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ABSTRACT: The formation of embryonic mineralized skeletal 

elements (spicules) in the sea urchin requires the participation 

of proteins, many of which may be interactive with one another 

and assist in the creation of an extracellular matrix wherein 

mineral formation takes place.  To probe this we created a sea 

urchin spicule recombinant model protein pair system wherein 

we tested the interactions between two major spicule proteins, 

SpSM50 and the glycoprotein, SpSM30B/C. Both proteins are 

strong hydrogelators which manipulate early and later events 

in mineral formation. We discovered that the anionic glycan 

moieties of SpSM30B/C are required for interaction with the 

SpSM50 protein and that these interactions are Ca(II) – inde-

pendent.  Further, when these proteins complex together they 

form hybrid hydrogel particles that are physically distinct from 

their individual counterparts. Thus, glycan-mediated interac-

tions play an important role in in vitro spicule protein assembly 

and most likely within the spicule itself. 

Embryonic sea urchin mineralized spicules provide insights 

into the development and expression of both skeletal elements 

and biological materials at the nano- and mesoscales.1 In the 

purple sea urchin embryo, Strongylocentrotus purpuratus, (Sp), 

the spicule consists of a single mesocrystal of magnesium-

bearing calcite (Ca.95Mg.05CO3 or MgC).  The formation of MgC 

initiates with the assembly of amorphous calcium carbonate 

(ACC) nanoparticles directed by protein families designated as 

SpSM.2-18 Subsequently the ACC phase transforms to crystalline 

MgC and the associated SpSM proteins become entrapped 

within the crystalline mineral phase and convey fracture 

resistance.5,6,9-11,16-18 Because these integrated processes lead 

to skeletal formation and ultimately material enhancement, 

there is a compelling reason to study the spicule matrix and the 

spatial and functional relationships between SpSM proteins 

and mineral phase. 

Two important trends are noted for SpSM proteins. 

All expressed SpSM proteins feature a folded C-type lectin-like 

domain (CTLL) at the N-terminus,2-4,9,19-21 and this domain has 

been implicated in spicule matrix assembly and mineral for-

mation.9,19-21 Furthermore in many SpSM proteins there is also 

an intrinsically disordered Met/Asn/Gln/Pro/Gly-rich 

(MAQPG) repetitive C-terminal domain that is homologous to 

known elastomeric sequences. 2-4,9,19-21 We consider that both 

sequences are crucial for matrix protein assembly and material 

integrity and possibly direct processes such as protein – min-

eral phase interaction and matrix-mineral organization within 

the spicule. 
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The best characterized SpSM proteins are SpSM502-

4,9,11-15,19-20 (pI = 10.7, MW = 44.5 kDa, 428 AA, Uniprot: P11994, 

GenBank: AAA30071.1) and the A-F SpSM30 acidic glycopro-

tein isoforms2-4,12-15,19,21 (pI = 5.7, MW ~ 43 kDa, 270 AA, Acces-

sion P28163)(Figure S1, Supporting Information).  Intriguingly, 

knockdown of SpSM30 expression has little effect on spicule 

mineralization, formation or elongation, whereas knockdown 

of SpSM50 expression has a much more significant impact.7,15  

Recombinant model forms of both proteins (insect cell ex-

pressed, N-, O-linked glycosylated rSpSM30B/C-G, a hybrid of the “B” and “C” isoform sequences; bacteria expressed 
rSpSM50)19-21 have been found to form protein hydrogel parti-cles that act as “smart” hydrogels that dimensionally respond 

to pH and ions, bind and release water and ions, modify the sur-

faces and subsurfaces of calcite crystals, and regulate different 

aspects of the non-classical nucleation scheme.19-21 Thus, the 

spicule matrix is a hydrogel environment consisting of multiple 

spicule matrix proteins, and it is within this hydrogel environ-

ment that ACC formation, assembly, stabilization, and transfor-

mation processes16-18 take place during spiculogenesis.  How-

ever, it is not clear if SpSM50 and SpSM30 interact with one an-

other within this hydrogel matrix, and if so, whether the glyco-

sylation of SpSM30 plays a role in this process.  

Recently, to better understand mineral-associated 

ECM formation, we introduced model combinatorial recombi-

nant biomineralization protein pair studies where we discov-

ered a significant impact of defined protein molar ratios (1:1) 

on mineral formation.22,23  We found that the protein pairs ex-

hibited non-covalent binding to one another, forming hybrid 

protein hydrogels that promoted synergistic effects on either 

the early and/or later stages of nucleation and crystal 

growth.22,23  In this new study, we applied this approach to 

learn whether or not  SpSM50 and SpSM30 sequences interact 

with one another and if so, whether the glycan moieties of 

SpSM30 play a role in these interactions. Using a single recom-

binant model variant of SpSM50 (rSpSM50),19,20 and two vari-

ants of SpSM30B/C (unglycosylated, bacteria expressed vari-

ant = rSpSM30B/C-NG; glycosylated, Sf9 insect cell expressed 

variant = rSpSM30B/C-G),19,21 we find that only the glycosyl-

ated variant of the SpSM30B/C interacts with the SpSM50 se-

quence and does not require Ca2+.  This result indicates that the 

SpSM30B/C-G oligosaccharide moieties, and not the primary 

sequence itself, are important for spicule matrix protein-pro-

tein interaction.  Furthermore, based on hydrogel particle size 

distributions, internal complexities (i.e., structure), and elec-

trostatics, the interactive rSpSM30B/C-G : rSpSM50 complex 

forms protein hydrogel particles that differ from those formed 

by the individual proteins.  Thus, using this model recombinant 

protein pair system, we conclude that post-translational glyco-

sylation is critical for the assembly, formation, and mineraliza-

tion of the spicule ECM.   

The primary sequences of rSpSM30B/C-G and 

rSpSM30B/C-NG are identical, with the only difference being 

the presence of anionic glycans on the rSpSM30B/C-G insect 

cell variant.21 Thus, a comparison of the two recombinant 

rSpSM30B/C proteins against the rSpSM50 sequence affords us 

an opportunity to test the contribution of insect cell glycosyla-

tion on SpSM30 – SpSM50 interactions.  We conducted these 

studies at pH 8.0 since this is the relevant pH of the in vitro cal-

cium carbonate mineralization assays conducted on these pro-

teins,19-21 with the actual in situ pH of the spicule matrix not 

known at present.  

Using quartz crystal microbalance with dissipation 

(QCM-D) we examined the differences in interaction between 

the glycosylated rSpSM30B/C-G or the non-glycosylated 

 

 

Figure 1.  QCM-D experiments of immobilized rSpSM50 (500 nM 

in 10 mM HEPES pH 8.0) exposed to either 500 nM rSpSM30B/C-

G or 500 nM rSpSM30B/C-NG in 10 mM CaCl2, 10 mM HEPES, pH 

8.0.   Plots show the third harmonic frequency (F3, blue) and 

dissipation (D3, red) observed under each scenario. The time-

dependent introduction of rSpSM50, rSpSM30B/C-G (lines) or 

rSpSM30B/C-NG (circles) and HEPES washing solutions is noted 

on the plots by arrows and extended dashed lines.  These 

experiments were repeated (Figure S1, Supporting Information) 

and found to be reproducible. 

 

rSpSM30B/C-NG with the surface-immobilized rSpSM50 pro-

tein (Figure 1). In each individual experiment, we created a 

layer of adsorbed rSpSM50 protein on poly(L-lysine) using a 

500 nM protein solution in 10 mM HEPES buffer pH 8.0 (Figure 

1, first arrow). Next, we introduced either rSpSM30B/C-G or 

rSpSM30B/C-NG (500 nM), both dissolved in a 10 mM CaCl2 so-

lution in HEPES buffer (second arrow), over the immobilized 

rSpSM50 layer. As seen in Figure 1, in the first scenario, the in-

troduction of rSpSM30B/C-G induced a large shift in the fre-

quency and dissipation of the functionalized sensor (which re-

flect mass deposition and viscoelasticity, respectively), indica-

tive of a strong binding reaction between the two proteins. In 

the second scenario, the introduction of rSpSM30B/C-NG 

showed negligible shifts in frequency and dissipation, similar 

to a control measurement (Figure S2), where only 10 mM CaCl2 

solution in HEPES buffer was injected over the rSpSM50-func-

tionalized sensor. This result suggests that the rSpSM50 and 

rSpSM30B/C-NG primary sequences are non-reactive. This re-

sult indicates that even though each protein sequence is elec-

trostatically opposite (pISpSM50 =10.7 ; pISpSM30B/C-G =5.7 ), net 

protein charge is insufficient to promote protein-protein bind-

ing between rSPSM50 and rSpSM30B/C-NG. 

The binding differences between rSpSM30B/C-G and 

rSpSM30B/C-NG were found to be reproducible (Figure S2, 

Supporting Information); thus, the presence of glycans play a 

key role in the interaction between the rSpSM30B/C and 

rSpSM50 proteins. Furthermore, control measurements of 

rSpSM30B/C-G and rSpSM30B/C-NG in HEPES buffer alone 

(Figure S3, Supporting Information) exhibited the same QCM-
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D response as those in HEPES/Ca(II) buffer, indicating that the 

binding reaction is independent of Ca(II) ions.  

Having confirmed interactions between 

rSpSM30B/C-G and rSpSM50, we chose to focus on this protein 

pairing for subsequent experiments at pH 8.0 sans Ca2+ to de-

termine if these proteins co-hydrogelate. We achieved this us-

ing two methods: a) flow cytometry,19-21 which probes the par-

ticle size distributions and internal granularities of the translu-

cent protein hydrogel particles, and b) electrophoretic mobility 

/ ζ potential measurements,24,25 which determine particle sizes 

and electrostatic charges of protein hydrogel particles. 

Flow cytometry provides light scattering parameters 

that one can monitor for particles under constant flow:19-21 1) 

forward scattered light component (FSC, x-axis), which deter-

mines particle size distributions; and 2) side-scattered light  

 

Figure 2. (A) Flow cytometry 2-D density plots (FSC vs SSC) of 1.5 

µM rSpSM30B/C-G (blue), rSpSM50 (red), and 1:1 rSpSM30B/C-

G : rSpSM50 (purple) samples in 10 mM HEPES, pH 8.0.  (B) His-

togram plot of mean spicule matrix protein hydrogel particle 

zeta potentials and diameters in 10mM HEPES, pH 8.0.  For (A), 

details regarding FSC and SSC parameters and other features can 

be found in Supporting Information. For (B), all measurements 

were done in triplicate.  For both (A) and (B), individual protein 

concentrations were 500 nM. 

component (SSC, y-axis), which measures refracted and re-

flected light that occurs at any interface within the particles 

where there is a change in refractive index (RI) that results 

from variations in particle granularity or internal structure 

(see Supporting Information).  As shown in Figure 2A, at pH 8.0 

rSpSM50 and rSpSM30B/C-G generate hydrogel particles with 

unique particle size distributions and internal granularities.  

When present in a 1:1 mixture, both parameters change, indi-

cating that the combination of the two spicule matrix proteins 

generates hydrogel particles that are non-equivalent to their 

individual counterparts.  This suggests that the hydrogel parti-

cles that form from the 1:1 mixture are hybrid in nature.    

We confirmed this finding by using Zetasizer instru-

mentation to assess particle sizes and ζ potentials (surface 
charges)24,25 of hydrogel particles formed by rSpSM30B/C-G, 

rSpSM50, and 1:1 rSpSM30B/C-G : rSpSM50 (Figure 2B).  Here, 

we note that each spicule matrix protein possesses approxi-

mately the same particle diameters at pH 8.0, but differ in their ζ potentials (30%), indicative of the differences in protein 

charge [i.e., pISpSM50 > pISpSM30B/C] and associated ions.  In the 1:1 

scenario, the values for both the particle diameters and ζ po-
tentials shift dramatically, with the particle diameters increas-ing ~4x and the ζ potentials decreasing ~2-3x from the individ-ual protein values.  We believe that the reduction in ζ potentials 
reflects the change in net electrostatics as the cationic rSpSM50 

forms complexes with the anionic rSpSM30B/C-G molecules 

and creates hybrid protein hydrogel particles whose charges 

are lower in value due to ion pairing neutralization effects.   

Likewise, the increase in particle dimensions confirm that the 

two proteins are co-assembling together to form hydrogel par-

ticles that exceed the dimensions of the particles formed by the 

individual proteins themselves. 

In this report, using model recombinant variants of S. 

purpuratus SpSM30B/C and SpSM50,19-21 we confirm that these 

proteins are interactive and only the oligosaccharide-modified 

variant of rSM30B/C19,21 exhibits non-covalent interactions 

with the major spicule matrix protein, rSpSM50 (Figure 1). 

Moreover, rSpSM30B/C-G interactions with rSpSM50 are Ca2+ 

- independent (Figure 1) and the resulting hydrogel particles 

that form possess physical properties (Figure 2) that are signif-

icantly different from hydrogel particles formed by the individ-

ual proteins, i.e., these are hybrid hydrogel particles. This could 

explain the role of SpSM30 proteins in spiculogenesis: to boost 

the activity of the predominant SpSM50 protein. This would ex-

plain why knockdown of SpSM30 demonstrated no observable 

changes in spicule formation,7,15 since its absence would still 

permit SpSM50, a strong hydrdogelator and nucleation modu-

lator, to function well enough to allow spicule matrix for-

mation.  

Although we do not know the non-bonding interac-

tions between rSpSM50 – rSpSM30B/C-G, we speculate that 

protein-carbohydrate recognition is the key.  Like the majority 

of SpSM proteins, rSpSM50 has a conserved CTLL carbohydrate 

recognition sequence near the N-terminus (Figure 3; Figure S1, 

Supporting Information) that features cat ionic regions.2-4,19,20 

Figure 3.  PBEQ Solver/CHARMM-GUI solvation energy surface 

plots for DISOclust/INTFOLD2-predicted structures of SpSM5020 

and SpSM30B/C21 primary sequences. Electrostatic surfaces are 

color-coded as:  red = anionic; white = neutral; blue = cationic. 

CTLL domains are indicated; “G” = predicted region for 
SpSM30B/C O-glycosylation;21 Blue arrows = cationic regions of 

SpSM50 CTLL sequence. Description of solvation modeling proto-

col can be found in Supporting Information. 

 

Since rSpSM30B/C-G anionic oligosaccharides are believed to 

exist within the extended MAQPG region21 (Figure 3), we pos-

tulate that the accessible anionic glycan groups on 

rSpSM30B/C-G are recognized by the cationic CTLL domain of 

rSpSM50 and interact there.  As mentioned elsewhere,19-21 the 

intrinsically disordered MAQPG C-terminal region and the 

modified CTLL fold represent putative binding domains for 

spicule matrix protein-protein assembly and subsequent 
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hydrogelation, and thus are critical for the protein-mediated 

mineralization process to occur.9,19-21 We suggest that subse-

quent studies should focus on native glycosylation, intrinsically 

disordered regions, and the role(s) that they play in embryonic 

sea urchin skeletal formation. 
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