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Using Driver Control Models to Understand and
Evaluate Behavioral Validity of Driving Simulators
Gustav Markkula , Richard Romano , A. Hamish Jamson, Luigi Pariota , Alex Bean , and Erwin R. Boer

Abstract—For a driving simulator to be a valid tool for research,
vehicle development, or driver training, it is crucial that it elicits
similar driver behavior as the corresponding real vehicle. To
assess such behavioral validity, the use of quantitative driver
models has been suggested but not previously reported. Here, a
task-general conceptual driver model is proposed, along with a
taxonomy defining levels of behavioral validity. Based on these
theoretical concepts, it is argued that driver models without
explicit representations of sensory or neuromuscular dynamics
should be sufficient for a model-based assessment of driving
simulators in most contexts. As a task-specific example, two
parsimonious driver steering models of this nature are developed
and tested on a dataset of real and simulated driving in near-limit,
low-friction circumstances, indicating a clear preference of one
model over the other. By means of closed-loop simulations, it
is demonstrated that the parameters of this preferred model
can generally be accurately estimated from unperturbed driver
steering data, using a simple, open-loop fitting method, as long as
the vehicle positioning data are reliable. Some recurring patterns
between the two studied tasks are noted in how the model’s
parameters, fitted to human steering, are affected by the presence
or absence of steering torques and motion cues in the simulator.

Index Terms—Human performance modeling, simulator valida-
tion.

I. INTRODUCTION

DRIVING simulators are widely used for various purposes
in driver training, traffic research, and automotive devel-

opment [1]. When using a driving simulator, one does so to
target some driving-related objectives (e.g., driver learning out-
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comes, traffic research questions, and vehicle design decisions)
that involve the human driver as a crucial component, but where
the use of a real vehicle for attaining the objectives is deemed
unsafe, too costly, or otherwise ineffective. The objectives them-
selves, however, will typically remain focused on real driving,
i.e., the use of the simulator is motivated by the assumption that
the results will validly transfer to real vehicles and real traffic.

It is, however, clear that driving in a simulator will never be
exactly the same as driving in a real vehicle, both in the sense
that the exact sensory stimuli will differ—imperfect physical
validity [2]—and in the sense that drivers are aware that they
are not in a real vehicle. Consequently, the validation of driving
simulators for various types of applications has become a field
of research in its own right, attempting to answer questions such
as “Does training in a simulator make drivers better at handling
real traffic?” [3], “To what extent do research findings from a
simulator say something about real driving?” [4], or “Will the
same vehicle design decision be made in the simulator as if
using a physical prototype?” [5].

Across all of these contexts, the following question recurs: Do
drivers behave the same way in the simulator as they do in a real
vehicle? If one can devise a convincing, quantitative method for
answering this question in the context of a given application,
one can evaluate the extent to which a simulator under scrutiny
provides behavioral validity for that application, supporting de-
cisions on how advanced or expensive a simulator one needs
for a given application [2], [5]. Existing methods for assess-
ing behavioral validity conventionally rely on the calculation
of various metrics describing the observed driver behavior and
comparisons of these between reality and the simulator. How-
ever, such analyses do not relate the observed human behavior
to the driving situation that triggered it. It has been proposed that
a better understanding of behavioral validity can be reached by
fitting driver models to the observed behavior and by analyzing
obtained model parameters [5], [6].

This type of evaluation has been pioneered in the flight simu-
lation domain by Zaal, Pool et al. [7], [8]. They proposed the use
of quasi-linear models of pilot control behavior, combined with
models of the involved perceptual and neuromuscular systems.
To allow the fitting of these relatively complex models to human
pilot data, they adopted simplified, one-dimensional flying tasks
with the visual input constrained to just a roll/pitch-tracking dis-
play in the cockpit, and a system identification approach. Pilots
were subjected to forcing function inputs, the sum of a low-
frequency target signal and high-frequency perturbations, in the
same way in both a simulator and in a real aircraft, equipped with
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Fig. 1. Conceptual model and taxonomy of behavioral validity in the driving simulator. The first two panels suggest a model of driver–vehicle interaction in (a)
a real vehicle and (b) a driving simulator. For a given driving task, the sensory transduction (/perception), task goals, and neuromuscular dynamics are assumed
to be constant between the vehicle and simulator, whereas the brain’s mapping between internal sensory and motor representations is assumed to be adaptable to
keep the internal performance function f̃ maximal (the cost function −f̃ minimal), despite the changes to the task imposed by the driving simulator. Panel (c)
provides a taxonomy of the different levels of behavioral validity, based on what parts of the driver–vehicle interaction remain intact in the simulator. Note that the
externally defined task performance function f may be related to, but not necessarily identical, to the internal function f̃ . “Observable changes” refer to changes
that meet some criteria on statistical significance or effect size.

fly-by-wire technology that allowed this type of experimental
control.

Damveld et al. [6] presented a tentative application of a sim-
ilar forcing function approach to car steering on curves in a
simulator but did not fit any models to the obtained data. They
also reported that the perturbations seemed to disturb the driver’s
normal steering behavior. If this is so, then comparing the behav-
ior in a perturbed version of a driving task between the simulator
and reality may not give insights into behavioral validity for the
unperturbed task (even disregarding the challenge of achieving
perturbations in a real vehicle).

Based on what has been said previously, the two primary aims
of the present paper are:

1) to analyze the concept of behavioral validity in some
detail, to provide a taxonomy of behavioral validity and
a theoretical motivation for why one might want to use
driver models to assess driving simulators and what kinds
of models are to be used. This is covered in Section II.
This conceptual analysis is intended to be general across
driving tasks and simulator applications;

2) to explore the feasibility of a model-based simulator as-
sessment by means of an open-loop fitting of steering

models to unperturbed human task performance, i.e., with-
out a forcing function approach. Necessarily, this part of
the paper is application-specific; we target the assessment
of simulators as an industrial tool for the near-limit, low-
friction stability testing of prototype vehicles, a context
where a close replication of the human control behavior
is particularly relevant but where the necessity of using
professional test drivers implies small sample sizes, such
that the emphasis here will remain on methodological as-
pects. The collection of data in a real vehicle and in a
number of different simulator configurations is described
in Section III, the developed driver models in Section IV,
a comparison between them in Section V, and their use in
simulator assessment in Section VI.

A general discussion and conclusions are provided in Sections
VII and VIII, respectively.

II. BEHAVIORAL VALIDITY IN THE DRIVING SIMULATOR

A. Conceptual Driver Model

As a basis for the reasoning about behavioral validity, the
qualitative model of driver behavior shown in Fig. 1(a) will be
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used. This model is intended to be noncontroversial, is com-
patible with the contemporary literature on driver models (e.g.,
see [9]–[17]), and summarizes this literature in the form of a
few high-level assumptions that most can hopefully accept. The
model suggests that for a given state W of the externally observ-
able physical world, the driver’s sensory and perceptual systems
process S, a (possibly transformed) subset of W , to yield in-
ternal representations S̃. For example, while navigating a cone
track, the relative positions and velocities of the car and cones
(W ) might be picked up by the driver as the angular positions
and velocities of the upcoming cones in the driver’s own field of
view (S), which the perceptual system estimates with noise, de-
lays, and possible distortions (S̃). These internal representations
are then acted upon in the brain by some mapping N : S̃ �→ C̃,
with parameters θ, and where C̃ is an internal representation
of the control action to be carried out (e.g., a motor command),
which is then processed by the motor system and muscles to
yield an externally observable control behavior C. Importantly,
the mapping N is adaptively selected and tuned by the driver’s
brain in attempts to maximize some function f̃(W ,C|G,D),
rating the success of the behavior, where G denotes the goals of
the task at hand and D denotes driver states, such as for exam-
ple fatigue or stress, which may also affect f̃ . This function will
clearly be related to externally definable performance measures
f(W |G) (e.g., concerning task completion time, knocked-over
cones) but might not prioritize the physical outcomes in exactly
the same way as an external observer; f̃ is, for example, likely
to also consider control effort [10], [18].

Please note that although the conceptual model has here been
described in terms of driver control behavior, this can also be
interpreted in a rather general sense, depending on the appli-
cation; the control can, for example, be of a more tactical or
strategic nature while monitoring a partially automated vehicle
[19] or the control of an in-vehicle human-machine interface
(HMI) to carry out some secondary task [4].

B. Taxonomy of Behavioral Validity

Fig. 1(b) shows the same driver model again but now in a
driving simulator, with a prime added to all symbols to make
the distinction. As mentioned earlier, even if the simulated world
states are identical to some real-world situation, i.e., W ′ = W ,
the sensed world states S′ will typically not be exactly the
same as S due to the simulator’s limited ability to reproduce
the sensory (visual, vestibular, haptic, etc.) cues, and the driver
states D′ may differ, not least in terms of the factual knowledge
of being in a simulated vehicle. These differences, small or
large, will cascade through the entire control loop in nontrivial
ways, becoming amplified or attenuated, leading to more or less
changed (or unchanged) perceptual representations S̃

′
, control

action representations C̃
′
, and overt control C ′, resulting in

updated world states W ′, which also may or may not depart
from what would have occurred in the real vehicle.

Fig. 1(c) depicts some different scenarios of how these de-
viations might occur along the control loop. Scenario A is a
perfect simulator, without any distortion of sensed world states,
i.e., achieving S′ = S. Scenario B is one where S′ �= S but,
nevertheless, S̃

′
= S̃, i.e., a simulator that does not produce

exactly the same sensed world states (e.g., body accelerations)
as in reality but that makes the perfect use of human sensory lim-
itations, such that there would be no way for the driver’s brain
to tell the difference from S′ alone. While Scenarios A and B
may be achievable for some constrained tasks, such as the flight
tasks referenced earlier [7], [8] or constant speed lane-keeping
on a straight road, they are unrealistic for most driving tasks.

In Scenario C, the limitations of the simulator are such that the
internal sensory representations have also started diverging, i.e.,
S̃

′ �= S̃. However, for small divergences, the driver should be
able to adapt either just the mapping parameters θ or possibly
also the mapping N itself in such a way that overt behavior
stays the same, still maximizing the function f̃(W ,C|G,D)
in the same way as in Scenarios A or B (assuming that any
differences D′ = D at hand do not have a major impact on
f̃ ). In other words, in Scenario C, the mapping W �→ C is
preserved and, therefore, also all other externally observable
aspects of behavior (overt control actions, world states, and
objective task performance). Please note that the preservation
of W �→ C implies the preservation of S �→ C, since the latter
is only a reformulation of the external mapping, operating on
more psychologically plausible sensory inputs.

Scenario D occurs if the simulator’s limitations make it im-
possible for the driver to completely succeed in adapting the in-
ternal mapping S̃

′ �→ C̃ (e.g., scaled-down motion cues might
fall under perceptual thresholds [20], [21]), such that there are
observable changes to the overt control C for a given W , i.e.,
changes to the external mapping W �→ C but without this, yet,
causing any observable changes to the external world states or
the objective task performance. A typical example might be an
increased steering effort that still achieves the same vehicle tra-
jectory [20]. Note that the terms “observable changes” and “the
same” are imprecise here. In any practical application, other
sources of variability will also be present, meaning that W will
never be exactly the same between any two repetitions of a task,
and there will be a need for some statistical-level operational-
ization of what constitutes an acceptably small difference and
what does not for the application at hand. We will return to this
matter in Section VII. Also, note that in Scenario D, it seems
very likely that the neural mapping parameters have changed,
θ′ �= θ, but it is not clear whether or not the mapping N itself
has changed or if it remains the same.

Scenarios E and F occur as simulator limitations get even
more severe, such that the world states begin to observably
deviate from reality (Scenario E) and possibly even the objective
task performance (Scenario F).

C. Implications for Model-Based Simulator Evaluation

The abovementioned argument suggests that the task of be-
havioral validity assessment can be regarded as one of distin-
guishing between the four different feasible driving simulator
Scenarios C through F, by answering three questions1: Is task
performance f (e.g., cone hit frequency) preserved in the simu-
lator?, are the observable world states W (e.g., observed vehicle

1We have previously referred to these as the utility triplet [5] but without the
underlying conceptual theory.
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trajectories) preserved?, and are the control mappings W �→ C
preserved?. The first two of these can be addressed with con-
ventional metrics, but for the third question, driver models
are needed.

It should be noted that in the flight simulation work referenced
earlier [7], [8], the pilot models included an explicit represen-
tation of the internal S̃ �→ C̃ mapping, as part of the overall
W �→ C model. This approach makes sense if Scenario B is
considered attainable, and it is important to distinguish it from
Scenario C, something that may be true in a context where a
pilot or driver is to overlearn the exact parameters θ for vehicle
control. The extent to which this is important to, for example,
driver training is an open question, to which the present frame-
work can hopefully contribute.

As mentioned previously, with the present simulator technol-
ogy, Scenario B seems unattainable for most driving tasks. If
so, the best one can hope for and, therefore, all that needs to
be tested is the preservation of the external mapping W �→ C.
This might sound like a severe limitation on the usefulness of
driving simulators, but that need not be the case, in part precisely
because of the human sensorimotor system’s abilities to learn
the general aspects of a task’s dynamics, with associated quick
adaptation to updated dynamics [18]. Furthermore, if W �→ C
is preserved in a given task, the driver will take the vehicle
through the same objective states in reality and in the simulator.
For many applications, for example, relating to vehicle testing,
it may matter less whether or not drivers have had to adapt
their internal mappings somewhat to achieve this consistent
performance.

Another point to consider is the actual parameterization of
models. As mentioned in Section I, we hope to meaningfully fit
models directly to actual, unperturbed driving tasks. Therefore,
besides limiting ourselves to models of the W �→ C type (since
this should be enough to distinguish between Scenarios C and
D), we also focus on rather simple models with limited number
of parameters.

III. DATA COLLECTION

A. Driving Environments

1) Test Track and Instrumented Vehicle: Real driving data
were collected in early 2015 on a test track in the northern
parts of Sweden, using an instrumented Jaguar XE prototype.
The driving surface was packed, graded snow (and in some
cases, polished ice also). By means of deceleration tests, the
friction between tyres and snow was estimated as μ ≈ 0.4 and
that between tyres and ice as μ ≈ 0.2. Driver control inputs and
vehicle movements were recorded via the vehicle’s control area
network, an inertial measurement unit, and a differential GPS
(DGPS).

2) High-Fidelity Driving Simulator: Simulated driving data
were collected during late 2015–early 2016 from the Univer-
sity of Leeds Driving Simulator (UoLDS). The UoLDS features
a complete cockpit of a Jaguar S-type vehicle inside a spher-
ical dome with 300° visual projection, mounted on an eight-
degrees-of-freedom motion system consisting of a hexapod on
an XY table providing ±5 m of translation in both longitudinal

and lateral directions. The “classical” motion cueing algorithm
was used; for further details about this simulator and algorithm,
see [22], and see the supplemental material to this paper for
the exact motion cueing parameters used. The vehicle dynamics
simulation was a Jaguar-developed multibody model of the XE
vehicle. This model has been extensively validated to closely
capture accurate vehicle behavior on high-friction surfaces. A
visual representation of the frozen lake environment was cre-
ated, and the snow surface was modeled as having normally dis-
tributed random variations in height (standard deviation: 1 mm)
and friction (standard deviations: 0.02 and 0.005 for snow and
ice, respectively) on a linearly interpolated square grid of side
0.5 m.

Besides this standard configuration, two additional simulator
configurations were also tested; one with the steering torque
feedback to the driver turned off and one with the simulator
motion system turned off. The purpose of these rather coarse
simulator manipulations was for them to provide clear-cut ex-
amples of driving with degraded perceptual cues to support
methodological development, including the presently reported
model-based methodology, in the preparation for later studies
investigating more subtle variations in simulator capability.

B. Tasks

On the test track, data were collected for eight different tasks.
After implementing and piloting all of these tasks in the sim-
ulator, three tasks were identified as especially relevant for
simulator-based testing of vehicle stability and were, therefore,
included in the simulator data collection. One of these three
tasks, a constant radius circular curve task, will not be consid-
ered here due to space limitations. The other two tasks studied
in the simulator are described in the following and illustrated in
Fig. 3.

1) Lane Change: In the lane change task, drivers were in-
structed to approach a first cone gate at about 45 km/h and then
to make a 12-m wide lane change, of which 6 m in the middle
was a lane of polished ice, to pass through another two cone
gates at 30-m and 50-m longitudinal distance from the entry
gate. If the drivers were not able to successfully complete the
maneuver, they were free to reduce the entry speed in subsequent
repetitions.

2) Slalom: In the slalom task, the drivers were instructed to
maintain a constant speed of 45 km/h through a slalom of eight
cones spaced by 25 m.

C. Drivers

Eight drivers took part in this study, all professional test
drivers employed by Jaguar Land Rover. Their prior experience
in low-friction winter testing, before this visit to Sweden, ranged
from one season (two drivers) to two seasons (two drivers) to
15–30 seasons (four drivers).

D. Procedure

The drivers were first briefed, on both the test track and in
the simulator, on the tasks that they would be carrying out, and
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Fig. 2. Driver responses, on a visual analog scale from 0 to 100, to the question:
“For the task you just drove, how similar would you say that the experience
in the simulator is to reality?”. Bold lines show medians with 95% confidence
intervals and lighter traces show individual responses. The effect of the simulator
configuration was statistically significant (Friedman χ2 (2)= 15.79; p< 0.001),
with significance levels for Bonferroni-corrected post hoc tests also indicated in
the figure (all three pairwise comparisons tested): * p < 0.05; *** p < 0.001.

they provided informed consent. On the test track, the drivers
familiarized themselves with the instrumented vehicle during
a short 1.5-km drive to the first task, whereas in the simulator
they were given a more substantial 10-min familiarization drive
on a rural road to also get acquainted with the experience of
simulated driving as such. On the test track, the per-driver or-
der of the eight driving tasks followed a Latin Square design,
whereas in the simulator, per-driver random permutations were
drawn for the order of the nine combinations of three tasks and
three simulator configurations. On the test track, the lane change
task was repeated four times consecutively, whereas due to test
track time constraints the slalom was repeated three times, i.e.,
with eight drivers, 8 × (3 + 4) = 56 recordings. In the simula-
tor, each combination of task and simulator configuration was
repeated four times consecutively, i.e., 8 × 2 × 3 × 4 = 192
recordings considered here, and after each task/simulator com-
bination, the drivers also provided subjective feedback on the
simulated driving. The drivers’ ratings of perceived simulator
realism are shown in Fig. 2, depicting a statistically significant
decrease in perceived realism when removing motion cues but
not when removing steering torque cues.

IV. DRIVER MODELS

Based on the reasoning in Section II-C, two alternative few-
parameter models, mapping directly from world state W to
control actions C, were investigated.

There is converging support for modeling driver steering not
on the level of steering angles but rather on steering rates [11]–
[15]. Furthermore, there is support for modeling steering rates
as delayed, linearly scaled versions of the yaw rate error ωerr =
ω − ω∗, i.e., the deviation between the current vehicle yaw rate
ω and currently desired yaw rate ω∗ [13], [14], [16]. The two
models investigated here were both variations of the simplest
possible steering control law of this nature

δ̇(t) = −K · ωerr(t − TR) (1)

where δ is the steering wheel angle, K is a gain constant, and
TR is a response delay. Please note that we do not suggest
that drivers necessarily perceive or mentally represent actual

and desired yaw rates; the model is equally compatible with
the idea that available sensory cues and behavioral heuristics
allow drivers to behave as if they do [14]. Also, we do not
suggest that (1) is a complete account of a closed-loop driver
behavior. Instead, what is being investigated here is whether a
definition of ωerr can be identified such that (1) provides a good
approximation of observed human steering rates.

A. Desired Path Yaw Rate Error (DPYRE) Model

There is a long tradition of driver models based on the concept
of a desired path that the model previews and attempts to follow
(see, for example, the review in [10]). Here, one such model
was tested, where ωerr in (1) was defined as the yaw rate that,
starting from the current vehicle position and heading, would
make the vehicle’s trajectory intersect the desired path after a
preview time TP (see Fig. 3 for an illustration).

In the lane change task, the desired path consisted of straight
lines before the first cone gate and after the second one and half a
period of a cosine function between the two. The lateral positions
of the initial and concluding straight segments were the middles
of the first cone gate and the third cone gate, respectively. In the
slalom task, the desired path consisted of straight lines before
the first cone and after the eighth and last cone, and a sinusoidal
path with its extrema at the longitudinal positions of each of the
eight cones, and amplitude A, a free model parameter.

B. Modified Gordon & Magnuski (MG&M) Model

While the use of a desired path concept is very common in
driver modeling, it is debatable whether drivers are really mak-
ing use of any mental representations of this nature [14], [18].
Therefore, an attempt was made at replacing the desired path of
the desired path yaw rate error (DPYRE) model with something
that was purely based on the cone track layouts themselves. This
was done by using a model proposed by Gordon and Magnuski
[16], who used a control law similar to (1) but calculated the
desired yaw rate ω∗ as the yaw rate needed to not collide with
boundary points along the left and right sides of the lane being
navigated, here mapping nicely onto cones.

The original authors considered a fixed preview horizon and
applied steering rates based on the previewed boundary point
with the largest absolute yaw rate error. This does not work
well on a cone track, where closer cones have to be passed
first even if a later cone suggests a larger yaw rate error. The
model was modified accordingly, as illustrated in Fig. 4. At
each time step, upcoming cones were considered one at a time,
closest first, consecutively narrowing down the range of yaw
rates I = [ωmin , ωmax] that allowed passing all cones considered
so far on the correct side, with an additional safety margin ρ (see
[23] for the required mathematics), until a cone requiring a yaw
rate outside I was encountered.

If there were no such unfeasible cones, the desired yaw rate
was determined exactly as by the original authors, either just
maintaining the current vehicle yaw rate ω if ω ∈ I (i.e., sat-
isficing control [24]) or the closest boundary of I otherwise. If
there were unfeasible cones, the desired yaw rate was set to the
boundary of I closest to the yaw rate needed to correctly pass



MARKKULA et al.: USING DRIVER CONTROL MODELS TO UNDERSTAND AND EVALUATE BEHAVIORAL VALIDITY 597

Fig. 3. Illustrations of the two driving tasks, the DPYRE steering model, as well as an example of observed car states. In the DPYRE model, the yaw rate error
is the difference between the yaw rates for the desired and current vehicle trajectories, and the desired vehicle trajectory is the trajectory that intersects with a
predefined desired path a preview time ahead. The small red rings are cones, shown to scale.

Fig. 4. Illustrations of the MG&M [16] model. The red rings are cones, and the triangles surrounding them indicate the side to which the cone needs to be passed.
The gray lines show limit trajectories for correctly passing the cones, the green lines indicate the feasible range of trajectories, and the red dotted line indicates the
first cone that cannot be passed with a single circular trajectory that also correctly passes all preceding cones (the lower cone at X = 50 m in the left panel; the
cone at X = 100 m in the right panel).

the unfeasible cone. In the lane change task, for example, this
makes the model keep tight toward the rightmost cone at the first
cone gate, since at that point the first unfeasible cone is further
to the right. Finally, a model parameter Tpass was included; if
a cone was closer than this time ahead, it was considered as
already effectively passed, and it no longer affected steering.

V. MODEL COMPARISON

This section describes the comparison carried out between
the two considered models. The described model fitting method
will also be used for other purposes in later sections.

A. Model Fitting

1) Target Signal: Both tested models predict steering rates.
The human steering rates δ̇ were estimated as follows: For the
simulator data, the recorded steering wheel angles were quan-
tized from their original 0.1◦ resolution to the 1.5◦ resolution of
the instrumented vehicle to make the signals comparable. Then,
all steering wheel data were low-pass filtered with a Gaussian
kernel of standard deviation 0.1 s, chosen since it was found
to reasonably restore the original 0.1◦ resolution steering wheel
angle from the quantized version for the simulator data. These
filtered steering wheel angle data were then numerically differ-
entiated to obtain δ̇.

2) Per-Recording, Open-Loop Fitting: The models were fit-
ted to individual task recordings, thus providing a model-based
quantification of behavior in each task repetition separately (fit-
ting the models across all repetitions per driving condition was
also explored but was found to be overly sensitive to single

TABLE I
MODEL PARAMETERS FITTED USING GRID SEARCH

outlier recordings with differing behavior or outcome). The
fittings were of an open-loop nature; at each evaluated point
k in a recording, sampled every 0.05 s, the current situation
was fed to the model, including the consideration of any delays,

and the model’s steering rate ˆ̇
δk in that situation was calculated

and compared with the observed steering rate δ̇k applied by the
driver. Goodness of model fit for a recording was calculated as
the coefficient of determination (interpretable as the fraction of
observed variance explained by the model) given by

R2 = 1 −
∑

k (ˆ̇δk − δ̇k )2

∑
k (δ̇k − ¯̇

δ)2
(2)

with ¯̇
δ being the average of δ̇k in the recording.

3) Fitting Method: The model parameters were fitted with
a combination of an exhaustive grid search and linear least-
squares. For each combination of the parameter values listed
in Table I, the steering gain K was obtained by least-squares
fitting to the human steering, and the final parameterization
was selected as the most successful such least-squares fitting
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Fig. 5. Comparison of model fit between the DPYRE model and the MG&M model in the lane change (top row of panels) and slalom (bottom row) tasks. The
eight smaller panels to the left show examples of typical fits in individual recordings. These are all from the third repetition per driving condition for Driver 3 in
the lane change task and Driver 4 in the slalom task. The two larger panels to the right provide overviews of the model fit across all collected data per task. The
plus signs show R2 for individual task recordings, the circles show R2 averages across recordings, the dashed lines indicate y = x, i.e., data points below the
dashed line are recordings where the DPYRE model provided a better fit than the MG&M model.

(highest R2) across the grid search. It can seen from Table I that
in all fittings, there were three grid-searched parameters and
one gain, except the DPYRE model in the lane change, where
only two parameters were grid-searched. Also, note that the ρ
parameter of the modified Gordon & Magnuski (MG&M) model
was allowed negative values (i.e., a negative safety margin) since
this was found to improve the fit in some cases.

4) Data Segments Fitted to: The considered parts of the task
recordings were as follows: For the lane change task, from 20 m
before the first cone gate to the third cone gate. For the slalom
task, from the first to the eighth (last) slalom cone. In practice,
these ranges were approximate since for the instrumented vehi-
cle data, the exact relative positions between the car and cones
were not recorded as intended due to DGPS limitations. There-
fore, the ranges of data for model-fitting were extracted (both for
the instrumented vehicle and simulator datasets) using salient
features of the vehicle trajectories—the maximum lateral speed
as an estimate of the longitudinal midpoint between the first
and second cone gates in the lane change, and maximum lat-
eral positions near the second and seventh cones as estimates of
these cones’ longitudinal positions in the slalom. A similar ap-
proach also provided estimated vehicle positions for the models
when predicting driver steering in the real vehicle: DGPS posi-
tioning was stable between consecutive task repetitions with a
single driver (closely overlapping trajectories); thus, the average
DGPS location of the abovementioned “salient features” were
observed per driver and task, and this average point was then as-
sumed to indicate the same position on the test track as indicated
by averaging in the same way over the recordings for the same
driver and task in the simulator. This approach is obviously not
perfect and adds uncertainty to the real-world model fits.

Out of the total 248 task recordings, 7 (2.8%) were excluded;
one because the driver lost control during the slalom task, one
because the driver did not carry out the lane change task as
instructed, and five lane changes were excluded because data
logging in the simulator was incomplete for unknown reasons.

B. Results

Fig. 5 shows typical examples of model fit to individual
recordings, as well as overviews of R2 across the entire dataset.
Since the DPYRE model almost always obtained higher R2

than the MG&M model, with equal number of parameters or
fewer, the DPYRE model was adopted as the candidate model
for measuring behavior validity (see Section VII-A for further
discussion on model performance).

VI. USING THE DPYRE MODEL TO ASSESS BEHAVIOR

A. Accuracy of Parameter Estimates

The system being identified here, i.e., the driver, is being sub-
jected only to the excitation provided by the task itself rather
than a more complete set of forcing functions designed for op-
timal parameter estimation (cf. [6]–[8]). The advantage of this
approach is that it lets the driver carry out the task at hand unper-
turbed, but the drawback is that it becomes less certain that the
fitted model parameter values are accurate and meaningful. An
additional concern is raised here due to the inexact positioning
in the data collected with the real vehicle.

To provide some objective insight into the accuracy of the
open-loop fitting method, closed-loop behavior was generated
with the DPYRE model itself by simulating it together with a
linear vehicle model fitted to the multibody model’s observed
lateral dynamics on snow (i.e., disregarding, for simplicity, the
ice patch in the lane change task). These closed-loop simulations
were generated for a full grid of parameter values, with each
parameter covering at least the central two quartiles obtained
in the fitting to human behavior (four linearly spaced values in
each of TP ∈ [1.5, 2.5] s;TR ∈ [0.15, 0.3] s;K ∈ [10, 20];A ∈
[1.8, 3]). Three 100-Hz simulations of each task were run per
parameterization, with noise added to introduce variability of
a magnitude comparable to that observed in the human data:
Gaussian noise was added to both steering rates and vehicle yaw
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Fig. 6. Closed-loop model simulations to investigate the accuracy of the open-loop model parameter estimation. The two leftmost columns of panels show all
recordings of human behavior in the two tasks and the behavior of the driver model, when simulated with noise across a full grid of model parameterizations (i.e.,
not specifically attempting to reproduce the human behavior). The panels to the right show estimation errors, deviations between the parameter values obtained
when applying the open-loop fitting method to the simulated data, and the true parameter values used in the simulations. Each “box plot” shows the median,
minimum, maximum, and quartile estimation errors, and each row of a box plot is for a separate variation to the fitting method; see the text for details (the ΔTP
for fits with fixed preview TP = 2 s reflects the deviation from the actual model parameterizations TP ∈ [1.5, 1.83, 2.17, 2.5] s; the minimum and lower quartile
errors coincide at –0.5 s because the lower preview time values yielded more frequent model control loss and hence, fewer data points).

rates, with standard deviations of 0.2 and 0.05 rad/s, respectively,
and low-pass filtered with third-order Butterworth filters with
cutoff frequencies of 1.5 and 0.5 Hz, respectively.

The left side of Fig. 6 shows the generated model behavior,
alongside the totality of recordings obtained from the human
drivers. Despite the DPYRE model not being developed with the
aim of closed-loop stability and despite the full-parameter grid
covering many types of parameter combinations not adopted
by the human drivers, the model was relatively often capable
of successfully completing the tasks. If the simulated vehicle’s
heading relative to the track’s forward direction exceeded 70◦,
then this was judged as a control loss, something that happened
in 45 (23%) of the 192 lane change simulations and in 246
(32%) of the 768 slalom simulations; these simulations are not
shown in Fig. 6.

The right side of Fig. 6 shows observed parameter estimation
errors (ΔTP , etc.) when applying the open-loop fitting method
to the simulated data (here and in the following, results for the A
parameter are omitted to save space; this amplitude can easily be
investigated with more conventional, nonmodel-based metrics).
Results are shown for four variations of the fitting method.

1) Fitting to the exact data generated in the simulations, with
exactly the same method as described in Section V.

2) Fitting with the same method, but after repositioning each
simulated vehicle trajectory by a separate random vector to em-
ulate uncertainty in vehicle positioning. This repositioning was
drawn from a uniform distribution of ±(4, 0.7) m in longitudi-
nal and lateral directions for the lane change and ±(3, 0.25) m
for the slalom, corresponding to the variability observed in the
“salient features” mentioned in Section V-A4.

3–4) Like the first two but fixing TP = 2 s as a possible
means of addressing the partial parameter redundancy between

TP and TR (increasing or decreasing both at the same time by
appropriate amounts can leave the model behavior unchanged
to some extent).

Overall, Fig. 6 shows that as long as vehicle position estimates
are exact (as in the simulator here), the open-loop fitting method
provides unbiased estimates of TR and K in both tasks (medians
close to zero), but with a median downward bias in the preview
time TP of 0.1–0.2 s. Introducing positioning uncertainty, how-
ever, introduces additional variability in parameter estimation
but, importantly, upward biases also for TP and TR and down-
ward biases for K. Fixing the TP parameter reduces the bias in
TR somewhat, especially for the lane change task, but increases
the bias in K.

B. Comparing Model Fits Between Real Vehicle and Simulator

Fig. 7 depicts a comparison of model goodness-of-fit (also
including model rms errors, in units of steering rate, as a com-
plement to the dimensionless R2 values) and obtained param-
eters across real and simulated driving conditions. As in the
previous section, results are provided here both from the fitting
as described in Section V, with TP as a free parameter (black
plots), as well as with TP fixed at the average values obtained
in the simulator; 2.2 and 1.7 s for the lane change and slalom,
respectively (blue plots). Friedman tests were applied, indicat-
ing statistically significant effects of the driving condition in the
slalom for the rms errors as well as all three of TP , TR , and
K, with Bonferroni-corrected post hoc significance levels (all
six pairwise comparisons) illustrated in Fig. 7. All tests for the
lane change task came out nonsignificant. To avoid trying to
interpret parameter values from poorly fit driver models, these
analyses excluded recordings with low R2 . Different exclusion
thresholds for R2 in the 0.4–0.7 range were tested, but besides
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Fig. 7. Comparisons of model fits between driving conditions. The black and light blue thick plots show medians with 95% confidence intervals, from model
fits with free and fixed preview time TP , respectively. The light gray traces show per-driver medians from the fits with free TP . Significance levels of post hoc
tests: * p < 0.05; ** p < 0.01; *** p < 0.001. It should be noted that the estimated parameter values for the real vehicle driving may have been influenced by
inexact vehicle positioning; see the text for further details.

affecting the statistical power, the exact threshold value did not
affect the main patterns and conclusions; the results presented
here are for R2 > 0.6 (i.e., for example, excluding the no-torque
lane change recording shown in Fig. 5). In the analyses of TR
values, the Friedman tests were applied to the parameter val-
ues obtained when fitting with a fixed TP , since the estimation
accuracy tests in the previous section indicated that this would
provide a fairer comparison of TR . In all the other tests, the
results from model fittings with free TP were used (and the ob-
served significant effect for TR actually remains significant also
when analyzed in this way).

VII. DISCUSSION

This section will focus, first, on the extent to which the tested
models were able to capture the human steering and then on the
model-based comparison between driving conditions, including
its limitations. Finally, the present contribution will be con-
sidered in the wider context of methods for simulator validity
assessment.

A. Model Performance

As can be seen from Fig. 5, across both the lane change and
slalom tasks, the DPYRE and MG&M models generally pre-
dicted very similar time histories of steering rate, but generally
also with slightly better fits for the DPYRE model. The bands
of fits just under the y = x diagonals (i.e., with slightly better
DPYRE fit) in the rightmost panels of Fig. 5 seem to be due
to the desired path of the DPYRE model providing a desired
yaw rate signal ω∗ that is subtly more humanlike than the ω∗
obtained with the MG&M model’s cone-based approach. This
could either be taken as an indication that humans do use a de-
sired path construct, but just as well that the cone-based account
needs to be perfected further. Such work could, for example, go
in the direction of an optimal control [9] and/or a closer consid-
eration of driver gaze behavior and exact visuomotor heuristics
employed by drivers [12].

For the lane change task, at least two other phenomena are
at play: 1) notably worse fits for the MG&M model than for

the DPYRE model for some recordings (points far below the
y = x diagonal in Fig. 5). Most of these recordings include a
cone hit where the MG&M model can sometimes, despite the
Tpass parameter, provide exaggerated steering rates just before
the collision; and 2) poor DPYRE model fits, around or below
R2 = 0.5, but with better fits for the MG&M model. All of
these are recordings where the driver decelerated to a very low
speed or a full stop at or just after the final cone gate. In these
situations, the DPYRE model predicts exaggerated steering rates
to get to the desired path along a trajectory that is approaching
zero length and, therefore, a high curvature (see the example
without steering torque shown in Fig. 5).

Overall, the DPYRE model was rather successful at capturing
the human steering in the lane change and slalom tasks, with
a majority of fits in the R2 0.7–0.9 range. However, looking
closer at the example fits shown in Fig. 5, it is clear that there
were also some recurring shortcomings. The initial rightward
steering peak in the lane change task (at about 1–2 s in the
examples) does not seem well captured in general, and in the
slalom there is often a secondary peak of steering rate in each
half-period of steering, which tends to be underestimated by the
model (e.g., at 4 and 9 s in the third slalom example shown in
Fig. 5). In both of these types of situations, it seems that the
human drivers are applying an additional burst of steering to
“swing wide” (cf. [25]) and “open up” the next cone gate more
than suggested by the desired paths used here; this behavior
is also to some extent visible in the lane change and slalom
snapshots shown in Fig. 3. Again, as mentioned earlier, either
optimal control modeling (cf. [25]) or a targeted investigation of
exact visuomotor heuristics would seem to provide promising
avenues for future work.

As for the closed-loop simulations of the DPYRE model
shown in Fig. 6, it should be noted that the dissimilarity between
the model and human behavior here can, to some extent, be
attributed to the full grid of parameterizations tested, including
less humanlike, for example unstable, parameterizations. In any
case, as mentioned, the stability or human-likeness in the closed-
loop simulation was not a modeling aim here; the aim was
instead a model that could reproduce the human steering rate
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signal in a way that would allow a meaningful interpretation of
fitted model parameters. The visual aspect of how fits, such as
those shown in Fig. 5, capture the human steering signal (shape,
timing, and amplitude) may be taken as an indicator that this
purpose may have been achieved, but a further study of the
obtained parameters and of how they vary with experimental
manipulations is needed. This leads on to the following section.

B. Effects of Driving Conditions on Model Parameters

1) Comparison Between Simulator Configurations: The pa-
rameter estimation accuracy results shown in Fig. 6 provide an
additional positive indication. As long as the vehicle position-
ing is accurate, the open-loop parameter estimation has limited
variability, with some limited bias only for the TP parameter.
Also, an estimation bias as such may not be problematic if it is
consistent, allowing meaningful relative comparisons. Based on
these insights, it is interesting to compare the obtained model
fits between the three driving simulator configurations.

The only two statistically significant effects were observed
in the slalom; larger model rms errors when turning off steer-
ing torques and larger steering gains without motion cues than
without steering torques (see further below for possible inter-
pretations). Beyond these findings, there were also trends that
aligned in their aspect between the two tasks, with the no-torque
configuration possibly standing out as having lower TP and K
than the other two configurations and the no-motion configura-
tion as possibly having the largest TP . It is interesting that these
patterns recur between tasks, but they remain unconfirmed here
and require further investigation, preferably with larger samples
of drivers if possible. It is not clear why only the slalom and not
the lane change would show significant effects of simulator mod-
ifications, but previous work has indeed shown the slalom per-
formance to be sensitive to, for example, simulator motion [20].

2) Comparison Between Reality and Simulator: The differ-
ences in model parameter values between the real vehicle and
simulator were also consistent between tasks and again, statis-
tically significant for the slalom. However, the interpretation of
these findings is hampered by the fact that the parameter estima-
tion results (see Fig. 6) showed biases from vehicle positioning
inaccuracy, as known to be the case here for the real-world
data, in precisely the directions observed here for the real-world
driving, a larger TP and TR and a smaller K.

The magnitude of differences in parameter values between
the simulator and reality is larger than that between the exact
and inexact positioning in the estimation tests, which could be
taken to suggest that the observed effects are not solely due to
positioning inaccuracy. Assuming for a moment that this is so
and that it can be confirmed in follow-up studies, it is interesting
to note that when effects of simulation on delay times and gains
were observed in the Delft flight simulation studies [7], [8],
these were also typically in the same directions as observed here,
shorter delays and larger gains (although often with largest gains
for highest-fidelity simulators, in contrast with the large gain for
the no-motion configuration here). One possible interpretation
of shorter delays and larger gains in the simulator would be that
drivers are less able to make use of their normal overlearned

control strategies, making control more inaccurate and, as an
adaptive response, more effortful. Such an interpretation would
also align with the pattern, here, of increasing slalom model rms
errors between reality and simulators, as well as with separate
observations of increased cone hits and steering wheel reversal
rates in the simulated slalom, when removing steering torques
and motion.

It should be noted, however, that any conclusions along these
lines are not warranted at this point due to the risk that the
presently observed differences between the simulator and reality
are artifactual in nature.

C. Methodology for Simulator Assessment

An overall conclusion from the abovementioned results and
discussion is that the open-loop fitting of few-parameter models
of W �→ C type is a promising tool for assessing behavioral
validity of simulators, at least in the types of vehicle-control-
focused tasks studied here. A suitable next step to further test
this tool would be to apply the same models and methods to
additional data to see if the rough patterns of effects on param-
eters observed here can be confirmed. Such work could also
extend to a larger variety of driving tasks. Not least, studying
tasks that can be carried out by participants from the general
public would help address some limitations that arose in the
present study from the focus on low-friction vehicle stability
testing with professional test drivers, such as small sample size,
logistical challenges preventing counterbalancing of real and
simulated driving, and a long period of time between the two
data collections.

As mentioned in Section II-B, the taxonomy of behavioral
validity proposed here, and the usefulness of driver models im-
plied by the taxonomy, should indeed be applicable to a wider
range of tasks, such as HMI interactions or the monitoring of
a partially automated vehicle, albeit presumably with more ad-
vanced models. Interestingly, Ameyoe et al. fitted a model, more
complex than what has been studied here, to driving with and
without secondary tasks and found that episodes of distracted
driving could be identified by analyzing the obtained model pa-
rameters [17]. Regardless of the driving task being studied, more
complex models may be capable of picking up on more subtle
behaviors and effects (see the discussion in Section VII-A), but
there is of course a tradeoff to be managed, where the parameter
estimation may become more difficult or less accurate for more
complex models.

With respect to the proposed taxonomy, another important
methodological consideration is as to how one should interpret
model fitting results, such as those obtained here, to draw con-
clusions about which behavioral validity scenario (Scenarios
A–F) is the case for a given simulator and task. One possibility
would be to rely solely on statistical significance tests on model
parameters and conclude that W �→ C has changed whenever
there is a significant difference between parameters fitted to real
and simulated driving. However, if doing so, it is to be noted
that statistical significance is determined by both effect sizes
and sample sizes and that the lack of a statistically significant
difference between reality and a simulator configuration does
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not permit the conclusion that the behavior was preserved in
that simulator; large effects with potentially serious applied im-
plications may still be nonsignificant if the sample size is too
small. Therefore, if the present experiment had been able to
provide reliable real-world model parameter fits, it would have
been important to consider also the effect sizes when comparing
parameter values between reality and a simulator. Conversely,
in a large-sample study, one may find statistical significance
for effects that might be small enough to be irrelevant for the
application at hand.

Another aspect to note is that the present driver model anal-
yses only addressed one-third of the utility triplet mentioned in
Section II-B. More conventional metrics assessing task perfor-
mance (f ) and task-relevant world states (W ) remain important,
however, not least to clarify whether the model-based metrics
provide any insights not provided by the conventional metrics.

We have also not broached the topic of absolute behavioral
validity, such as studied here, versus relative validity [2]. For
many applications, it may be enough that the relative effect of
some manipulations on behavior is preserved in the simulator.
For example, if an A–B comparison of behavior between two
vehicle design alternatives favors the same alternative in both
simulator and reality, it might matter less whether or not the
absolute behavior is preserved. The conceptual model and tax-
onomy proposed here provide some possible handles on this
topic that might be useful in future work: Relative behavioral
validity would seem more likely if the overall control strategy
(the neural mapping N ) is preserved, with goodness of model
fit as one possible indicator. If so, the lack, here, of any signifi-
cant effects of driving condition on model R2 could potentially
indicate a good relative validity.

A related matter is the question of how quickly drivers adapt
to the simulator. We have suggested that for all of the Scenarios
C–F, some adaptation will necessarily take place, and if this
process and its speed can be observed for a given task (see, e.g.,
[26]), for example using the model-based methods proposed
here (cf. [27]), this could provide another type of measure of
behavioral validity. Furthermore, with respect to adaptation, as
mentioned earlier in this paper, it remains an open question as to
whether the distinction between behavioral validity Scenarios
B and C is important for driving simulation, i.e., whether there
are driving simulator applications for which it is important that
no adaptation whatsoever occurs, not even of the internal S̃ �→
C̃ mapping. The taxonomy and models outlined here provide
potential stepping stones toward answering such questions. For
example, if an imperfect simulator preserves W �→ C but is not
as efficient a tool as a real vehicle for training in some given task,
this suggests that it is important to achieve preserved S̃ �→ C̃
mappings, i.e., Scenario B, in this context.

Finally, since the purpose of behavioral validity assessment
is always to understand whether a simulator permits some ap-
plication (driver learning outcomes, traffic research questions,
and vehicle design decisions), it is important to combine the
behavioral models and metrics with direct comparisons of the
application itself between the simulator and reality. This is ar-
guably the only way to determine acceptable thresholds for
measures of behavioral validity, model-based or not.

VIII. CONCLUSION

The main aim here has been to advance the state of the art in
driver-model-based methods for the assessment of simulators.
To this end, we have proposed a task-general conceptual theory
and taxonomy of behavioral validity in the driving simulator
and have derived from this theory a recommendation of using
models mapping directly from observable world states to control
actions (W �→ C rather than S̃ �→ C̃). We have proposed two
such models and have shown through open-loop model fittings
to unperturbed human steering data from near-limit, low-friction
maneuvering that for this purpose one of the models, the “de-
sired path yaw rate error” model, consistently outperformed the
other. Furthermore, by means of closed-loop simulations with
the DPYRE model, we have shown that its parameters can gen-
erally be accurately estimated with the model-fitting method
used here, but that vehicle positioning inaccuracies introduce
not only an additional variability in parameter estimates but also
biases, such that a comparison of fitted-model parameters be-
tween driving conditions with differing positioning accuracies
is not advisable. Finally, we have demonstrated some seemingly
recurring patterns of how the availability of steering torque and
motion cues in the simulator affects fitted-model parameters.
Based on these findings, we conclude that the models and meth-
ods employed here may provide a useful addition to the methods
for assessing behavioral validity of driving simulators. An im-
portant next step will be to apply these methods in additional
empirical studies, to combine them with conventional metrics of
behavior and performance, and to correlate them with measures
of whether or not the simulator achieves the applied objective
in question (e.g., generating the same vehicle design decisions
as with a physical prototype).
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