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ABSTRACT: Extreme nanowires (ENs) represent the ultimate class of crystals: They are the smallest possible periodic
materials. With atom-wide motifs repeated in one dimension (1D), they offer a privileged perspective into the physics and
chemistry of low-dimensional systems. Single-walled carbon nanotubes (SWCNTs) provide ideal environments for the
creation of such materials. Here we present a comprehensive study of Te ENs encapsulated inside ultranarrow SWCNTs
with diameters between 0.7 nm and 1.1 nm. We combine state-of-the-art imaging techniques and 1D-adapted ab initio
structure prediction to treat both confinement and periodicity effects. The studied Te ENs adopt a variety of structures,
exhibiting a true 1D realization of a Peierls structural distortion and transition from metallic to insulating behavior as
a function of encapsulating diameter. We analyze the mechanical stability of the encapsulated ENs and show that
nanoconfinement is not only a useful means to produce ENs but also may actually be necessary, in some cases, to prevent
them from disintegrating. The ability to control functional properties of these ENs with confinement has numerous
applications in future device technologies, and we anticipate that our study will set the basic paradigm to be adopted in the
characterization and understanding of such systems.
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Extreme nanowires (ENs)1 are few-atom-wide wires that
extend along one dimension and have their fine structural
details resolved also at the atomic length scale. They

represent the smallest possible one-dimensional (1D) materials;
a fact which, on its own, justifies detailed experimental and
theoretical investigation into materials structure and character-
ization. In contrast to many other exotic materials predicted via
computational discovery, practical routes to EN synthesis
have revealed a rich landscape of 1D physics and chemistry.

Such extreme 1D structures have an obvious potential for use as
interconnecting elements between components in nanocircuits,
but less immediate applications, such as the design of nanophase-
change materials (NPCMs) for use in high-efficiency solid-state
storage devices, can be envisioned, especially since structural
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changes in 1D can be inducedand precisely characterized, as
we show hereby the equally extreme confinement of matter at
the nanoscale.
A practical route to achieving nanoconfinement in 1D is

making use of single-walled carbon nanotubes (SWCNTs).
A prominent characteristic of SWCNTs is their capillarity,2

which has been explored in experiments to grow and encapsulate
crystals, molecules, and aggregates. SWCNTs have remarkable
chemical stability and provide a very effective chemical shielding
from the external environment. These characteristics make such
tubes the ideal templates for the discovery of nanomaterials as
well as for the investigation of new material phases that emerge
due to nano-1D confinement.3−7 Conversely, we have recently
shown that encapsulated ENs can be used to boost electronic
transport in SWCNTs.8 This further highlights the importance of
such materials for applications in electronics, especially with the
demonstrated possibility of building SWCNT-based transistors
with gate lengths as small as 1 nm.9 Hybrid nanotube-nanowire
systems have been used in the fabrication of nanothermom-
eters10 and magnetic force microscopy sensors,11 and potential
for many other applications,12 such as battery electrodes13 and
in photothermal nanomaterials-based devices,14 has also been
demonstrated.
Applications of alloys containing Ge, Sb, and Te in phase-

change materials have enjoyed considerable success over the past
decades,15 and the search for NPCMs based on such elements is a
natural step.16 Te is of particular interest in this context because
its bulk structure favors the formation of 1D structures.17,18

Ultranarrow Te nanowires down to 25 nm in diameter exhibit a
wealth of interesting properties related to their photoconductiv-
ity, nonlinear optical response, thermoelectric, and piezoelectric
effects.19,20 They have been employed in gas sensors,21

optoelectronic devices,22 and photonic crystals.23 Recently, the
dimensionality of Te wires was reduced to single-atom chains
in carbon nanotubes (CNTs) with internal diameters in the

range 1.2 ± 0.2 nm.24 There is, however, a clear motivation to
produce a more consistent, atomically regulated material, ideally
encapsulated exclusively within single conformation ultranarrow
single-walled carbon nanotubes (UNSWCNTs) with diameters
smaller than 1.2 nm. Such UNSWCNTs would have precisely
tailored physical properties, being either pure semimetallic or
pure semiconducting confining tubes with a single discrete gap.
Recent major developments in hardware for aberration

corrected high-resolution transmission electron microscopy
(AC-TEM) and aberration corrected scanning transmission
electron microscopy (AC-STEM)25,26 have driven considerable
interest in low-dimensional materials, as imaging such systems
requires very high precision. Such advancements, on the other
hand, mean that three-dimensional data with atomic-dimension
accuracy are now needed for ENs if one is to ensure maximum
compatibility between theory and experiment. From the theory
standpoint, such developments are paralleled by the advent
of high-performance computing, which, allied with clever
approaches to structure searching, can increase the efficiency
and accuracy in materials discovery and eliminate guesswork
from the process.
Here, we combine AC-TEM, AC-STEM, and electron energy

loss spectroscopy (EELS) measurements with a high-throughput,
1D-adapted implementation of the ab initio random structure
searching (AIRSS) method27 to provide the most accurate
characterization to date of Te ENs grown inside UNSWCNTs.
The AIRSS methodology has successfully been employed to
tackle problems as diverse as the structural determination of
point-defects,28−30 prediction of high-pressure phases,31 as well as
to detect structural transformations in nanostructured silicon-
based lithium-ion batteries.32

RESULTS AND DISCUSSION

We have filled UNSWCNTs with diameters spanning from
0.7 nm to 1.1 nm with Te nanowires using a similar sublimation

Figure 1. AC-TEM images of UNSWCNTs, sorted by diameter (smallest to largest), filled with 1DTe extreme nanowires ENs.With the exception
of the LC encapsulated inside the smallest diameter (0.749 nm) UNSWCNT (Te−Te spacing indicated in orange), all of the remaining ENs form
coil structures with differing periods (coil pitches) along the lengths of each nanotube. UNSWCNT diameters and Te atomic period
measurements were obtained from the indicated Wien filtered sections with an estimated precision of ±0.008 nm.
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method to that applied by Senga et al.33 to the filling of double-
walled CNTs with ionic CsI single-atom chains. Elemental Te
was filled by sublimation in vacuo (see Experimental Methods
section) directly into the UNSWCNTs to produce single-atom-
thick Te ENs. Our AC-TEM imaging results (Figure 1) show
that the vast majority of the obtained Te ENs consisted of single-
atom-thick Te 3-fold-symmetry helical coils (3Hs). We found
that the “pitch” of each coil varies in a nonmonotonic fashion
with respect to the observed diameter of the encapsulating
UNSWCNT. See the included Supporting Information (SI)
for more details. Scanning TEM (STEM) imaging and EELS
(Figure 2a−d) confirmed the chemical identity of the obtained
Te coils as elemental Te.
In order to unambiguously determine the structures of the

encapsulated Te ENs, we adapted the AIRSS method27 to the
modeling of SWCNT-encapsulated 1D structures (see SI).
Additionally, we note that the determination of the most
favorable EN structure encapsulated inside a single SWCNT
is not enough to provide a precise characterization of
SWCNT-encapsulated ENs. The formation of distinct EN
structures can be favored by modifying the diameter of the
encapsulating SWCNT, and the ability to predict the most
favorable structures inside SWCNTs of any given diameter is
thus paramount. Particularly at the very small length scale
characteristic of confinement inside UNSWCNTs, drastic
changes in the shapes of the encapsulated ENs are expected to
occur at certain critical UNSWCNT diameters, and a map of
such structural changes can be drawn by following the best
diameter-dependent encapsulated structures. We have thus
selected the most energetically favorable structures obtained

from our AIRSS screening on Te ENs and produced the diagram
shown in Figure 3. As discussed in the SI, to deal with strain and
mismatch between the ENs and the encapsulating UNSWCNTs,
the computational procedure to obtain such a diagram involves
the use of implicit SWCNTs (ICNTs). We discuss the ICNT
model in the SI.
We can assert by analyzing the diagram in Figure 3 that the

only viable geometry for the Te EN encapsulated inside
UNSWCNT with diameters below 0.77 nm is that of a linear
chain (LC). The threshold of 0.77 nm for the emergence of the
LC structure is compatible with the van der Waals (vdW) radii
of C and Te, which are approximately 0.17 nm and 0.21 nm,
respectively. Repulsion between the electronic clouds of the
encapsulated Te atoms and the UNSWCNT walls increases
rapidly for diameters below the calculated threshold, and the LC
configuration is the one that minimizes such an overlap. Due to
interactions between electron beam and the imaged specimens,
we could not ascertain the existence of a Peierls distortion
(PD)35 directly from our experimental data. In our simulations,
however, we establish that such distortion is required for the
encapsulated Te LC to be mechanically stable and, therefore,
observable (see Figure 4). The calculated bond length
alternation (BLA) is of approximately 0.02 nm, leading to a
reduction of about 4 meV/Te in the total energy of the chain.
This BLA does not vary significantly with the diameter of the
encapsulating SWCNT. The characteristic effect of a PD in the
electronic structure of a LC is the lifting of band degeneracies at
the boundaries of the Brillouin zone (of the new two-atom
primitive unit cell (PC)). This is also illustrated in Figure 4 for
the present case. Note, however, that the Te LC remains metallic

Figure 2. STEM and EELS. (a) Medium magnification STEM ADF image of narrow bundles of UNSWCNTs filled with Te 3H ENs. Filling
percentage of UNSWCNTs was determined to be ca. 70%. (b) Higher magnification STEMADF image showing twoUNSWCNTs, one filled with
a Te coil (left) and one empty. The boxed region was used for the spectrum imaging recorded in (c) and the EELS spectrum recorded in (d).
(c) STEM image, C, Te and combined C/Te spectrum images recorded from the boxed region in (b), confirming the chemical identity of the Te
coil. (d) C K edge EELS spectrum and TeM 4,5 edge EELS spectra recorded from the regions indicated in the corresponding detail (inset, right).
We found no indication in our EELS measurements that oxygen is present in the immediate vicinity of the wires.
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despite the presence of the PD, as one of the electronic bands
continues to cross the Fermi level. Given that PDs are almost
exclusively associated with metallic−semimetallic electronic
transitions in the literature, the metallic behavior we predict
for the encapsulated Te LC might seem contradictory at first.
We point out, nonetheless, that atomic chains exhibiting metallic
behavior albeit featuring PDs have previously been predicted in
different contexts.36,37We have also found that the Te LC cannot
form in vacuum, as it has an unstable transverse acoustic
vibrational mode. Such an instability, however, is quenched
upon encapsulation, making the encapsulated chain stable. The
calculated phonon spectra for the chain in both cases is shown
in Figure 5a. The Te LC is therefore an example of an EN for
which nanoconfinement is not only a sufficient condition for
mechanical stability but also a necessary one.
We predict the first Te EN structural transition to occur in the

vicinity of d = 0.77 nm (labeled A in Figure 3), shortly followed

by another one at d ≈ 0.86 nm (marked B). From A, our
calculations indicate that the zigzag (ZZ) chain configuration
becomes accessible for the encapsulated Te ENs, remaining so
until the diameters of the encapsulating UNSWCNT reach approxi-
mately 0.86 nm. With n and m defined as discussed in the SI,
we can narrow the possible UNSWCNTs possessing diameters in
the A−B interval down to (8, 3), (10, 0), (9, 2), (6, 6), (7, 5),
(10, 1), (8, 4), and (9, 3), in order of increasing diameters.
The choice m ≥ 0 (right-hand chirality SWCNTs) was made
without loss of generality, as we verified that the chirality of the
encapsulating UNSWCNTs does not affect the energetics of
the encapsulated systems. As in the case of the Te LC, we found
that the Te ZZ chain is mechanically unstable in vacuum
and therefore cannot form in such an environment. Once more,
however, the chain is stabilized upon encapsulation, as shown in
Figure 5b. Such a chain therefore provides another example of ENs
that require nanoconfinement to achieve mechanical stability.

Figure 4. Total energy shifts (ΔE vs BLA for the Te LC: Chain in vacuum and encapsulated inside a (5, 5) ICNT, with BLA≡rl− rs. In vacuum, the
optimal BLA is 0.022 nm, and the excess energy for the BLA = 0 case is 4.06 meV/Te. For the encapsulated LC, the corresponding values are
0.021 nm and 4.17 meV/Te. Electronic band structures: Left-hand side: Chain without PD (i.e., BLA = 0). Right-hand side: PD chain with
BLA = 0.022 nm. Leq refers here to the equilibrium lattice constant of the two-atom PC of the chain featuring a PD.

Figure 3. Competing structures of SWCNT-encapsulated Te extreme nanowires. Central panel: Formation energy per encapsulated atom as a
function of the encapsulating diameter. The labels A−C mark the diameters at which we predict structural transitions to occur. Left and right
panels: Geometries of the structures involved in the transitions A−C, along with the corresponding densities of states (DOS). The competing
structures of the ENs were determined using the AIRSS method. The DOS were calculated using the OptaDOS code.34
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From B, we predict the ZZ configuration to become less likely
to occur, and the 3H form of Te,38 the 1D building block of
the bulk phase of the element, becomes the dominant structure.
Depending on whether this 3H building block has right- or left-
hand screw symmetry, bulk Te belongs to space groups 152 or
154, respectively. We have found that both chiral orientations of
the 3H structure have practically identical formation energies and
are thus equally likely to form inside UNSWCNTs. Interestingly,
we found that a defective version of the 3H structure becomes
energetically competitive for SWCNT diameters starting
from ∼1.1 nm (marked C in Figure 3). Such a structure can be
seen as a combination of two intercalated ideal 3H chains: one
possessing left- and another right-handed screw symmetry. Both
the ideal and defective 3H chains are mechanically stable, as can
be seen from their phonon spectra presented in Figure 5d. The
fact that defective forms of the 3H EN are energetically favorable
compared with the ideal configuration indicates the possibility of
triggering structural changes, through the use of external stimuli,
to displace Te atoms from their ideal positions. This could be
performed, for instance, by irradiation with high-energy electron
beams, although one has to exercise care in doing this, as we
found in our experiments that the Te chains can become highly
mobile, or even unstable, when interacting with high-energy
electron beam radiation. Such a high mobility even caused
the encapsulating SWCNTs to become empty again on a few
occasions. Finally, we point out that, given the proximity of the
curves representing the 3H and ZZ structures in Figure 3, such

structures can reasonably be expected to coexist at the range of
diameters between A and B.
In the left- and right-hand side panels in Figure 3 we present

the electronic densities of states for the Te structures involved in
the transitions A−C. Owing to the general chemical inertness
of SWCNTs and to the particular tendency shown by Te to
form covalent intrachain bonds and only weak, vdW-mediated
interchain connections, the effects of EN-SWCNT interactions
on the electronic structure of the encapsulated ENs are small.
By inspecting the plots, we conclude that the structural
change marked B also represents a transition from a metallic
to a semiconducting EN state. Since encapsulating ENs inside
SWCNTs is analogous to submitting the ENs to external
pressure, the possibility demonstrated here of inducing metal−
semiconductor transitions by encapsulation of Te ENs inside
UNSWCNTs means that encapsulation can provide a control-
lable route toward the construction of pressure-stabilized on−off
switches based on Te ENs, despite the semiconducting nature of
bulk Te.
Apart from the ground-state structures discussed so far, our

AIRSS screening also yielded a number of metastable structures.
From such structures, we selected those whose curves in the
structure diagram (Figure 3) that are located sufficiently close, at
least at one point, to the curves corresponding to the diameter-
dependent ground-state geometries. We consider energies to be
sufficiently close when they are separated by about 1 kBT, where
kB is the Boltzmann constant andT represents the standard room
temperature. At such a temperature, kBT ≈ 25.7 meV. One of

Figure 5. Phonon spectra for the (a) LC, (b) ZZ, (c) 4H, and (d) 3H chains. The figures in (a−c) show the spectra calculated for the bare chains
(left) and for the chains encapsulated inside (5, 5), (8, 3), and (11, 5) ICNTs, respectively (right). The unstable acoustic modes in vacuum are
stabilized upon encapsulation. In (d), the vacuum spectra calculated for the ideal (left) and defective (right) 3H chains are presented. Both 3H
chains are mechanically stable.
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such metastable structures is a double LC (two parallel LCs),
which we found to be energetically accessible at diameters
around 0.85 nm. Upon further inspection, however, we found
that the double LC has a mechanically unstable longitudinal
acoustic vibrational mode that cannot be stabilized by
encapsulation. For this reason, we have not included this
structure in our diagram. We verified that such a mode does not
represent a Peierls instability. The other metastable structure is a
four-fold-symmetry helix (4H) akin to the one previously
suggested for encapsulated sulfur.39 Although we have not
observed such a structure in our experiments, we have deter-
mined that it is mechanically stable upon encapsulation
(see Figure 5c) and could thus be accessible in small fragments.
Our structure diagram indicates that this could occur for
encapsulating SWCNTs diameters around 1.1 nm − the upper
limit for the SWCNT diameters we considered experimentally.
Figure 6 presents a comparison between our experimental

and simulated TEM images for the encapsulated Te 3H EN.

The model in the simulated images corresponds to the most
energetically favorable structure we predict for an encapsulating
SWCNT with a diameter of 0.949 nm, while the experimental
TEM image was obtained for encapsulated Te inside a SWCNT
with an estimated diameter of 0.945 ± 0.015 nm. Images (a.I)
and (a.III) clearly represent domains inside the encapsulating
SWCNT in which the structure shown in Figure 6b has been
formed. Most interestingly, however, is the observation that,
although the structure in image (a.II) looks distinct from (a.I)
and (a.III), and could thus, in principle, correspond to a different
EN structure, it matches exactly the simulated image (c), which
has been obtained using the same model as in (b), differing only
by a rotation around the translation axis. We can therefore affirm

that (a.II) also corresponds to an encapsulated Te 3H EN.
The very low frequencies (Figure 5d) of both the ideal and
defective 3H acoustic torsional vibration modes (modes that
correspond to a rigid rotation of the entire system around its
symmetry axis at the limit q→ 0) indicate that the energy cost to
twist such structures around their symmetry axes is very small
(for reference, 1000 cm−1 corresponds to approximately 124meV).
Indeed, the different structural domains found in our experi-
ments for the 3H chain, as depicted in Figure 6a, are examples
of the occurrence of such twists. On the other hand, the also
very low frequencies of the longitudinal acoustic modes indicate
that compressing or stretching the 3H chains also costs little
energy. These characteristics are compatible with the non-
monotonic dependence reported here between encapsulating
UNSWCNT diameter and encapsulated coil pitch: Since only
small amounts of energy are needed for the Te 3H chains to
be twisted, compressed, and stretched, the chains can easily
adapt to the periodicity and chirality of the encapsulating
UNSWCNTs.

CONCLUSIONS
We have reported the observation and modeling of extreme
Te nanowires encapsulated inside UNSWCNTs with diameters
between 0.7 and 1.1 nm. Using state-of-the-art AC-TEM and
AC-STEMmethods, we have produced atomic-resolution images
of such encapsulated extreme nanowires. Using the AIRSS
method, we have successfully predicted the most energetically
favorable structures formed by encapsulated Te. We have then
produced a diagram of formation energy as a function of
encapsulating diameters for such structures, providing thus a
precise map of the diameter-dependent transitions undergone
by the encapsulated extreme nanowires. Such transitions
were shown to be electronic (metal−semiconductor) as well as
structural. We found a remarkable agreement between our
experimental observations and our theoretical modeling, especially
with regards to the determination of the encapsulating nanotube
diameters at which the structural transitions have been predicted
to occur.
We analyzed the mechanical stability of the encapsulated Te

extreme nanowires and determined whether or not they are
expected to form. By doing so, we also demonstrated that nano-
confinement is not just a viable way to synthesize extreme
nanowires. In many cases, it might actually be a necessary
condition to prevent the nanowires from disintegrating
spontaneously. In particular, we have shown that truly 1D,
single-atom wide Te LCs can be synthesized provided that the
confining diameters are small enough. Moreover, we established
that such chains are longitudinally stabilized by the presence of
Peierls structural distortions. We point out that the emergence of
LCs is not an immediate consequence of extreme confinement.
In fact, structures such as isolated atoms and dimers, for instance,
are also geometrically compatible with the nanoconfimenent
conditions to which our Te LCs are submitted and could thus
have been detected/predicted if they were energetically
favorable. Finally, for the Te three-fold-symmetry helical coil,
we found that the pitch of the coil varies in a nonmonotonic
fashion with the encapsulating diameters. Such an effect is related
to the relatively low-energy cost involved in the processes of
compressing, stretching, and twisting such coils, which allows
them to adapt to the periodicity and chirality of the encapsulating
nanotubes.
The excellent agreement between our theoretical modeling and

the outcomes of our experiments shows that our experimental−

Figure 6. (a) Experimental and (b, c) simulated TEM images for
encapsulated Te 3H. The SWCNTdiameter in (a) is 0.945± 0.015 nm.
The simulated images correspond to the most energetically favorable
structure found here using AIRSS for Te encapsulated inside an
explicit (7, 7) SWCNT (d = 0.949 nm). They differ only by a rotation
around the common translation axis. We found that the energy
required to compress the AIRSS structure so that theoretical and
experimental coil pitches coincide is about 20 meV/Te. This is
<1 kBT/Te at the adopted experimental conditions. The agreement
between the geometries shown in (a.I), (a.III), and (b), as well as
between (a.II) and (c), is excellent. Simulated images produced using
the SimulaTEM code.40
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theoretical approach provides a high-quality quantitative
characterization of encapsulated extreme 1D nanowires, in fact,
the most precise characterization of such systems presented to
date. We thus anticipate that the present study will set the basic
paradigm to be adopted in the characterization and understanding
of nanoconfined 1D materials.

EXPERIMENTAL METHODS
Sample Preparation. The ENs are prepared by sublimation

into pretreated SWeNT UNSWCNTs produced by the CoMoCAT
process,41 supplied by Sigma-Aldrich with a stated median diameter
range of 0.7−1.1 nm. 100 mg of UNSWCNTs were pretreated by
heating in open air in an alumina boat placed in a Carbolite tube furnace
(MTF12/28/250) to 750K for 50min, reducing inmass to 60mg. 100mg
of Te (Sigma-Aldrich, 99.8% trace metals) was then loaded into one end of
a sublimation ampule with the 60mg of UNSWCNT in the other centrally
separated by an indentation in the center of the ampule. The ampule was
sealed under vacuum and baked, with the Te section being placed in the
center of the hot zone of the Carbolite tube furnace at 700 K for 6 days.
Confirmation of sublimation arose from observations of Te crystallite
deposition in the UNSWCNT region of the ampule by TEM. For TEM
examination, 3 drops of dispersed CNTs were drop cast onto a 3.05 mm
copper grid with lacey carbon support film (Agar Scientific).
HR-TEM and STEM-EELS. A JEOL ARM 200F microscope

operating at 80 kV and equipped with a CEOS aberration corrector
and a Gatan SC1000 ORIUS camera with a 4008 × 2672 pixel CCDwas
been used for TEM investigations. Wien filtering was performed of
selected TEM images using the script HRTEM Filter authored by
D. R. G. Mitchell and based on the work of R. Kilaas.42 A Gatan fiber-
optical coupled SC1000 ORIUS camera with CCD size of 4008 ×
2672 pixel was used for image acquisition. The STEM-EELS data were
acquired on a Nion UltraSTEM100 instrument, operated at 60 kV
acceleration voltage and equipped with a cold field emission gun
providing a native beam energy width of 0.30 eV. The combination of
low acceleration voltage and ultrahigh vacuum (UHV) conditions at
the sample (below 1 × 10−9 Torr) ensured that damage to the samples,
in particular through knock-on or etching, was minimal, enabling long
beam dwell times for spectrum imaging. The optics were configured
to form a 1.1 Å probe (full-width at half-maximum) of 32 mrad
convergence semi-angle, with 40 pA beam current. High- and medium-
angle annular dark-field images were recorded with semi-angular ranges
of 85−190 and 55−80 mrad, respectively.
EELS data were collected with a Gatan Enfina spectrometer with

a collection semi-angle of 36 mrad. A dispersion of 0.5 eV/channel was
chosen in order to record simultaneously the C K and Te M4,5 edges
(resulting in an effective energy resolution of 1.5 eV, limited by the
detector point spread function). Spectrum images were acquired with a
dwell time of 0.05 s per pixel, providing a good compromise between
signal-to-noise and possible damage to the Te wires within the nanotubes.
The Te and C maps were generated by integrating the signal above the
edge onsets over 75 eV windows, after subtraction of the continuous
background using a power law. Principal component analysis was carefully
applied to the raw data sets to remove detector Poisson noise.43
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