 284 

Emmert et al. [2012] suggested that the COx trend derived from ACE-FTS 285 

observations could be explained if the rate of eddy diffusive transport of CO2 into the lower 286 

thermosphere was itself increasing. We have examined the evolution of the vertical 287 

diffusion coefficient, Kzz, estimated from the gravity wave parameterization in WACCM 288 

and find no statistical significant trend anywhere in the model domain during the period 289 

under consideration, 2004-2013; this is consistent with the lack of any trend in CO2 or COx 290 

in the model beyond that due to anthropogenic emissions.   291 

The value of Kzz in WACCM is predicted by the gravity wave parameterization 292 

interactively with the underlying, resolved dynamics, and cannot easily be adjusted ad hoc. 293 

However, we can estimate the impact of Kzz on chemical species by comparing otherwise 294 

identical simulations made with a different value of the Prandtl number, Pr, which 295 
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describes the ratio of the eddy momentum flux to the eddy flux of chemical species [see 296 

Garcia et al., 2007].  In particular, halving Pr has the effect of increasing the effective 297 

magnitude of Kzz by approximately a factor of two.  As noted in Section 2, the simulations 298 

examined thus far were made using Pr = 2, but we also have at hand earlier simulations, 299 

discussed by Garcia et al. [2014], that used Pr = 4. By comparing CO and CO2 across the 300 

simulations, we can ascertain the impact of doubling Kzz on these species. Then, if we 301 

assume that changes in CO and CO2 are linear in Kzz, we can estimate the impact of smaller 302 

changes in Kzz acting over one decade, and thus estimate the decadal trend in eddy diffusion 303 

that is necessary to bring WACCM COx trends into agreement with ACE-FTS trends. 304 

Figure 7 shows the estimated effect on the WACCM COx trend of increasing Kzz at 305 

various rates.  The figure reproduces the trend results shown earlier in Figure 3, 306 

superimposing upon those our estimates of the trends that would result if Kzz in WACCM 307 

increased at 25%, 33% and 50% per decade. Above about 10-2 hPa, where CO2 is no longer 308 

well mixed, changes in Kzz begin to impact the COx trend, and a trend of 33% per decade in 309 

Kzz gives the best match to the observed trend in COx below about 2 x 10-4 hPa (95 km). 310 

Above that altitude there are substantial differences between the estimated WACCM trend 311 

and the ACE-FTS trend; better agreement might have been achieved by limiting the altitude 312 

range over which Kzz changes, but we have avoided any such arbitrary modifications, if for 313 

no other reason that they would have required additional calculations that are not easily 314 

implemented in the model.  A similar mismatch between the modeled and observed trend 315 

profiles occurred when Emmert et al. used a one-dimensional model to support their 316 

argument for an increase in the rate of vertical diffusion (cf. their Figure 2).  Thus, neither 317 

the results presented in Figure 7 nor those of Emmert et al. produce a completely 318 
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satisfactory agreement between modeled and observed trends of COx, although they are 319 

able to match the observed trends over much of the lower thermosphere. 320 

Similar results are obtained when trends in CO2 alone are considered, as shown in 321 

Figure 8. Again, a decadal increase in Kzz of about a third would bring the WACCM trend 322 

of CO2 into line with the trend obtained from ACE-FTS data.  Incidentally, the ACE-FTS 323 

trend of CO is statistically indistinguishable from zero everywhere above 90 km (not 324 

shown). Thus, the discrepancy in modeled versus observed trends in COx is dominated by 325 

the behavior of CO2, at least below 100-105 km, where most of the total carbon resides in 326 

CO2.  The very large trend in CO2 obtained from ACE-FTS data (which exceeds 12% near 327 

105 km) is consistent with the recent study of Yue et al. [2015], who estimated the trend in 328 

CO2 from observations made by the SABER instrument onboard NASA’s TIMED satellite 329 

from 2002 through 2014. Yue et al. reported a trend of  ~10% per decade above 105 km; as 330 

shown in their Figure 2, the trend profile derived from SABER differs from the ACE-FTS 331 

trend profile in that the trend peaks at a higher altitude, but is consistent with ACE-FTS 332 

insofar as the trend in the lower thermosphere is much larger than the trend below 80 km. 333 

Taken together, the SABER and ACE-FTS results make a strong case for a fast 334 

increase in CO2 in the lower thermosphere in recent years.  WACCM simulations, on the 335 

other hand, produce trends that are everywhere indistinguishable from the trend at lower 336 

altitudes, which can be ascribed to anthropogenic emissions of CO2.  Estimates of the 337 

impact of Kzz on modeled trends suggest that an increase in eddy vertical mixing can bring 338 

the model results into agreement with observations. This is consistent with the conclusions 339 

of Emmert et al. [2012], who obtained a similar result using the one-dimensional, diffusive 340 

model of Roble [1995].  The required change in Kzz ranges from 15% per decade in the 341 
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calculations of Emmert et al. to over 30% per decade in the estimates presented here.  The 342 

parameterization of gravity wave breaking included in WACCM is designed to interact 343 

with the resolved dynamics of the underlying model, as discussed in Section 2, but fails to 344 

produce a significant change in Kzz in the MLT over the period considered here (or indeed, 345 

over any period in the late 20th and early 21st centuries; not shown).  Furthermore, there is 346 

essentially no direct evidence for a recent global increase in turbulent mixing, although the 347 

work of Hoffman et al. [2011] suggests a local increase in gravity wave activity over 348 

Juliusruh, Germany (55°N). 349 

In view of the foregoing results, one might wonder whether it is possible to find 350 

additional, independent evidence for a rapid increase in eddy vertical mixing in the MLT 351 

since the early 2000s.  Insofar as there are no global, long-term observations of gravity 352 

wave breaking in the MLT, evidence for a global increase in Kzz would have to come from 353 

global observations of minor species that are expected to respond sensitively to vertical 354 

mixing. We have examined the impact of Kzz in WACCM on several species, including 355 

atomic oxygen (which can be estimated from ozone and OH airglow observed by SABER, 356 

and is measured by the SCHIAMACHY instrument on the Envisat satellite [Zhu et al., 357 

2015]), and water vapor (which has been measured by SABER but not yet released as a 358 

validated data product).  As regards atomic oxygen, Smith et al. (2009) have shown that its 359 

vertical profile is affected by vertical diffusion. However, wWe find that, even though O 360 

exhibits a very steep vertical gradient above 80 km, it is not very sensitive to changes in Kzz 361 

in WACCM. This happens because the vertical gradient of O is shallow at the altitudes 362 

where its photochemical lifetime is long, and steep mainly where it photochemical lifetime 363 

is short, which reduces the impact of transport on the local mixing ratio.  Even a 50% 364 
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change in Kzz produces changes in WACCM O whose magnitude is less than 10% (not 365 

shown).   366 

Water vapor, on the other hand, may be a potentially useful indicator of changes in Kzz. 367 

Water vapor is photolyzed by Lyman-alpha radiation above about 80 km, but the rate of 368 

photolysis is slow enough (days to weeks) that the vertical gradient is strongly influenced 369 

by eddy mixing.  Figure 9 shows the estimated impact of trends in Kzz on the trend of water 370 

vapor.  Between about 85 and 95 km (3 x 10-3 to 5 x 10-4 hPa), where the H2O mixing ratio 371 

in WACCM varies from about 1 ppmv to 0.5 ppmv (not shown), a 33% per decade trend in 372 

Kzz would produce a trend in H2O varying from 15% per decade at 85 km to 30% per 373 

decade at 95 km. This is substantially larger than the trend below the mesopause (~7% per 374 

decade), which in WACCM arises mainly from specified anthropogenic emissions of 375 

methane and a slight warming of the cold point tropopause during the period of interest.  376 

Above 95 km, the trend in H2O produced by increasing Kzz is even larger than at lower 377 

altitudes, but the local mixing ratio is much less than 1 ppmv, likely making it impossible to 378 

retrieve its abundance accurately.  379 

Nedoluha et al. [2009] studied the evolution of water vapor in the mesosphere, up to 380 

about 80 km, during solar cycle 23. They compared observations made by the Water Vapor 381 

Millimeter-wave Spectrometer (WVMS) with data from HALOE  (Halogen Occultation 382 

Experiment) and other instruments that together covered the period 1992-2008.  After 383 

accounting for the impact of changes in Lyman-alpha radiation over the solar cycle, 384 

Nedoluha et al. found that HALOE water vapor increased by about 8-9% between 60 and 385 

80 km from 1992 through 1996; on the other hand, from 1996 through 2005 (the last year 386 

of HALOE observations), water vapor decreased slightly in both HALOE and WVMS. To 387 
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put these findings in perspective, the WACCM water vapor trend over the decade 1992-388 

2001 (which encompasses the period of increase documented by Nedoluha et al.), is ~8 ± 389 

7% at 80 km and ~13 ± 12% at 90 km (not shown); this may be compared to the nearly 390 

altitude independent 7 ± 10% per decade obtained for 2004-2013 (Figure 9). The trend in 391 

Kzz calculated by WACCM over the period 1992-2001 is also statistically indistinguishable 392 

from zero (not shown). Evidently, WACCM water vapor can exhibit substantial inter-393 

decadal variability, comparable to that seen in the observations analyzed by Nedoluha et 394 

al., that is unrelated to eddy transport and could complicate the attribution of decadal 395 

trends. Nevertheless, the estimated impact of changes in Kzz illustrated in Figure 9 is large 396 

enough (15-30% per decade at 85-95 km) that it ought to be discernible even in the 397 

presence of variability arising from other sources. 398 

In summary, the evidence from the observations considered in this study points to a 399 

fast rate of increase in CO2 in the lower thermosphere that cannot be simulated with our 400 

state of the art climate-chemistry model.  In order for WACCM to produce trends of COx 401 

and CO2 in the lower thermosphere consistent with ACE-FTS and SABER observations, 402 

vertical eddy diffusion would have to increase substantially (at an estimated rate of over 403 

30% per decade).  Examination of suitable datasets for other minor species (e.g., water 404 

vapor) in the lower thermosphere would be desirable to provide independent confirmation 405 

of such a rapid rate of increase in turbulent mixing. 406 
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 501 

Figure 1. Evolution of observed and modeled CO (left) and CO2 (right) averaged over 60S-502 

60N for 2004-2013 at three pressure levels. Black and blue curves denote MIPAS and ACE 503 

data, respectively, with systematic measurement errors shaded; WACCM results are shown 504 

in red. 505 
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 506 

Figure 2. Evolution of observed and modeled COx averaged over 60S-60N for the period 507 

2004-2013 at 2 x 10-4 hPa and 10-3 hPa. Blue curves denote ACE data, with systematic 508 

errors shaded; WACCM results are shown in red.  509 
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 510 

Figure 3. Vertical profile of the global trend (% per decade) of COx = CO + CO2 for the 511 

period 2004-2013 derived from ACE observations (blue) and WACCM results (black). 512 

Dashed lines and gray shading denote 2-sigma uncertainties of the ACE and WACCM 513 

trend estimates, respectively. 514 
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 515 

Figure 4. Effect on the WACCM COx trend of adding random noise to the model output. 516 

The blue curve denotes the trend derived from ACE; dashed lines and gray shading denote 517 

2-sigma uncertainties of the ACE and WACCM trend estimates, respectively. See text for 518 

details. 519 
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 520 

Figure 5. Effect on the WACCM COx trend of doubling the solar cycle irradiance variation 521 

at 120-200 nm. The solid curve and light shading denote the trend from the original 522 

simulation and its uncertainty; the dashed curved and dark shading refer to the simulation 523 

with increased irradiance variability. The blue curve and dashed lines denote the ACE trend 524 

and its uncertainty. See text for details. 525 
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 526 

Figure 6. The WACCM COx trend obtained when the model is sampled at the geo-locations 527 

of the ACE-FTS observations compared with the trend obtained from ACE data; 528 

uncertainties are denoted by shading and dashed lines, respectively. See text for details. 529 

 530 
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 531 

Figure 7. Effect of changing Kzz on the WACCM trend of COx. ACE and WACCM trends 532 

for 2004-2013 are denoted by the black curves, with gray shading indicating 2-sigma 533 

uncertainties. The estimated impact on WACCM results of increasing Kzz by 25%, 33% and 534 

50% per decade is illustrated by the colored dashed curves. See text for details. 535 
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 536 

Figure 8. As in Figure 7, but for the trend of CO2.  537 
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 538 

Figure 9. As in Figure 7, but for the trend of H2O.  539 


