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Abstract

The potential use of bone progenitors, multipotential stromal cells (MSCs) helping spine

fusion is increasing, but convenient MSC sources and effective processing methods are crit-

ical factors yet to be optimised. The aim of this study was to test the effect of bone marrow

processing on the MSC abundance and to compare the differentiation capabilities of verte-

bral body-bone marrow (VB-BM) MSCs versus iliac crest-bone marrow (IC-BM) MSCs. We

assessed the effect of the red blood cell lysis (ammonium chloride, AC) and density-gradient

centrifugation (Lymphoprep™, LMP), on the extracted VB-BM and IC-BM MSC numbers.

The MSC abundance (indicated by colony counts and CD45lowCD271high cell numbers),

phenotype, proliferation and tri-lineage differentiation of VB-BM MSCs were compared with

donor-matched IC-BM MSCs. Importantly, the MSC attachment and osteogenesis were

examined when VB-BM and IC-BM samples were loaded on a beta-tricalcium phosphate

scaffold. In contrast to LMP, using AC yielded more colonies from IC-BM and VB-BM aspi-

rates (p = 0.0019 & p = 0.0201 respectively). For IC-BM and VB-BM, the colony counts and

CD45lowCD271high cell numbers were comparable (p = 0.5186, p = 0.2640 respectively).

Furthermore, cultured VB-BM MSCs exhibited the same phenotype, proliferative and adipo-

genic potential, but a higher osteogenic and chondrogenic capabilities than IC-BM MSCs

(p = 0.0010 and p = 0.0005 for calcium and glycosaminoglycan (GAG) levels, respectively).

The gene expression data confirmed higher chondrogenesis for VB-BM MSCs than IC-BM

MSCs, but osteogenic gene expression levels were comparable. When loaded on Vitoss™,

both MSCs showed a similar degree of attachment and survival, but a better osteogenic

ability was detected for VB-BM MSCs as measured by alkaline phosphatase activity (p =

0.0386). Collectively, the BM processing using AC had more MSC yield than using LMP.
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VB-BM MSCs have a comparable phenotype and proliferative capacity, but higher chondro-

genesis and osteogenesis with or without using scaffold than donor-matched IC-BM MSCs.

Given better accessibility, VB-BM could be an ideal MSC source for spinal bone fusion.

Introduction

Bone progenitor cells, multipotential stromal cells (MSCs) are increasingly used for the repara-

tive bone therapy. Bone marrow (BM) is the best-studied source for MSCs, being used clini-

cally without or after processing to extract pure culture-expanded MSCs [1]. Spinal deformity

(scoliosis, kyphosis), traumatic and degenerative conditions have negative socioeconomic and

health impacts with a prevalence of 23% and 14% among adult and children population,

respectively [2]. Bone fusion is a conventional method of treating these conditions, however it

is not devoid of failures [3]. To promote timely fusion, bone autograft and osteoconductive

scaffolds are commonly used. Additionally, the scaffolds can be enriched with BM, usually

from the iliac crest (IC), or cultured MSCs to further enhance bone fusion [4–6]. Although a

swift biological fusion ensures better preservation of the initial surgical correction and fewer

complications, there remains a considerable rate of pseudoarthrosis with subsequent pain and

metalwork failure despite the advances in surgical techniques [7–9].

In order to circumvent these complications, a vast amount of work has been undertaken to

determine the beneficial synergy between mechanical stability and the use of biological

enhancement. Biological stimulation of osteogenesis includes the use of growth factors and

MSCs combined with scaffolds and mechanical stability (the diamond concept [10]). However,

despite solid scientific evidence [11–13], it appears that the importance of this synergy is often

underestimated in the everyday surgical practice.

Although IC remains the gold standard BM-source, its availability could be limited [14].

Technically, vertebral body (VB)-BM harvesting adds virtually no extra time, because vertebral

pedicles are approached as a part of the procedure itself and can be extended as far as the met-

alwork goes, without increasing the complication rate. In recent years, there has been a contin-

uous improvement of our knowledge on BM-MSC characteristics based on the source of

origin [15] and the delivery using allogeneic [16] and xenogeneic [17, 18] scaffolds. Although

is not determined yet, the optimum combination of these components can represent a promis-

ing alternative to autologous bone graft and IC-BM for spinal surgery [19].

Through conducting a literature review from MEDLINE, SCOPUS and EMBASE, seven

articles comparing MSCs from IC-BM and VB-BM have been identified between the years

2004–2013 [20–26]. Most of these studies aimed to improve to regenerate the partially or early

generated intervertebral disc except Risbud et al. study, which targeted osteogenesis. Although

these articles have signalled the importance and clinical potential of VB-BM, they also present

certain weaknesses related mainly to the study design and cell-isolation method used. In par-

ticular, patient numbers were relatively limited or not clearly stated [20, 23], and BM-MSCs

comparisons were made between patients and cadaveric specimens [20, 21]. Finally, in some

studies, no donor-matched or paired-sample comparisons were performed [20,21] despite the

known age-related variability of MSC counts [27], increasing consecutively the results’

heterogeneity.

This study aimed to analyse the effectiveness of VB-BM comprehensively as a source of

therapeutic MSCs used for spinal bone fusion. The effect of BM processing techniques; red

blood cell lysis versus density gradient centrifugation, on the MSC yield was investigated. The
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numbers, phenotype, proliferation, and differentiation of VB-BM MSCs particularly those

linked to bone formation (the chondrogenesis and osteogenesis) were compared with IC-BM

MSCs using donor-matched samples. Furthermore, the attachment and osteogenic differentia-

tion of these MSCs were tested following loading on a beta-tricalcium phosphate (β-TCP)

scaffold.

Materials and methods

Patients and bone marrow samples

In this study, 25 patients (age range: 13–79 years old, details in Table 1) were recruited under

ethics committee approval (06/Q1206/127) from the NRES Committee Yorkshire & The Hum-

ber–Leeds East. The participants provided their written informed consent to participate in this

study. For the adolescent patients, the consent was obtained from parents or guardians. The

patients were undertaking elective spine surgery for correction of adolescent idiopathic scolio-

sis or degenerative spinal conditions with postero-lateral decompression and fusion. Donor-

matched samples of 10-ml of BM aspirates were collected from the posterior iliac crest and

12th thoracic vertebral bodies using known established techniques [23, 28–30]. The bone mar-

row samples were placed in EDTA containing VACUETTE1 blood tubes before the labora-

tory processing.

Bone marrow processing and MSC culture

All the procedures of BM processing were done under aseptic conditions using biological

safety cabinets, Class II. The aspirates of donor-matched IC-BM and VB-BM samples were

processed using density gradient centrifugation and red blood cell lysis (5ml of BM for each

method). For density gradient centrifugation, BM samples were initially diluted with 1:1 phos-

phate buffer saline (PBS, Sigma-Aldrich, Dorset, UK) and subsequently layered over a Lym-

phoprep™ (LMP, Stemcell Technologies, Cambridge, UK). Then the tubes were centrifuged at

800g for 20 minutes with no brake. The layer of mononuclear cells was collected and washed

twice with PBS. For red blood cell lysis method, a 0.86% ammonium chloride (AC) solution

(Vickers Laboratories, Pudsey, UK) was added to BM samples at 4:1 dilution, followed by 10

minutes’ incubation at 37˚C. The BM cells were collected following three washes with PBS.

The extracted BM cells by AC and LMP were counted before further use.

Both IC-BM and VB-BM extracted cells were processed to expand MSCs in culture as previ-

ously described [31]. The cells were grown in the StemMACS™ MSC Expansion media (Milte-

nyi Biotec, Surrey, UK) and penicillin/streptomycin (Sigma-Aldrich) at 37˚C / 5% CO2 culture

condition. The cultures were maintained till passage 3 then the plastic-adherent MSCs were

detached applying trypsin (Sigma-Aldrich) and used for further processing.

Colony forming unit-fibroblast assays

The standard colony forming unit-fibroblast (CFU-F) assay was used to count colonies repre-

senting MSCs in donor-matched IC-BM and VB-BM samples. For each sample, 2x106 of

extracted BM cells were added to the StemMACS MSC Expansion media and seeded in dupli-

cate into 10cm diameter culture dishes (Corning B.V. Life Sciences, Amsterdam, Netherlands).

The dishes were cultured for 14 days at 37˚C 5% CO2 and the media were half-substituted

twice weekly. The dishes were then stained using methylene blue dye after fixation with 3.7%

formaldehyde [32]. The colonies were manually counted, and the average of two dishes was

calculated. The counts were normalised to the volume of 1 ml of BM aspirates.
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Table 1. The study patient details.

Patient

ID

Samples Age

(YEARS)

Sex Clinical phenotype

1 AF 19 IC-BM

And VB-BM

13 Female Adolescent Idiopathic Scoliosis

2 AF 20 IC-BM

And VB-BM

15 Female Adolescent Idiopathic Scoliosis

3 AF 23 IC-BM

And VB-BM

13 Female Adolescent Idiopathic Scoliosis

4 AF 24 IC-BM

And VB-BM

14 Female Adolescent Idiopathic Scoliosis

5 AF 26 IC-BM

And VB-BM

14 Male Adolescent Idiopathic Scoliosis

6 AF 27 IC-BM

And VB-BM

16 Male Adolescent Idiopathic Scoliosis

7 AF 28 IC-BM

And VB-BM

14 Male Adolescent Idiopathic Scoliosis

8 AF 29 IC-BM

And VB-BM

15 Male Adolescent Idiopathic Scoliosis

9 AF 31 IC-BM

And VB-BM

15 Female Adolescent Idiopathic Scoliosis

10 AF 32 IC-BM

And VB-BM

16 Male Adolescent Idiopathic Scoliosis

11 AF 33 IC-BM

And VB-BM

16 Female Adolescent Idiopathic Scoliosis

12 AF 34 IC-BM

And VB-BM

14 Female Adolescent Idiopathic Scoliosis

13 AF 35 IC-BM

And VB-BM

15 Female Adolescent Idiopathic Scoliosis

14 AF 39 IC-BM

And VB-BM

15 Female Adolescent Idiopathic Scoliosis

15 AF 40 IC-BM

And VB-BM

16 Female Adolescent Idiopathic Scoliosis

16 AF 43 IC-BM

And VB-BM

16 female Adolescent Idiopathic Scoliosis

17 AF 48 IC-BM

And VB-BM

13 female Adolescent Idiopathic Scoliosis

18 AF 49 IC-BM

And VB-BM

15 female Adolescent Idiopathic Scoliosis

19 AF 50 IC-BM

And VB-BM

17 male Adolescent Idiopathic Scoliosis

20 AF 51 IC-BM

And VB-BM

75 male Decompression/fusion

21 AF 53 IC-BM

And VB-BM

65 male Decompression/fusion

22 AF 55 IC-BM

And VB-BM

79 female Decompression/fusion

23 AF 57 IC-BM

And VB-BM

39 female Decompression/fusion

24 AF 58 IC-BM

And VB-BM

46 Female Decompression/fusion

25 AF 62 IC-BM

And VB-BM

67 Female Decompression/fusion

The list of the age, gender, sample and clinical phenotype for the patients included in the study.

https://doi.org/10.1371/journal.pone.0197969.t001
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Calculation of MSC population-doubling time

As an indicative of MSC proliferation, population-doubling time (PDT) was calculated as pre-

viously described [33]. Donor-matched IC-BM and VB-BM MSCs were initially seeded with

the density of 1X105 cells/cm2 culture flasks until reaching confluence. Subsequently, MSCs

were detached from the culture plastic using trypsin and counted. PDT was calculated utilising

the equation: PDT = the number of days (D) in the culture divided by the population doubling

number. The population doubling number was calculated as log 2 of the MSC numbers at the

passage 1 divided by seeding number of MSCs.

Flowcytometry for counting and phenotype of MSCs

Donor-matched IC-BM and VB-BM samples were processed for flowcytometry to indicate the

quantity of bone progenitors in unprocessed BM as described before [34, 35]. In a FACS tube,

100μl of BM was mixed with the MSC positive marker CD271 (Miltenyi Biotec) and haemato-

logical cell marker, CD45 (BD Biosciences, Oxford, UK), in addition to dead cell marker,

7-aminoactinomycin D (7AAD, BD Biosciences). The counting beads were used to calculate

the absolute numbers of MSCs in the samples according to the manufacturer recommenda-

tion. The data were acquired on LSRII 4 laser flowcytometer (BD Biosciences) and were ana-

lysed using FACS DIVA software (BD Biosciences).

Flowcytometry was also used to compare the phenotype of culture-expanded IC-BM and

VB-BM MSCs. MSCs were examined for the surface expression of the standard MSC markers

[36]; CD105 (Miltenyi Biotec), CD73 (BD Biosciences) and CD90 (BIO-RAD, Oxford, UK).

Also, hematopoietic lineage markers were included, CD45, CD34, CD14, CD19 and HLA-DR

(all from BD Biosciences).

Osteogenic differentiation assay

For osteogenic differentiation assays, 3x104 culture-expanded MSCs (passage 3) from donor-

matched IC-BM and VB-BM samples were cultured in osteogenic media. The osteogenic

media was formed of low glucose DMEM (ThermoFisher Scientific Waltham, MA, USA) sup-

plemented with 10% FCS (ThermoFisher Scientific), penicillin and streptomycin (Thermo

Fisher Scientific), 100nM dexamethasone, 10mM β-glycerophosphate and 0.05mM ascorbic

acid (all from Sigma-Aldrich). After 14 days of culture, the quantification of the calcium level

was performed using colorimetric calcium kit (Calcium Liquid, Sentinel Diagnostics, Milan,

Italy) as previously described [37]. To extract calcium, cultured MSCs were treated with 1M of

HCl solution. The spectrophotometric reading was taken on MULTISCAN EX reader and

analysed using Ascent software (Thermo Fisher Scientific). Additionally, the staining for cal-

cium deposition and alkaline phosphatase (ALP) expression was performed using Alizarin

Red dye and fast blue RR salt dye respectively (both from Sigma-Aldrich) as used previously

[32, 38]. The culture plates were scanned using an Epson 3590 flatbed scanner (Epson Ltd,

Hertfordshire, UK).

Chondrogenic differentiation assay

Donor-matched IC-BM and VB-BM MSCs (expanded for three passages) were seeded at

2.5x105 per conical tube for the chondrogenic assays. Triplicates were used for quantitative

measurements of glycosaminoglycan (GAG) levels and duplicates for the GAG staining. As

previously described [32], cells were cultured in chondrogenic media, consisting of high glu-

cose DMEM (Thermo Fisher Scientific) supplemented with; l-ascorbic acid-2-phosphate,

sodium pyruvate, proline, Bovine serum albumin, penicillin/streptomycin, dexamethasone,
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insulin-transferrin-selenium (all from Sigma-Aldrich) and TGFβ3 (R&D Systems, Abingdon,

UK). Following 21 days of culture, cell pellets were digested in papain solution (100mM

Sodium Phosphate Buffer supplemented with 5mM Na2EDTA, 10mM l-cysteine and papain,

all from Sigma) and the levels of GAG were measured using a Blyscan™ kit (Biocolor Life Sci-

ences, Co Antrim, Ireland) as per manufacturer instructions. For the GAG staining, the cells

were treated with 1% toluidine blue (Sigma-Aldrich) then the images for GAG-stained cells

were captured using an Eclipse E1000 light microscope (Nikon, Surrey, UK).

Adipogenic differentiation assay

Adipogenic differentiation assay was performed as previously described [39]. The paired cul-

ture-expanded IC-BM and VB-BM MSCs at passage 3 were equally distributed in triplicates

with a density of 4x104 per well of 48-wells/plate and cultured in NH AdipoDiff medium (Mil-

tenyi Biotec). Following 21 days of culture, one well was used for the staining of cells with Oil

Red O and two wells for the staining of cells with Nile Red/DAPI. The images were captured

using an inverted light microscope (IX71 Olympus, Southend-on-Sea, UK) in combination

with a fluorescent generator (for Nile Red/DAPI) and an Olympus Digital camera.

Quantitative real time PCR

The donor-matched VB-BM and IC-BM MSCs were cultured for 1, 2 and 3 weeks in either

osteogenic or chondrogenic media as described above. The RNA isolation was performed

using Single Cell RNA purification Kit (Geneflow Ltd, Lichfield, UK). The genomic DNA was

eliminated from RNA samples using RNase-Free DNase I Kit (Geneflow), and then cDNA

was produced using reverse transcription master mix kit (FLUIDIGM, UK). The TaqMan

probes (all from Thermo Fisher Scientific) were used to measure the genes of the osteogenic

transcription factors; Osteonectin (SPARC) and Runt-related transcription factor 1 (RUNX2),

Osteopontin (SPP1), alkaline phosphatase (ALP), Collagen type I alpha 2 (COL1A2) and

Osteocalcin/bone gamma-carboxyglutamic acid-containing protein (BGLAP) as well as genes

related to chondrogenesis; aggrecan (ACAN), Collagen type 2 (COL2) and SRY-Box 9 (SOX9).

The real time PCR assays were run on QuantStudio™ 7 Flex Real-Time PCR System, 384-well

(Thermo Fisher Scientific). As published before [40], the data were analysed relative to the

housekeeping gene, hypoxanthine-guanine phosphoribosyltrans- ferase (HPRT1), then the

fold change of gene in differentiated cells was calculated relative to undifferentiated cells.

MSC attachment on Vitoss™ scaffold

Unprocessed samples of IC-BM and VB-BM aspirates were seeded onto Vitoss™ (Stryker1

UK Limited, Berkshire, UK) as described before [29]. Briefly, 400μl of BM sample was added

into 100mm3 of Vitoss then incubated at 37˚C with gentle rocking for 3 hours to enhance the

cell attachment. Each BM sample was used to seed Vitoss in duplicate to examine the MSC

attachment and survival using microscopy and flowcytometry respectively. The scaffolds were

next rinsed with PBS to remove red blood cells then moved into culture plates in the Stem-

MACS MSC Expansion media and cultured for 2 weeks. After culture, for microscopy, the

scaffolds were examined for cell attachment using a SP2 TCS confocal laser scanning micro-

scope (Leica, Buckinghamshire, UK). The DAPI (Thermo Fisher Scientific) and Phalloidin

(Sigma-Aldrich) dyes were used to detect cell nuclei and actin, respectively. For flowcytome-

try-dependent characterisation, the scaffolds were digested using 0.25% collagenase (Stem Cell

Technologies). and the released cells were characterised for the surface phenotype of MSCs as

previously described [29]. The released cells were stained using CD45, CD90 and CD73
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antibodies (BD Biosciences) as well as live/dead markers, CellTrace calcein violet and Aqua-

fluorescence reactive dye (Thermo Fisher Scientific), to identify live MSCs.

MSC osteogenic differentiation on Vitoss™ scaffold

Passage 3 culture-expanded IC-BM and VB-BM MSCs were used to load Vitoss then these

scaffolds were cultured for 2 weeks before MSCs being examined for the osteogenic differenti-

ation. The controls were scaffolds cultured in expansion media (the StemMACS MSC Expan-

sion). The scaffolds were lysed in Triton solution and exposed to three cycles of freezing–

thawing then centrifuged (16,000g for 1 min) to extract ALP as described previously [41]. The

supernatants were collected and used for measuring the ALP activity using the colorimetric kit

(BioVision, CA, USA) according to the manufacturer’s instructions. The Optical density was

measured at 405nM wavelength using MULTISCAN EX reader, and the ALP activity was cal-

culated using the standard curves. The values of ALP activity were normalised to DNA content

(equivalent to cell number) using dsDNA quantitation fluorescence Picogreen kit (Thermo

Fisher Scientific).

Statistical analysis

All statistical analysis and resulting graphs were performed using Prism 6 (GraphPad Software,

Inc.). The comparative tests (indicated in the figure legends) for paired groups were chosen

depending on whether the data has normal distribution or not. The Gaussian distribution of

the data was tested using Shapiro-Wilk and D’Agostino & Pearson omnibus normality tests.

The significance level was set at the p value of< 0.05.

Results

The MSC yield following two processing methods of VB-BM and IC-BM

aspirates

The samples of VB-BM were aspirated from the vertebral body as illustrated in S1 Fig. The

total numbers of yielded cells of IC-BM and VB-BM aspirates were counted to assess the effect

of processing method (Fig 1A, left panel). The numbers of extracted IC-BM and VB-BM cells

consistently similar when processed by the same method (for LMP, p = 0.6065 and AC,

p = 0.1556), (Fig 1A, right panel and S1 File). However, the total LMP-extracted cell numbers

were significantly less (about three-fold) than those extracted using AC for VB-BM (median,

LMP: 4.9x106, AC: 15.3x106 cells/ml of BM, p<0.0001) and for IC-BM (median, LMP: 7.5x106,

AC: 21.46x106 cells/ml of BM, p = 0.0001), (Fig 1A, right panel and S1 File).

The abundance of VB-BM MSCs and donor-matched IC-BM MSCs was assessed using

the colony counts following using LMP and AC (Fig 1B, left panel). The MSC colony-

forming counts from LMP-processed cells were significantly lower than those from IC-pro-

cessed cells for VB-BM cells (median, LMP: 247, AC: 540 colonies/ml of BM, p = 0.0201;)

and AC-BM cells (median, LMP: 247, AC: 824 colonies/ml of BM, p = 0.0019), (Fig 1B,

right panel and S1 File) indicating significant loss of the MSC population using LMP. Of

note, no significant difference was detected between the colony counts of donor-matched

IC-BM and VB-BM samples extracted using either AC (p = 0.5186) or LMP (p = 0.9873),

(Fig 1B, right panel and S1 File). Based on superiority for the MSC yield, all further experi-

ments involving BM processing and comparing VB-BM and IC-BM samples were per-

formed using AC.
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The abundance, proliferation and phenotype of VB-BM MSCs versus

IC-BM MSCs

To confirm the colony number data, the CD45lowCD271high cell numbers were measured in

unprocessed IC-BM and VB-BM aspirates (gating strategy is included in Panel A in S2 Fig)

indicating MSC abundance. As expected [42, 43], the data indicated a wide range of donor-

related variability for both IC-BM and VB-BM MSCs (2,880–31,700 MSCs/ml of VB-BM and

3,000–41,600 MSCs/ml of IC-BM). Importantly, there was not a significant difference between

the CD45lowCD271high cell numbers in IC-BM and VB-BM aspirates (mean: 14,101 and

20,619 cells respectively, p = 0.2640), (Fig 2A and S2 File). These data further confirmed a

similar abundance of MSCs/ml of donor-matched IC-BM and VB-BM aspirates. We next

examined if this similar abundancy of IC-BM and VB-BM MSCs is related to the equal cell

proliferation. When expanded in culture, the PDT of donor-matched IC-BM and VB-BM

MSCs were approximately two days on the mean, (p = 0.9725), (Fig 2B and S2 File) indicating

a comparable in vitro proliferation rate.

Fig 1. Effect of processing VB-BM and IC-BM aspirates using LMP versus AC. A. A representative example of cell

pellet extracted from VB-BM and IC-BM using LMP and AC (left panel). The median of total VB-BM and IC-BM cell

numbers extracted using LMP or AC (Friedman with multiple comparisons test, n = 18), (right panel). B. The CFU-F

assays; a representative example following 14 days of culture) left panel). The median of total colony numbers for

VB-BM and IC-BM samples following processing using LMP or AC (Friedman with multiple comparisons test,

n = 18), (right panel). IC; Iliac crest, VB: Vertebral Body, BM: Bone Marrow, LMP: Lymphoprep, AC: Ammonium

Chloride.

https://doi.org/10.1371/journal.pone.0197969.g001
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The surface phenotype of MSCs for IC-BM and VB-BM cultures was investigated using

flowcytometry (gating strategy is included in Panel B in S2 Fig). The data proved the standard

MSC phenotype for both IC-BM and VB-BM cultures, showing that only a small percentage of

these cultured BM cells (< 1%) expressed CD45 and other hematopoietic lineage markers (Fig

2C). Additionally, IC-BM and VB-BM MSCs were equally positive for CD90 (100%), CD73

(100%) and CD105 (99.8%) (Fig 2C and S2 File). The mean fluorescent intensities of tested

positive markers were similar for VB-BM MSCs than IC-BM MSCs (Fig 2D and S2 File). Col-

lectively, these data confirmed the identity of the culture-expanded VB-BM MSCs with a com-

parable phenotype to that of IC-BM MSCs.

The tri-lineage differentiation of VB-BM MSCs versus IC-BM MSCs

The tri-lineage differentiation was compared between donor-matched culture-expanded

IC-BM and VB-BM MSCs. To test the MSC osteogenic differentiation capabilities, the calcium

deposition and ALP expression by these MSCs were assessed. The ALP staining suggested a

Fig 2. Abundance, proliferation and phenotype of VB-BM versus IC-BM MSCs. A. The numbers of CD45low

CD271high cells in unprocessed IC-BM and VB-BM aspirates (means are shown, Paired t-test, n = 6). B. The

population doubling time (PDT) for VB-BM versus IC-BM MSCs (means are shown, Paired t-test, n = 7). C. The

percentage of culture-expanded VB-BM MSCs versus IC-BM MSCs expressing hematopoietic lineage markers (CD34,

CD14, CD19, HLA-DR), CD45, CD73, CD90, and CD105 (n = 3). The means of percentages are shown with bars of

the standard error of the mean. D. The mean fluorescence intensity of positive markers expressed on VB-BM and

IC-BM MSCs (n = 3).

https://doi.org/10.1371/journal.pone.0197969.g002
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greater level of expression in VB-BM MSCs cultures than in IC-BM MSCs (Fig 3A, left upper

panel). Additionally, the Alizarin Red staining showed that VB-BM MSCs could deposit

noticeably higher calcium concentrations than that of IC-BM MSCs following osteogenic

induction (Fig 3A, left lower panel). The calcium deposition was spectrophotometrically

Fig 3. Tri-lineage differentiation capability of VB-BM versus IC-BM MSCs. A. A representative example for testing

the osteogenic differentiation of MSCs using alkaline phosphatase staining and alizarin red (left panel). The calcium

levels of differentiated VB-BM and IC-BM MSCs (Wilcoxon matched pair rank test, n = 4, each in triplicate, right

panel). B. A representative example of the chondrogenic differentiation of MSCs tested by the GAG staining of the cell

pellet (left panel). The quantitative GAG levels by IC-BM and VB-BM MSCs (Wilcoxon matched pair rank test, n = 4,

each in triplicate, right panel). C. A representative example of the adipogenic differentiation of MSCs using Nile Red

and Oil Red O staining (left panel). The quantitative measurement of Nile Red/DAPI ratio for IC-BM and VB-BM

MSCs (Paired t-test, n = 4, right panel).

https://doi.org/10.1371/journal.pone.0197969.g003
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quantified, and it was significantly greater for VB-BM MSCs than IC-BM MSCs (nearly

10-fold, p = 0.0010), (Fig 3A, right panel and S3 File). These data demonstrated that VB-BM

MSCs could have a higher capability for osteogenic differentiation in 2-dimensional culture in

comparison to IC-BM MSCs.

The chondrogenic differentiation was also compared between culture-expanded VB-BM

MSCs and IC-BM MSCs via testing the GAG production levels on day 21 post-induction. The

pellets formed by both MSCs in chondrogenic media were positively stained for GAG con-

firming the ability of both VB-BM MSCs and IC-BM MSCs to form cartilage, but greater GAG

production was observed for VB-BM MSCs (Fig 3B, left panel). Interestingly, the quantitative

GAG measurements confirmed significantly higher levels of VB-BM MSCs, than IC-BM

MSCs (nearly 4-fold, p = 0.0005), (Fig 3B, right panel and S3 File). These data revealed the

superiority of VB-BM MSCs in chondrogenesis.

The adipogenic differentiation of MSCs was examined using the staining of Nile Red and

Oil Red O. Both IC-BM and VB-BM MSCs were stained positive for Nile Red and Oil Red O

(Fig 3C, left panel). The spectrophotometric calculation of Nile Red/DAPI ratio showed no

difference between IC-BM and VB-BM MSCs (p = 0.2165, (Fig 3C, right panel and S3 File).

Collectively, these data indicated that VB-BM MSCs were better than IC-BM MSCs regarding

osteogenesis and chondrogenesis, but as good in adipogenesis.

The gene expression for osteogenesis and chondrogenesis of VB-BM MSCs

versus IC-BM MSCs

The gene expression assays were performed to investigate further the functional differences

noted for osteogenic and chondrogenic differentiation between donor-matched IC-BM and

VB-BM MSCs. The transcript levels of the osteogenic genes were similarly changed for IC-BM

and VB-BM MSCs when measured over time in osteogenic cultures (Fig 4A and S4 File). Rel-

ative to undifferentiated MSCs, the gene expression levels for transcription factor RUNX2

were slightly increased with no significant difference between IC-BM and VB-BM MSCs (Fig

4A, left top). The gene expression levels for SPARC were increased after week 1 (median of

2-fold for both) then dropped when measured at week 2 and 3 for both MSCs (Fig 4A, middle

top). The collagen 1 gene levels for IC-BM and VB-BM MSCs were markedly increased after

one week (median of 16- and 22-fold respectively) then the levels were similarly decreased (Fig

4A, right top). For both IC-BM and VB-BM MSCs, the transcript levels of ALP were increased

gradually till week 2 (median of 4- and 6-fold respectively) then the levels dropped at week 3

(Fig 4A, left bottom). The gene levels of osteopontin were similarly increased at week 1 for

IC-BM and VB-BM MSCs (median of 3 and 2.6-fold respectively) then minimal changes were

noted at week two and three (Fig 4A, middle bottom). In contrast, the osteocalcin gene levels

were increased only at week 3 for IC-BM and VB-BM MSCs (median of 28- and 4-fold respec-

tively), but with no statistically significant difference (Fig 4A, right bottom). In total, the pat-

terns of the osteogenic gene expression were similar for IC-BM and VB-BM MSCs.

The chondrogenic genes, aggrecan, collagen type 2 and transcription factor, SOX9 were also

tested over three weeks of culture in the chondrogenic milieu (Fig 4B and S4 File). A consistent

increase of SOX9 was noted for IC-BM and VB-BM MSCs over week 1, 2 and 3 (IC-BM; 6-,

12-, 11- and VB-BM 34-, 43-, 55-fold respectively). However, the gene levels of SOX9 were sig-

nificantly higher for VB-BM MSCs relative to IC-BM MSCs at three time-points (p = 0.0446,

p = 0.0069, and p = 0.0039 respectively). For both MSCs, the median levels of collagen 2 gene

levels were increased till week 2 then decreased but stayed higher than undifferentiated cells.

The VB-BM MSCs had higher levels of collagen 2 gene than IC-BM MSCs when measured at

week 2 and three (p = 0.0248 and p = 0.0078 respectively). The aggrecan gene levels were
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increased at week 2 for VB-BM MSCs than IC-BM MSCs (median: 2- and 4.5- fold respectively)

with no statically significant difference. Together, the chondrogenic gene expression data partic-

ularly for SOX9 and collagen 2 confirmed superiority for VB-BM MSCs than IC-BM MSCs.

The attachment, survival and osteogenic differentiation of VB-BM MSCs

on Vitoss™
The β-TCP scaffold, Vitoss™ was seeded with unprocessed donor-matched IC-BM and VB-BM

aspirates then the attachment and the survival of MSCs were compared following 2 weeks of

Fig 4. The expression of osteogenic and chondrogenic genes in VB-BM versus IC-BM MSCs. A. The gene expression levels during the osteogenic differentiation of

VB-BM and IC-BM MSCs (4 donor-matched pairs) were assessed using TaqMan real time PCR. The gene expressions of samples collected at 1, 2 and 3 weeks of

osteogenesis were calculated relative to undifferentiated cells. B. The gene expression levels during the chondrogenic differentiation of VB-BM and IC-BM MSCs (4

donor-matched pairs) were assessed using TaqMan real time PCR. The gene expressions of samples collected at 1, 2 and 3 weeks of chondrogenesis were calculated

relative to undifferentiated cells. �: p<0.05. Dotted lines indicate the basal expression level of genes in undifferentiated cells.

https://doi.org/10.1371/journal.pone.0197969.g004
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culture. Many cells from both IC-BM and VB-BM were attached to Vitoss™, as shown by con-

focal images (Fig 5A). To quantify MSCs that have survived on the scaffolds during the cul-

ture, Vitoss™ was digested, and the released cells were tested for the phenotype of cultured

MSCs as CD90+CD73+CD45- cells (Fig 5B, left panel). The percentages of these IC-BM and

VB-BM MSCs were equal (mean, 67% and 67.33% respectively out of CD45- cells, p = 0.9836),

Fig 5. Attachment and osteogenic differentiation of VB-BM MSCs on Vitoss™. A. The cell attachment on Vitoss™
after seeding with aspirates of IC-BM (left panel) and VB-BM (right panel) followed by 2-week culture using confocal

microscopy. DAPI staining (blue) was used for cell nuclei and Phalloidin (green) for actin expression. Scale Bar: 50μm.

B. The flowcytometry gating strategy for CD45-CD90+CD73+ MSCs released from Vitoss™ following 2-week culture

(left panel). The percentage of MSCs out of total CD45- cells for IC-BM MSCs and VB-BM MSCs seeded on Vitoss™
(Paired t-test, n = 3). The mean of the data is shown, right panel. C. The ALP activity levels (normalised to DNA

content) for VB-BM MSCs and IC-BM MSCs seeded on Vitoss™ and culture in either osteogenic or expansion media

(one-way ANNOVA with Tukey’s multiple comparison test, n = 6). The mean of the data is shown. E: expansion

media, O: osteogenic media.

https://doi.org/10.1371/journal.pone.0197969.g005
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(Fig 5B, right panel and S5 File) indicating a similar ability of both MSCs to attach on

Vitoss™.

Vitoss™ was also seeded with culture-expanded MSCs from IC-BM and VB-BM then cul-

tured in osteogenic media to compare the osteogenic capacities of IC-BM MSCs and VB-BM

MSCs on scaffolds. The ALP activity level (normalised to cell DNA content) was induced

under osteogenic induction, compared to those cultured in expansion medium for both

IC-BM MSCs and VB-BM MSCs (p = 0.0467 and 0.0491, respectively), (Fig 5C and S5 File).

Furthermore, there was a significantly higher level of the ALP activity detected for VB-BM

MSCs, than that for IC-BM MSCs (p = 0.0386), (Fig 5C and S5 File). Collectively, these results

confirmed the advantages of VB-BM MSCs as bone progenitor cells when seeded on the β-

TCP scaffolds.

Discussion

For the evolving field of regenerative bone therapy, the source and the methods of extraction

of MSCs are important issues yet to be optimised especially for the spine surgeries. Although

VB-BM is a well-known source for hematopoietic stem cell transplantation [44, 45], its use in

spinal fusion, as a source of MSCs, is not yet considered as a routine procedure, despite the

great benefits of combining MSCs with scaffolds, enhancing the bone formation [11–13]. The

combination of β-TCP scaffolds, e.g. Vitoss™ with IC-BM aspirates and/or local bone autograft

has been shown to help spinal fusion in pre-clinical and clinical studies [46–48]. However, the

outcomes of the clinical trials using these composites could be particularly dependent on the

quality of the BM (i.e. the effectiveness of bone progenitor cells). Previous research has

reported the differentiation capability of VB-BM MSCs, nevertheless, with lack of consistency

in comparison to IC-BM MSCs. Furthermore, the BM harvesting technique and the anatomi-

cal site used were not always consistent and a gradient centrifugation method was used

throughout all studies, despite the evidence shown for IC-BM, of the considerable loss of

MSCs in the precipitate [49, 50] and the higher yield of MSCs with red blood cells lysis method

[49, 51]. Here, in a comprehensive donor-matched study, we analysed the effect of the BM pro-

cessing methods on the quantity of VB-BM and IC-BM MSCs. To our best knowledge, the

study here is the first to demonstrate that red blood cell lysis is a more effective method for

VB-BM processing with minimal MSC loss compared to the gradient centrifugation. This

finding would be of value considering the therapeutic use of the VB-BM samples for the MSC

enrichment or culture-expansion of MSCs.

As indicative of bone progenitors in BM samples, the colony counts for VB-BM samples

were comparable to that of donor-matched IC-BM samples. In contrast to our findings, the

colony counts of VB-BM samples were reported as higher than those of IC-BM samples in two

previous studies [23, 24] and lower than IC-BM samples in other two studies [22, 25]. These

contradictory data of the colony counts could be related to the variation of the patient cohort

and different BM processing/culture methods. Therefore, we used a flowcytometry-based

method to confirm that the abundance of the native bone progenitors in VB-BM samples was

similar to IC-BM. As we reported recently for IC-BM samples [52], the enumeration of

CD45lowCD271high cells can use as indicative for the quantity of bone progenitors in VB-BM

samples.

The data here on cultured VB-BM MSCs showed a comparable standard ISCT marker phe-

notype and proliferative capacity to IC-BM MSCs in agreement with other reports [20, 21, 24,

26]. Other markers of MSCs such as CD146 has been linked to vascular smooth muscle com-

mitment of BM-MSCs, but no difference in osteogenic, chondrogenic or adipogenic differenti-

ation was noted between CD146low/negative and CD146high MSCs [53]. Additionally, while
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MSC-like annulus fibrosus cells express contractile Phenotype, the CD146+ population of

these cells displayed weak osteogenic and chondrogenic differentiation [54]. As our study here

focused on the use of MSCs for the bone and cartilage regeneration helping spine fusion, we

have not included such marker comparison for VB-BM MSCs in relation to IC-BM MSCs.

Our data, uniquely using quantitative methods, showed that although having similar adipo-

genic activity, VB-BM MSCs presented a potentially higher chondrogenic differentiation than

IC-BM MSCs. In contrast, the capability of VB-BM MSCs to differentiate into cartilage and fat

has been demonstrated previously using Safranin O/ Alcian Blue and Oil Red O staining

respectively, but without quantification or referral to IC-BM MSCs [21]. Recent studies dem-

onstrated that VB-BM MSCs have a paracrine effect on intervertebral disc cells, enhancing its

regeneration reparative process [55, 56]. The in vitro co-culture between VB-BM MSCs and

disc cells has been shown to induce the disc cell proliferation and collagen synthesis [56]. The

greater chondrogenic ability of VB-BM MSCs confirmed here using both functional assays

and gene expression data. These data together and given that the chondrogenesis is a step

involved in the bone formation, suggested a further potential benefit of using VB-BM MSCs

for spinal fusion as well as the disc regeneration purposes.

Our functional data suggested a superior osteogenic differentiation of VB-BM MSCs com-

pared to IC-BM MSCs in agreement with previous studies [21, 26]. Additionally, MSCs

extracted from digested VB-bone have been demonstrated to have a higher ALP expression

and activity than those extracted from IC-bone [24, 25]. While these studies tested the osteo-

genesis of VB-BM MSCs using ALP assessment, our study additionally analysed the minerali-

sation capacity of these MSCs. Importantly, our experiments using Vitoss™ showed that

VB-BM MSCs could attach and survive on these scaffolds as efficiently as IC-BM MSCs. As it

was difficult to evaluate the mineralisation due to high calcium composition of Vitoss™, ALP

activity was only used confirming the greater osteogenic differentiation of VB-BM MSCs on

this scaffold relative to IC-BM MSCs. In comparison to functional assays, the gene expression

data showed no significant difference of osteogenic markers between VB-BM and IC-BM

MSCs. The role of other genes or post-translational factors could explain the higher osteogenic

functions of VB-BM MSCs. In addition to the genetic factors, the mechanisms of higher osteo-

genic/chondrogenic differentiation capabilities of VB-BM MSCs versus IC-BM MSCs can be

possibly related to a variation in epigenetic factors regulating the differentiation. The epige-

netic changes of MSCs occur sequentially through development to determine lineage-specific

differentiation. A distinctive epigenetic signature has been reported explaining the variable dif-

ferentiation potential between MSCs from BM and adipose tissue [57]. Nevertheless, the find-

ings together highlight the potential value of using VB-BM or cultured VB-BM MSCs seeded

on scaffolds to sufficiently enhance the cartilage/bone formation needed for spine fusion.

Conclusions

Our data showed that the red blood cell lysis is a convenient method for processing VB-BM

samples to extract higher yield of MSCs compared to the gradient centrifugation. Despite sev-

eral studies that have compared IC-BM and VB-BM MSCs, a better comparison of a whole

population of MSCs extracted following red blood cell lysis was presented in this study. Beside

standard CFU-F assays, flowcytometry was introduced as a quantification assay for MSCs in

unprocessed VB-BM aspirates. For each volume unit of BM aspirate, VB-BM MSCs have the

same abundance compared to IC-BM MSCs. For the first time, this study revealed a greater

chondrogenic ability of VB-BM MSCs compared to IC-BM MSCs. The gene expression profile

has been shown to verify this superiority. Uniquely, the advantages of VB-BM MSCs for osteo-

genesis were quantitatively demonstrated here on both 2- and 3-dimensional culture systems.
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In particular, we verified the high functional capabilities of VB-BM MSCs when loaded on

scaffolds compared to IC-BM MSCs. These biological advantages particularly higher reparative

effects together with the easy accessibility, highly suggest the VB-BM aspirates/MSCs as an

ideal therapeutic choice for spinal fusion.
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S1 Fig. Aspiration of VB BM samples. A. The bone marrow aspirate was collected intraopera-

tively from VB as shown [left panel) via a 13-gauge bevel-tip introduction needle 5’’, Stryker1

[in green), inserted in the vertebra by 3-4cm via the pedicle, till the periphery of the vertebral

body, then attached to a 10ml syringe. The illustration of the vertebra was reproduced from

the Human Anatomy Atlas, Netter 3rd edition, 2006, following explicit permission from Else-

vier.

B. For the intraoperative sampling photograph, a Nikon D7000 was used, by the authors.

(TIF)

S2 Fig. The gating strategy for characterisation of native and cultured BM MSCs. A. The

forward and side scatter (FSC and SSC) of bone marrow cells in bone aspirate with the count-

ing beads are indicated. The BM MSCs were identified as CD45low CD271high cells.

B. The forward and side scatter (FSC and SSC) of culture-expanded BM MSCs. The histograms

for the surface markers, hematopoietic lineage markers (CD34, CD14, CD19, HLA-DR),

CD45, CD73, CD90, and CD105 are shown.
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S1 File. Total cell counts and colony counts.
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S4 File. Gene expression data.
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