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The extreme properties of the gamma ray flares in the Crab Nebula present a clear
challenge to our ideas on the nature of particle acceleration in relativistic astrophysical
plasma. It seems highly unlikely that standard mechanisms of stochastic type are at
work here and hence the attention of theorists has switched to linear acceleration in
magnetic reconnection events. In this series of papers, we attempt to develop a theory
of explosive magnetic reconnection in highly-magnetised relativistic plasma which can
explain the extreme parameters of the Crab flares. In the first paper, we focus on
the properties of the X-point collapse. Using analytical and numerical methods (fluid
and particle-in-cell simulations) we extend Syrovatsky’s classical model of such collapse
to the relativistic regime. We find that the collapse can lead to the reconnection rate
approaching the speed of light on macroscopic scales. During the collapse, the plasma
particles are accelerated by charge-starved electric fields, which can reach (and even
exceed) values of the local magnetic field. The explosive stage of reconnection produces
non-thermal power-law tails with slopes that depend on the average magnetization σ.
For sufficiently high magnetizations and vanishing guide field, the non-thermal particle
spectrum consists of two components: a low-energy population with soft spectrum, that
dominates the number census; and a high-energy population with hard spectrum, that
possesses all the properties needed to explain the Crab flares.

http://arxiv.org/abs/1805.05233v1
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1. Introduction

The detection of flares from Crab Nebula by AGILE and Fermi satellites (Tavani et al.
2011; Abdo et al. 2011; Buehler et al. 2012) is one of the most astounding discover-
ies in high energy astrophysics. The unusually short durations, high luminosities, and
high photon energies of the Crab Nebula gamma-ray flares require reconsideration of
our basic assumptions about the physical processes responsible for acceleration of the
highest-energy emitting particles in the Crab Nebula, and, possibly in other high-energy
astrophysical sources.
The Crab flares are characterised by an increase of gamma-ray flux above 100 MeV

by a factor of few or more on the day time-scale. This energy corresponds to the high
end of the Crab’s synchrotron spectrum. Most interestingly, in the other energy bands
nothing unusual has been observed during the flares so far (Weisskopf et al. 2013). This
suggests that the physical processes behind the flares lead to a dramatic increase of the
highest energy population of relativistic electrons in the nebula, whereas lower energy
population remains largely unaffected. The short duration of flares indicate explosive and
highly localised events.
Most importantly, the peak of the flare spectrum approaches and even exceeds the

maximal rest-frame synchrotron photon energy (de Jager et al. 1996; Lyutikov 2010;
Clausen-Brown & Lyutikov 2012). Balancing the synchrotron energy losses in the mag-
netic field B against the energy gain via acceleration in the electric field of strength
E = ηB leads to the upper limit of the synchrotron photon energy

ǫmax ∼ η~
mc3

e2
≈ 100η MeV

The high conductivity of astrophysical plasma ensures that for typical accelerating
electric field η < 1. The fact that the flare spectrum extends beyond this limit pushes
η towards unity, which implies energy gain on the scale of the gyration period. This
practically excludes stochastic acceleration mechanisms in general and the shock accel-
eration in particular. In principle, strong Doppler boosting could somewhat reduce this
constraint Bednarek & Idec (2011); Clausen-Brown & Lyutikov (2012) but the lack of
observational evidence for ultra-relativistic macroscopic motion inside the nebula makes
this unlikely.
A widely discussed alternative to the shock acceleration mechanism is the particle

acceleration accompanying magnetic reconnection. It is well known that magnetic recon-
nection can lead to explosive release of magnetic energy, e.g. in solar flares. However,
properties of plasma in the Crab Nebula, as well as magnetospheres of pulsars and
magnetars, pulsar winds, AGN and GRB jets and other targets of relativistic astro-
physics, are very different from those of more conventional Solar and laboratory plasmas
(Lyutikov & Lazarian 2013). In particular, the energy density of magnetic field can
exceed not only the thermal energy density but also the rest mass-energy density of
plasma particles. In order to quantify such a strong magnetization, it is convenient to
use the relativistic magnetization parameter

σ =
B2

4πw
(1.1)

where w = ρc2 + (γ̂p/γ̂ − 1) is the relativistic enthalpy, which includes the rest mass-
energy density of plasma. In traditional plasmas this parameter is very small but in
relativistic astrophysics σ ≫ 1 is quite common. This parameter is uniquely related to
the Alfvén speed vA via

(vA/c)
2 = σ/(1 + σ) .



Explosive X-point collapse 3

The physics of particle acceleration in relativistic current sheets has been addressed
in a number of recent studies (e.g. Bessho & Bhattacharjee 2012; Guo et al. 2015;
Nalewajko et al. 2015; Deng et al. 2015, and others). In particular, the Colorado group
(Uzdensky et al. 2011; Cerutti et al. 2012a,b, 2013) explored the possibility of explain-
ing the Crab flares. Their 2D PIC simulations demonstrated the development of the
relativistic tearing instability (see also Lyutikov 2003; Komissarov et al. 2007), followed
by a transition to the plasmoid-dominated regime. In addition to a number of useful
properties, the current sheet reconnection has some generic features which seem to be in
conflict with the observations of the Crab flares.
First, in the collisionless plasma the key length scales of reconnection current sheet are

microscopic and determined by to the plasma skin depth. This applies to the thickness of
the current sheet, the distance between plasmoids (magnetic ropes) and the correlation
scale of the accelerating electric field. As a result the typical potential available for linear
acceleration is limited to that over microscopic scales (few skin depths), which is too small
to explain the flares spectrum. The correlation scale can be increased with introduction
of strong guide field but this leads to a significant reduction of the reconnection rate
(Zenitani & Hoshino 2008).
Second, the recent PIC studies of relativistic reconnection have demonstrated that

even in the absence of the guide field the reconnection rate (inflow velocity) in 3D
simulations is significantly lower than in 2D (Sironi & Spitkovsky 2014). Thus, for a
reference magnetization σ = 10 the reconnection rate in 2D is rrec ∼ 0.1 whereas in 3D
it is only rrec ∼ 0.02 (Sironi & Spitkovsky 2014). The slower reconnection rate leads to
a weaker accelerating electric field. Moreover, for a given flare duration it translates into
a smaller utilised magnetic energy.
Finally, and most importantly, Crab flares require acceleration to Lorentz factors γ ∼

109. In the simulations of (Uzdensky et al. 2011; Cerutti et al. 2012a,b, 2013) all the
particles present within the acceleration region get accelerated to similar energies. In such
a case, the terminal Lorentz factor is limited by γmax ∼ σ, which requires unreasonably
highly magnetized regions to exist inside the Crab nebula.
These problems may stem from the simplified slab (or, plane-parallel) geometry of the

initial configuration, enforced by the periodic boundary conditions, which was considered
in the above studies. Indeed, this excludes the large-scale magnetic stresses which in
highly-magnetized plasma may lead to explosive high-speed dynamics on macroscopic
length scales. In this series of papers, we explore the role of the macroscopic factor by
considering various initial configurations and studying their macroscopic evolution using
fluid-type models of magnetized relativistic plasma. Each such study is accompanied by
PIC simulations, which allows to study the specifics of particle acceleration resulted from
the involved magnetic reconnection. We start by considering the classical problem of the
X-point collapse.
The theoretical studies of the X-point collapse trace back to the work by Dungey

(1953), who argued that a neutral X-point is unstable and that particles can be
accelerated during its collapse. The ideas of Dungey were put on a firm basis by
Imshennik & Syrovatskivi (1967), who found corresponding non-linear MHD solutions
(see also Priest & Forbes 2000). The solutions of Sweet (1969); Imshennik & Syrovatskivi
(1967); Syrovatskii (1981) were obtained in what we can nowadays call a quasi-static
force-free approximation: neglecting the pressure effects (hence force-free), but also
neglecting the dynamic effects of the electric field (hence the name quasi-static). In
this paper we extend these studies by considering the case of highly-magnetized plasma
(σ ≫ 1).
We start by describing an approximate analytical solution found in the framework
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of force-free electrodynamics (Section 2). The solution shows that in highly-magnetised
plasma X-points remain unstable to collapse. This result is verified by our numerical
simulations, which also allow a more comprehensive study the dynamics of X-point
collapse (Sections 3 and 4). Using 2D Particle-in-Cell (PIC) simulations, we studied
the process of non-thermal particle acceleration accompanying the collapse (Sections 4).
The results show a number features, which have not been seen in previous studies,
focused on relativistic reconnection in plane current sheet, and which may have important
implications in the theory of Crab flares. In Section 5 we summarise our main results
and discuss their implications.

2. Asymptotic model of X-point collapse in force-free plasma

2.1. Dynamic force-free plasma

Explosive release of magnetic energy is a common phenomenon in laboratory and
space plasmas (e.g. Priest & Forbes 2000). Syrovatskii (Imshennik & Syrovatskivi 1967;
Syrovatskii 1975, 1981) argued that it could be related to the macroscopic instability
of magnetic X-point configuration and studied it in the framework of non-relativistic
MHD (see also Cowley & Artun 1997). In this Section, we develop this theory farther
by considering the case of highly magnetized relativistic plasma with σ ≫ 1. In this
regime, (i) the mass-density of plasma is dominated by the magnetic field, (ii) the Alfvén
speed approaches the speed of light, (iii) the conduction current flows mostly along the
magnetic fieldlines, (iv) the displacement current (c/4π)∂tE may be comparable to the
conduction current, j, (v) the electric charge density, ρe, may be of the order of j/c.
The large value of σ (or small 1/σ) can be used as an expansion parameter in the

equations of relativistic magnetohydrodynamics. The zero order equations describe the
so-called force-free electrodynamics or magnetodynamics, Komissarov (2002). In this ap-
proximation, the inertia of plasma particle is ignored and hence the macroscopic Lorentz
force completely vanishes. Hence the energy and momentum of the electromagnetic fields
are conserved. The perfect conductivity condition reduces to E · B = 0 and E2 < B2,
which ensure existence of inertial frames where E = 0.
The electric current of ideal force-free electrodynamics can be written entirely in terms

of the electromagnetic field and its spatial derivatives

J =
c

4π

(E×B)∇ · E+ (B · ∇ ×B−E · ∇ ×E)B

B2
(2.1)

(Uchida 1997; Gruzinov 1999). This may be considered as the Ohm’s law of this approx-
imation. Similarly to resistive MHD, one can modify this law and introduce magnetic
dissipation (e.g. Lyutikov 2003; Li et al. 2012, see also §3). Importantly, only the parallel
component of the electric current is subject to resistive dissipation.

2.2. Stressed X-point collapse in force-free plasma: analytical solution

The non-current-carrying unstressed X-point configuration with translational symme-
try along the z axis is described by the vector potential

Az = −
(

x2 − y2
) B0

2L
.

It has null lines intersecting at 90 degrees at the origin, where the magnetic field vanishes.
B0 is the magnetic field strength at the distance L from the origin. When uniformly
squeezed, such an X-point is known to be unstable to collapse in the non-relativistic
regime (Dungey 1953; Imshennik & Syrovatskivi 1967; Priest & Forbes 2000). In the
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force-free limit, such a solution develops a singularity from the start, unless we introduce
a guide field. For simplicity, here we consider a uniform guide field Bz = B0, which
makes L a characteristic length scale of our problem: at r = L the guide field has the
same strength as the field of the X-point. In the following, we deal with dimensionless
equations using L as the unit length scale, L/c as the unit time scale and B0 as the unit
field strength.
Following the previous work on the X-point collapse, we look for approximate solutions

in the form

Az = −1

2

(

x2

a(t)2
− y2

b(t)2

)

, (2.2)

which assumes that at all times the configuration can be described as uniformly squeezed.
This configuration is similar to the unstressed one but the null lines run at an angle
determined by the ratio a/b. Without loss of generality, we can put a(0) = 1 and b(0) = λ,
making λ a parameter describing the initial perturbation. Such solutions exists only in
the limit x, y ≪ 1 and t ≪ 1, where the guide field remains largely unchanged. Hence we
put

B = curl (Azez) + ez

E = −∂tA+∇Φ(t, x, y) (2.3)

and the force-free condition E ·B = 0 reads
(

−x2 ∂ta

a3
+ y2

∂tb

b3

)

+

(

x∂yΦ

a2
+

y∂xΦ

b2

)

= 0 . (2.4)

This implies

b(t) = λ/a(t)

Φ = xy
ȧ

a
(2.5)

and hence a(t) (or b(t)) is the only unknown function of the problem†. Substituting
the expressions for the electric and magnetic fields into the Maxwell equation yields an
ordinary differential equation for a(t). Since x, y ≪ 1

B · curlB ≃ (1/a2 − (a/λ)2)) ,

E · curlE ≃ 2ȧ2
(

1

a4
x2 +

1

λ2
y2
)

,

and the Maxwell equation reduces to

d

dt

(

ȧ

a

)

=
a4 − λ2

λ4
. (2.6)

Given a(t) the electromagnetic field can be found via

B =

(

ya2

λ2
,
x

a2
, 1

)

,

E =

(

y, x,−x2λ2 + y2a4

λ2a2

)

ȧ

a
. (2.7)

Solutions of the equations (2.6) show that “the sqeezinees” parameter a(t) has a finite
time singularity for λ < 1: in finite time a becomes infinite, Fig. 1.

† Notice that ∆Φ = 0 and hence the electric charge density remains vanishing all the time.



6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

2

4

6

8

10

Time

a
Ht
L

Figure 1. An example of the evolution of the parameter a(t), Eq. (2.6). Initially an X-point
is squeezed by ten percent, λ = 0.9, parameter A = 1. Evolution occurs on the dynamical time
scale, until a singularity at t = 1.42, so that the fast growing stage of the collapse proceeds much
quicker.

(For λ > 1 in finite time a becomes zero, so that b becomes infinite.) Thus, we have
generalized the classic solution of Imshennik & Syrovatskivi (1967) to the case of force-
free plasma. At the moment when one of the parameters a or b becomes zero, the current
sheet forms, see Fig. 2. ‡
For small initial deformation of the X-point, λ = 1−ǫ where ǫ ≪ 1 is a small parameter.

Given the initial conditions a(0) = 1, ȧ(0) = 0, the corresponding asymptotic solution of
Eq.2.6 is

a ≃ 1 + ǫ sinh2 t . (2.8)

This solution is not uniform as at tc ≈ (1/2) ln(1/ǫ) the perturbation becomes large.
This sets the typical time scale of the X-point collapse. Since the unit time is L/c, where
L is the distance where the guide field has the same strength as the in-plane magnetic
field of the X-point, it is obvious that with vanishing guide field the collapse occurs
instantaneously.
In this solution, the electric field grows as

E ≃ ǫ(y, x,−x2 + y2) sinh 2t , (2.9)

‡ In this analysis, the perturbation is of a rather specific type - a compression on scales well
exceeding L. We probed the reaction of the X-point to small-scale perturbations, of wavelengths
λ ≪ L, using numerical simulations. The X-point appears to be stable to such perturbations (see
Appendix A). We have also verified that the evolution of the system in case of slowly developing
or periodic stress proceeds in a similar fashion - periodic reversing the stress does not stop the
collapse.
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Figure 2. Structure of the magnetic field in the x−y plane during X-point collapse in force-free
plasma. The initial configuration on the left is slightly “squeezed”, λ = 0.9. On dynamical time
scale the X-point collapses to form a current sheet, right Fig. The structure of the electric field
in the x − y plane does not change during the collapse and qualitatively resembles the t = 0
configuration of the magnetic field.

indicating that at t ≈ tc it may become comparable to the magnetic field. Importantly,
the ratio of the electric field, dominated mostly by Ez , to the magnetic field, dominated
at late times by Bx, increases with y (distances away from the newly forming current
sheet),

Ez

Bx
∝ y (2.10)

Thus, the analytical model predicts that the electric field becomes of the order of the
magnetic field in a large domain, not only close to the null line. This is confirmed by
numerical simulations, see Sections 3 and 4.

2.3. Charge starvation during collapse

During the X-point collapse the electromagnetic fields and currents experience a
sharp growth, especially near the null line. The current density at the null line grows
exponentially at early times,

J ≃ 1

2π
ǫ cosh2t ez (2.11)

Since a → ∞ during collapse, the current density similarly increases during the collapse.
As the parameter a grows, this imposes larger and larger demand on the velocity of the
current-carrying particles. But the maximum current density cannot exceed Jz < 2enec.
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Thus, if

a(t) >

√

L

δ

1

σ1/4
(2.12)

the current becomes charge-starved (here, δ = c/ωp, ω
2
p = 4πnee

2/me are plasma skin
depth and plasma frequencies) This charge starvation lead to efficient linear particle
acceleration. This is the one of the key points of the model.

The analytical estimates given above are in agreement with PIC simulations, §4. Our
typical runs have L/δ ∼ hundreds, while the magnetization parameter at the outer scale
is σ ∼ thousands. Thus we expect that the charge starvation occurs approximately at
a ∼ few – when the opening of the X-point becomes tens of degrees.

3. Force-free simulations

The approximate nature of the analytical solution described in the previous section
invites a numerical study of the X-point collapse in the force-free approximation. To this
aim we use a computer code, which solves Maxwell equations supplemented with the
Ohm law

J = ρ
E×B

B2
c+ κ‖E‖ + κ⊥E⊥. (3.1)

In this equation, the first term represents the drift current (cf. eq.2.1), whereas the
second and third terms introduce conductivity along and perpendicular to the magnetic
field respectively. The parallel conductivity κ‖ is always set to a high value in order to
quickly drive the solution towards the force-free state where E‖ = 0. The perpendicular
conductivity κ⊥ is normally set to zero. Only when E > B it is set to a high value in order
to quickly obtain E 6 B. These two terms also introduce dissipation, which becomes
significant inside current sheets. This phenomenological approach adopted from resistive
MHD becomes inaccurate inside collisionless current sheets where plasma effects deter-
mine the electric current and dissipation. This becomes manifest when we compare our FF
and PIC simulations. The numerical scheme is described in details in Komissarov et al.

(2007). It is second order in space and time, with the source terms treated using the
Strand-splitting algorithm. The method of Generalized Lagrange Multiplier (GLM) is
employed to keep the magnetic field almost divergence-free.

The X-point collapse simulations are initialized with the magnetic field described by
Eq. (2.7), with parameters a = 1, λ =

√
0.5, and vanishing electric field. In the first

simulations, we focus on the time-scale corresponding to the onset of the X-point collapse,
t < 1. We use a two-dimensional uniform Cartesian grid with 400 × 400 cells covering
the x-y domain [−2, 2] × [−2, 2] and impose the zero-gradient boundary conditions.
Such boundary conditions inevitably lead to an additional perturbation of the X-point
configuration near the boundaries, which send waves propagate inside the computational
domain with the speed of light. However, these waves do not reach the central area of
interest, [−1, 1] × [−1, 1], on the simulation time scale. Given the rather strong initial
compression of the X-point, with ǫ ≈ 0.4, the collapse time predicted by the theory is
tc ≈ 0.44.
Fig. 3 shows the magnetic field lines and the strength of the guide field B0 in the

central area at four instances during the time interval [0, 1]. In accord with with the
theory, the degree of the X-point compression increases with time and becomes visible to
naked eye at t ≃ tc. However, the figure also shows that on this time scale the numerical
solution begins to deviate strongly from the analytical one. Indeed, the distribution of
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[h!]

Figure 3. Initial phase of a solitary X-point collapse in FF simulations. The plots show Bz at
t =0.25, 0.5, 0.75 and 1. These plots are to be compared with Fig. 6, which shows the results of
PIC simulations with the same initial setup.

[h!]

Figure 4. Evolution of the parameter a(t) (left panel) and the total electric field strength
E(t) (right panel) during the initial phase. The measurements are taken at the point
(x, y) = (−0.1, 0.1). The analytical solution gives the collapse time τ = 1.0. These results
are sufficiently close, considering the fact that Eq. (2.6) was derived as an asymptotic limit near
the X-point.

the guide field becomes significantly non-uniform – it gets compressed in the plane of
collapse ( y = 0 ).
This is confirmed in Fig. 4, which shows the evolution of the compression parameter a

and the electric field strength, both computed at the point (x, y) = (−0.1, 0.1). In order
to measure the local value of a, we use use Eq.2.7, which yields

a(t) = λ1/2(xBx/yBy)
1/4 .

One can see that although the characteristic time scale is close to tc, the numerical
solution does not quite follow the analytical one. This is expected as the analytic solution
is only accurate for t ≪ tc. The PIC simulations, which are described in the next section,
yield very similar results.
In order to study the evolution of the X-point at t > tc, we repeated the simulations on
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[h!]

Figure 5. Long-term evolution of stressed solitary X-point in FF simulations. The left panel
shows the Bz component of the magnetic field. The right panel shows 1 − E2/B2 (colour)
and magnetic field lines The plots show the numerical solution at t = 1.5, 3, 4.5 and 6. PIC
simulations for the same initial configuration are shown in Figures 9 and 10.

in a larger computational domain, [−10, 10]× [−10, 10] with 800× 800 cells. The results
are illustrated in Fig. 5. One can see that at t ≈ tc the X-point turns into a current
sheet, bounded by two Y-points. The separation between these Y-points increase with
approximately twice the speed of light. For t ≫ tc the solution begins to exhibits a self-
similar evolution, which is expected as the only characteristic length scale of this problem
is l = 1. Ahead of each of Y-point there are bow-shaped regions where the drift speed is
very close to c and E ≃ B. Inside the current sheet the force-free approximation breaks
down completely as the electric field strengh tends to exceed that of the magnetic field.
Given our prescription for the resistivity some of the electromagnetic field disappears
inside the current sheet without a trace. In order to capture the evolution of this current
sheet properly particles must be reintroduced into the system, which done in the PIC
simulations described in the next section.
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4. PIC simulations

4.1. Overall principles and parameters of PIC simulations

The most fundamental method for simulating the kinetic dynamics of a reconnecting
plasma involves the use of particle-in-cell (PIC) codes, that evolve the discretized
equations of electrodynamics — Maxwell’s equations and the Lorentz force law
(Hockney & Eastwood 1981; Birdsall & Langdon 1991). PIC codes can model
astrophysical plasmas from first principles, as a collection of charged macro-particles
— each representing many physical particles — that are moved by integration of the
Lorentz force.† The electric currents associated with the macro-particles are deposited
on a grid, where Maxwell’s equations are discretized. Electromagnetic fields are then
advanced via Maxwell’s equations, with particle currents as the source term. Finally, the
updated fields are extrapolated to the particle locations and used for the computation
of the Lorentz force, so the loop is closed self-consistently.

We study the collapse of a solitary X-point with 2D PIC simulations, employing the
massively parallel electromagnetic PIC code TRISTAN-MP (Buneman 1993; Spitkovsky
2005). Our computational domain is a square in the x−y plane, which is initialized with a
uniform density of cold electron-positron plasma (the composition of pulsar wind nebulae
is inferred to have negligible ion/proton component). The simulation is initialized with
a vanishing electric field and with the magnetic field appropriate for a stressed X-point
collapse (see Eq. (2.7)) with λ = 1/

√
2, for direct comparison with the force-free results

described above.‡ The stressed X-point configuration would require a particle current
in the direction perpendicular to the simulation plane, to sustain the curl of the field
(which, on the other hand, is absent in the case of an unstressed X-point). In our setup,
the computational particles are initialized at rest, but such electric current gets self-
consistently built up within a few timesteps. At the boundaries of the box, the field is
reset at every timestep to the initial configuration. This leads to an artificial deformation
of the self-consistent X-point evolution which propagates from the boundaries toward the
center at the speed of light. However, our domain is chosen to be large enough such that
this perturbation does not reach the central area of interest within the timespan covered
by our simulations.

We perform two sets of simulations. First, we explore the physics at relatively early
times with a 2D Cartesian grid of 32768× 32768 cells. The spatial resolution is such that
the plasma skin depth c/ωp is resolved with 10 cells.¶ The unit length is L = 800 c/ωp,
so that the domain size is a square with ≃ 4L on each side. The physical region of
interest is the central 2L× 2L square. The simulation is evolved up to ∼ L/c, so that the
artificial perturbation driven by the boundaries does not affect the region of interest. In
a second set of simulations, we explore the physics at late times, with a 2D Cartesian box
of 40960 × 40960 cells, with spatial resolution c/ωp = 1.25 cells. With the unit length
still being L = 800 c/ωp, the overall system is a square of ≃ 41L on each side. At early
times, the evolution is entirely consistent with the results of the first set of simulations
described above, which suggests that a spatial resolution of c/ωp = 1.25 cells is still

† For this work, we employ the Vay pusher, since we find that it is more accurate than the
standard Boris algorithm in dealing with the relativistic drift velocities associated with the
reconnection flows (Vay 2008).

‡ We have also explicitly verified that an unstressed X-point (i.e., with λ = 1) is stable,
Appendix A.

¶ In the case of a cold plasma, the skin depth is defined as c/ωp =
√

mc2/4πne2. For a hot

plasma, it is defined as c/ωp =
√

mc2[1 + (γ̂ − 1)−1kT/mc2]/4πne2, where γ̂ is the adiabatic
index.
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sufficient to capture the relevant physics (more generally, we have checked for numerical
convergence from c/ωp = 1.25 cells up to c/ωp = 20 cells). We follow the large-scale
system up to ∼ 6L/c, so that the evolution of the physical region at the center stays
unaffected by the boundary conditions.
For both sets of simulations, each cell is initialized with two macro-positrons and two

macro-electrons (with a small thermal dispersion of kT/mc2 = 10−4). Hence the initial
plasma density distribution is uniform, whereas the magnetic field is not. This leads to a
non-uniform magnetization, which increases with the distance from the centre line of the
X-point. We have checked that our results are the same when using up to 24 particles per
cell. In order to reduce noise in the simulation, we filter the electric current deposited
onto the grid by the particles, effectively mimicking the effect of a larger number of
particles per cell (Spitkovsky 2005; Belyaev 2015).
We explore the dependence of our results on two physical parameters, namely the

strength of the guide field and the flow magnetization. In the simulations with guide
field, the guide field is initially uniform and its strength is chosen to be equal to that
of the unstressed in-plane field of the X-point at the unit distance from the origin. This
case allows for a direct comparison with analytical theory and force-free results. We also
studied the case without a guide field. This case will be relevant for our investigation
of the collapse of ABC structures, considered in the second paper of this series. There,
we will demonstrate that particle acceleration is most efficient at null points, i.e., where
both the in-plane fields and the out-of-plane guide field vanish.
In addition to the guide field strength, we investigate the dependence of our results

on the flow magnetization, which for a cold electron-positron plasma reduces to σ =
B2/4πmnc2. The physics of X-point collapse has been widely studied in the literature
with PIC simulations (Tsiklauri & Haruki 2007, 2008; Graf von der Pahlen & Tsiklauri
2014; von der Pahlen & Tsiklauri 2014), but only in the non-relativistic regime σ ≪ 1. To
the best of our knowledge, our investigation is the first to focus on the relativistic regime
σ ≫ 1, which is appropriate for relativistic astrophysical outflows. Since the in-plane
field of the initial configuration grows linearly with distance from the centre line and the
plasma density is uniform, the corresponding magnetization increases quadratically with
the distance in the case without guide field and somewhat slower when the guide field
is included. For definiteness, we opted to parametrise our runs via the initial value σL

of plasma magnetization at the unit distance L from the origin (along the unstressed
x direction), measured only with the in-plane fields (so, excluding the guide field). We
explore three values of σL: 4× 102, 4× 103 and 4× 104.

4.2. Stressed X-point collapse with guide field

Figure 6 shows the initial phase (ct/L 6 1) of the collapse of a solitary X-point in
PIC simulations with λ = 1/

√
2 and with guide field, for two different magnetizations:

σL = 4×103 (left) and σL = 4×104 (right). The expected rapid collapse of the squeezed
X-point is clearly visible, and in excellent agreement with the 2D results of force-free
simulations, as shown in Fig. 3. The out-of-plane magnetic field Bz is compressed toward
the y = 0 plane, in agreement with the force-free results, but in apparent contradiction
with the analytical solution, that assumed no evolution of the guide field. The 2D pattern
of Bz in PIC simulations is remarkably independent of the magnetization (compare left
and right), for the early phases presented in Fig. 6.
The fact that PIC results at early times are independent of σL is further illustrated

in Fig. 7, where we present the temporal evolution of various quantities for three values
of the magnetization: σL = 4 × 102 (blue), σL = 4 × 103 (green) and σL = 4 × 104

(red). Both the value of a(t) = λ1/2(Bx/By)
1/4 and of the electric field E(t) (in units
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Figure 6. Initial phase of an X-point collapse in PIC simulations with guide field, for two
different magnetizations: σL = 4 × 103 (left) and σL = 4 × 104 (right). The plots show the
out-of-plane field Bz at ct/L =0.25, 0.5, 0.75 and 1, from panel (a) to (d). This figure corresponds
to Fig. 3, which shows the results of force-free simulations.

of B0) at the location (−0.1L, 0.1L) are independent of σL, as long as ct/L . 1, and
they are in excellent agreement with the results of force-free simulations presented in
Fig. 4. In other words, the physics at early times is entirely regulated by large-scale
electromagnetic stresses, with no appreciable particle kinetic effects. Carried along by
the converging magnetic fields of the collapsing X-point, particles are flowing into the
central region, with a reconnection speed of ∼ 0.2c (averaged over a square of side equal
to L around the center). This is significantly higher compared to the typical reconnection
rate for a plane current sheet configuration. For a relativistic current sheet with guide field
of the same strength as the alternating field, the reconnection rate is only vrec/c ∼ 0.02
(Sironi & Spitkovsky 2017, in prep.).†
We have argued in Sec.2 that as the system evolves and the a(t) parameter increases,

† Liu et al. (2015) report a significantly higher reconnection rate. However, their results are
consistent with the findings in Sironi & Spitkovsky 2017, in prep.). The apparent disagreement
is due to the fact that Liu et al. (2015) measured the reconnection rate on the microscopic
skin-depth scales, whereas Sironi & Spitkovsky (2017) on macroscopic scales. Similarly, in the
present paper the scale of measurement L ≫ c/ωp is macroscopic.
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Figure 7. Temporal evolution of various quantities from PIC simulations of an X-point collapse
with guide field, for three values of the magnetization: σL = 4×102 (blue), σL = 4×103 (green)

and σL = 4× 104 (red). As a function of time, we plot: (a) the value of a(t) = λ1/2(Bx/By)
1/4

at the location (−0.1L, 0.1L), to be compared with the result of force-free simulations in the
left panel of Fig. 4 and with the analytical estimates (dashed line); (b) the value of the electric
field strength E(t) at the location (−0.1L, 0.1L) in units of B0, to be compared with the result
of force-free simulations in the right panel of Fig. 4 and with the analytical estimates (dashed
line); (c), the reconnection rate, defined as the inflow speed along the y direction averaged over
a square of side equal to L around the central region; (d) the parameter E ·B/B2

0 at the center
of the domain, which explicitly shows when the force-free condition E ·B = 0 is broken; (d) the
maximum particle Lorentz factor γmax (as defined in Eq. (4.1)), in units of the thermal value
γth ≃ 1 + (γ̂ − 1)−1kT/mc2, which in this case of a cold plasma reduces to γth ≃ 1.

the electric current may become charge-starved. In Fig. 7, this is clearly indicated by the
time when the force-free condition E ·B = 0 is violated, as shown in panel (d). Higher
values of σL lead to an earlier onset of charge starvation: the simulation with σL = 4×104

becomes charge starved at ct/L ≃ 0.75, the simulation with σL = 4× 103 at ct/L ≃ 1.1
and the simulation with σL = 4 × 102 at ct/L ≃ 1.5. This is expected as higher σ
corresponds to fewer available charges. The onset of charge starvation is accompanied by
a deviation of the curves in panels (a) and (b) from the results of force-free simulations,
where the condition E ·B = 0 is imposed by hand at all times.
The physics of charge starvation is illustrated in Fig. 8, for the case σL = 4 × 104

that corresponds to the red curves in Fig. 7. In response to the rapidly increasing curl
of the magnetic field, the z velocity of the charge carriers has to increase (Fig. 8(a), for
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Figure 8. Spatial profiles of various quantities from a PIC simulation of an X-point collapse
with guide field and magnetization σL = 4× 104, which corresponds to the red curves in Fig. 7.
As a function of the coordinate y along the inflow direction, we plot at x = 0: (a) the bulk speed
of positrons, in units of the speed of light (the bulk speed of electrons is equal and opposite); (b)

the ratio of the out-of-plane electric field Ez to the in-plane magnetic field Bin =
√

B2
x +B2

y ;

(c) the parameter E · B/B2
0 , which explicitly shows when the force-free condition E · B = 0 is

falsified; (d) the mean particle Lorentz factor.

positrons), while their density stays nearly unchanged. When the drifting speed reaches
the speed of light, at ct/L ≃ 0.8 in Fig. 8(a), the particle electric current cannot sustain
the curl of the magnetic field any longer and the displacement current takes over. As a
result, the electric field grows to violate the force-free condition E ·B = 0. In fact, panel
(c) shows that the value of E · B departs from zero at ct/L ≃ 0.8, i.e., right when the
particle drift velocity approaches the speed of light. The nonzero E ·B triggers the onset
of efficient particle acceleration, as shown by the profile of the mean particle Lorentz
factor in panel (d). Indeed, the locations of efficient particle acceleration (i.e., where
〈γ〉 ≫ 1) are spatially coincident with the regions where E ·B 6= 0. There, the pressure
of accelerated particles provides a significant back-reaction onto the field collapse, and
the agreement with the force-free results necessarily fails.

After the onset of charge starvation, the maximum particle energy dramatically in-
creases (see Fig. 7(e)). It is this period of rapid acceleration that will be extensively
studied in the following sections. Here, and hereafter, the maximum particle Lorentz
factor plotted in Fig. 7(e) is defined as

γmax =

∫

γncutdN/dγ dγ
∫

γncut−1dN/dγ dγ
(4.1)
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Figure 9. Late time evolution of the X-point collapse in PIC simulations with guide field, for
two different magnetizations: σL = 4× 103 (left) and σL = 4× 104 (right). The plots show the
out-of-plane field at ct/L =1.5, 3, 4.5, 6, from panel (a) to (d). This figure corresponds to the
left side of Fig. 5, which shows the results of force-free simulations.

where ncut is empirically chosen to be ncut = 6 (see also Bai et al. 2015). If the particle
energy spectrum takes the form dN/dγ ∝ γ−s exp(−γ/γcut) with power-law slope s and
exponential cutoff at γcut, then our definition yields γmax ∼ (ncut − s) γcut.
As the collapse proceeds beyond ct/L ∼ 1, the system approaches a self-similar

evolution, as we have already emphasized for our force-free simulations (see Fig. 5).
As shown in Fig. 9, the X-point evolves into a thin current sheet with two Y-points at
its ends, which move with speed very close to the speed of light. The current sheet is
supported by the pressure of the compressed guide field (as it is apparent in Fig. 9) and
by the kinetic pressure of the accelerated particles. As illustrated in Fig. 9, the current
sheet is thinner for lower magnetizations, at fixed L/ c/ωp (compare σL = 4 × 103 on
the left and σL = 4 × 104 on the right). Roughly, the thickness of the current sheet at
this stage is set by the Larmor radius rL,hot =

√
σL c/ωp of the high-energy particles

heated/accelerated by reconnection, which explains the variation of the current sheet
thickness with σL in Fig. 9. A long thin current sheet is expected to fragment into a chain
of plasmoids/magnetic islands (e.g., Uzdensky et al. 2010), when the length-to-thickness
ratio is much larger than unity. At fixed time and hence similar sheet length, it is then
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Figure 10. Late time evolution of the X-point collapse in PIC simulations with guide field, for
two different magnetizations: σL = 4× 103 (left) and σL = 4× 104 (right). The plots show the
quantity 1 − E2/B2 at ct/L =1.5, 3, 4.5, 6, from panel (a) to (d) (strictly speaking, we plot
max[0, 1 − E2/B2], for direct comparison with force-free simulations, that implicitly constrain
E 6 B). This figure corresponds to the right side of Fig. 5, which shows the results of force-free
simulations.

more likely that the fragmentation into plasmoids appears at lower magnetizations, since
a lower σL results in a thinner current sheet. This is in agreement with Fig. 9, and we
have further checked that the current sheet in the simulation with σL = 4 × 102 starts
fragmenting at even earlier times.
In the small-scale X-points in between the self-generated plasmoids, the electric field

can approach and exceed the magnetic field. This is apparent in Fig. 10 — referring to the
same simulations as in Fig. 9 — where we show the value of 1−E2/B2, which quantifies
the strength of the electric field relative to the magnetic field. In the case of σL = 4×103

(left side), the microscopic regions in between the plasmoids are characterized by E > B
(see, e.g., at the center of panel (d)). In addition, ahead of each of the two Y-points, a
bow-shaped area exists where E ∼ B (e.g., at |x| ∼ 5L and y ∼ 0 in panel (c)). The two
Y-points move at the Alfvén speed, which is comparable to the speed of light for our
σL ≫ 1 plasma. So, the fact that E ∼ B ahead of the Y-points is just a manifestation of
the relativistic nature of the reconnection outflows. For σL = 4×103 (left side in Fig. 10),
the electric energy in the bulk of the inflow region is much smaller than the magnetic
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Figure 11. Initial phase of a solitary X-point collapse in PIC simulations with zero guide field,
for two different magnetizations: σL = 4 × 103 (left) and σL = 4× 104 (right). The plots show
the quantity 1−E2/B2 (strictly speaking, we plot max[0, 1−E2/B2]) at ct/L =0.25, 0.5, 0.75
and 1, from panel (a) to (d).

energy, corresponding to 1 − E2/B2 ∼ 0.6. Or equivalently, the reconnection speed is
significantly smaller than the speed of light. The highly relativistic case of σL = 4× 104

(right panel in Fig. 10) shows a different picture. Here, a large volume with E ∼ B
develops in the inflow region. In other words, the reconnection speed approaches the
speed of light in a macroscopic region. In the next subsection, we will show that an
inflow speed near the speed of light (or equivalently, E ∼ B) is a generic by-product of
high-σL reconnection.†

4.3. Stressed X-point collapse without guide field

Figure 11 shows the initial phase (ct/L 6 1) of the collapse of an X-point in PIC
simulations with λ = 1/

√
2 and with zero guide field, for two different magnetizations:

† In retrospect, the fact that this conclusion also holds for the case of guide-field X-point
collapse is not surprising. At the initial time, only the region within a radius . L from the
current sheet has a guide field stronger than the in-plane fields. This implies that at late times,
when regions initially at a distance & L are eventually advected to the center, the guide field at
the current sheet will be sub-dominant with respect to the in-plane fields, so that the results of
guide-field reconnection will resemble the case of a vanishing guide field.



Explosive X-point collapse 19

[!ht]

Figure 12. Late time evolution of the X-point collapse in PIC simulations with zero guide field,
for two different magnetizations: σL = 4 × 103 (left) and σL = 4× 104 (right). The plots show
the quantity 1 − E2/B2 (strictly speaking, we plot max[0, 1− E2/B2]) at ct/L =1.5, 3, 4.5, 6,
from panel (a) to (d).

σL = 4 × 103 (left) and σL = 4 × 104 (right). We plot the quantity 1 − E2/B2 (more
precisely, we present max[0, 1 − E2/B2]), in order to identify the regions where the
electric field is comparable to the magnetic field (green or blue areas in the plot). For
both σL = 4 × 103 (left) and σL = 4 × 104 (right), the current sheet is subject to
copious fragmentation into plasmoids since early times, in contrast with the guide-field
case (compare with Fig. 6). There, the current sheet was supported by the pressure of
the compressed guide field, and therefore its thickness was larger, making it less prone to
fragmentation (at a fixed time ct/L). In addition, a comparison of Fig. 11, which refers
to early times (up to ct/L = 1), with Fig. 12, that follows the system up to ct/L = 6,
shows the remarkable self-similarity of the evolution, for both magnetizations. First, the
macroscopic distribution of E2/B2 (and hence that of the drift velocity) at later times is
a scaled copy of that at previous times, with the overall length scale increasing linearly
with time (at the speed of light). This implies that the reconnection rate over the whole
configurations remains fixed in time, as we indeed confirm below. Second, the size of the
largest plasmoids generated in the current sheet is also a fixed fraction of the overall
scale, ∼ 0.1 of the current sheet length.



20

[!ht]

Figure 13. Temporal evolution of various quantities from PIC simulations of solitary X-point
collapse with zero guide field, for three values of the magnetization: σL = 4 × 102 (blue),
σL = 4 × 103 (green) and σL = 4 × 104 (red). The corresponding plot for the case of nonzero
guide field is in Fig. 7. As a function of time, we plot: (a) the value of the electric field strength
E(t) at the location (−0.1L, 0.1L) in units of the initial magnetic field at x = L; (b), the
reconnection rate, defined as the inflow speed along the y direction averaged over a square of
side equal to L around the central region; (c) the maximum particle Lorentz factor γmax (as
defined in Eq. (4.1)), in units of the thermal value γth ≃ 1 + (γ̂ − 1)−1kT/mc2, which in this
case of a cold plasma reduces to γth ≃ 1; the inset in panel (c) shows the same quantity on a
double logarithmic scale, demonstrating that γmax ∝ t2 (black dashed line).

In Figs. 11 and 12, the plasmoids generated by the secondary tearing instability
(Uzdensky et al. 2010) appear as yellow structures, i.e., with magnetic energy much larger
than the electric energy. In contrast, the region in between each pair of plasmoids harbors
a microscopic X-point, where the electric field can exceed the magnetic field. The size of
these microscopic X-points is controlled by plasma kinetics, in contrast to the original
macroscopic X-point. They play a major role for particle injection into the acceleration
process, as we argue in the next subsection.

As observed in the case of guide-field collapse, the two bow-shaped regions ahead
of the Y-points (to the left and to the right of the reconnection layer) are moving
relativistically, yielding E ∼ B (green and blue colors in the figures). In addition, in
the high-magnetization case σL = 4× 104 (right side of Figs. 11 and 12), a macroscopic

region appears in the bulk inflow where the electric field is comparable to the magnetic
field. Here, the inflow rate approaches the speed of light, as we have already described
in the case of guide-field reconnection (right side of Fig. 10).
This is further illustrated in Fig. 13, where we present the temporal evolution of various

quantities, from a suite of PIC simulations of X-point collapse with vanishing guide field,
having three different magnetizations: σL = 4 × 102 (blue), σL = 4 × 103 (green) and
σL = 4 × 104 (red). The reconnection rate vrec/c (panel (b)), which is measured as
the inflow speed averaged over a macroscopic square of side equal to L centered at
x = y = 0, shows in the asymptotic state (i.e., at ct/L & 0.5) a clear dependence on σL,
reaching vrec/c ∼ 0.8 for our high-magnetization case σL = 4× 104 (red). This trend has
already been described by Liu et al. (2015). The critical difference, though, is that their
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measurement was performed on microscopic skin-depth scales, whereas our results show
that reconnection velocities near the speed of light can be achieved over macroscopic

scales L ≫ c/ωp. In addition, such inflow speed is significantly larger than what is
measured on macroscopic scales in the case of plane-parallel steady-state reconnection,
where the reconnection rate typically approaches vrec/c ∼ 0.2 in the high-magnetization
limit (Sironi & Spitkovsky 2014; Guo et al. 2015).
The dependence of the reconnection speed on σL is also revealed in Fig. 13(a),

where we present the temporal evolution of the electric field E(t) measured at (x, y) =
(−0.1L, 0.1L), in units of the initial magnetic field at x = L. The variation in slope in
Fig. 13(a) is indeed driven by the different reconnection speeds, since E ∼ vrecB/c in the
inflow region.
Interestingly, the electric field increases linearly with time. This is ultimately a manifes-

tation of the self-similar macroscopic evolution of the system. Indeed, since in the initial
configuration the magnetic field strength grows linearly with distance from the origin
(i.e., the center of the X-point) and the current sheet size grows linearly with time, the
mean magnetic and electric fields in the volume surrounding the current sheet must also
grow linearly, with their scaled distributions unchanged. The temporal evolution of the
electric field has a direct impact on the maximum particle energy, which is shown in
Fig. 13(c). Quite generally, its time evolution will be

γmax ∝ Et ∝ vrecBt (4.2)

Since both E and B in the reconnection region are scaling linearly with time (see
Fig. 13(a)), one expects γmax ∝ t2, as indeed confirmed by the inset of panel (c) (compare
with the dashed black line). This scaling is faster than in plane-parallel steady-state
reconnection, where E(t) is constant in time, leading to γmax ∝ t. From the scaling in
Eq. (4.2), one can understand the different normalizations of the curves in Fig. 13(c).
Since B ∝ √

σL we find that at fixed time

γmax ∝ vrec
√
σL

and hence it grows with the magnetization. We find that for the model with σL = 4×104

the reconnection rate is about twice that of the model with σL = 4 × 102 (panel (b) in
Fig. 13) and hence γmax should be 20 times higher. This is in excellent agreement with
the data in Fig. 13(c) (compare blue and red curves).

4.4. Particle acceleration and emission signatures

In this section, we explore the physics of particle acceleration in a stressed X-point
collapse with vanishing guide field, and we present the resulting particle distribution
and synchrotron emission spectrum. In Fig. 14, we follow the trajectories of a number
of particles in a simulation with σL = 4 × 102. The particles are selected such that
their Lorentz factor exceeds a given threshold γ0 = 30 within the time interval 1.4 6
ct0/L 6 1.7, as indicated by the vertical dashed lines in the top panel. The temporal
evolution of the Lorentz factor of such particles, presented in the top panel for the 30
positrons reaching the highest energies, follows the track γ ∝ t2 − t20 that is expected
from dγ/dt ∝ E(t) ∝ t. Here, t0 is the injection time, when the particle Lorentz factor
γ first exceeds the threshold γ0. The individual histories of single positrons might differ
substantially, but overall the top panel of Fig. 14 suggests that the acceleration process
is dominated by direct acceleration by the reconnection electric field, as indeed it is
expected for our configuration of a large-scale stressed X-point (see Sironi & Spitkovsky
2014; Guo et al. 2015; Nalewajko et al. 2015, for a discussion of acceleration mechanisms
in plane-parallel reconnection). We find that the particles presented in the top panel of
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Figure 14. Physics of particle injection into the acceleration process, from a PIC simulation
of stressed X-point collapse with vanishing guide field and σL = 4 × 102. Top panel: we select
all the particles that exceed the threshold γ0 = 30 within a given time interval (chosen to be
1.4 6 ct0/L 6 1.7, as indicated by the vertical dashed lines), and we plot the temporal evolution
of the Lorentz factor of the 30 particles that at the final time reach the highest energies. The
particle Lorentz factor increases as γ ∝ t2 − t20, where t0 marks the onset of acceleration (i.e.,
the time when γ first exceeds γ0). Middle panel: for the same particles as in the top panel, we
plot their locations at the onset of acceleration with open white circles, superimposed over the
2D plot of 1−E2/B2 (more precisely, of max[0, 1−E2/B2]) at ct/L = 1.55. Comparison of the
middle panel with the bottom panel shows that particle injection is localized in the vicinity of
the X-points in the current sheet (i.e., the blue regions where E > B).

Fig. 14 are too energetic to be confined within the small-scale plasmoids in the current
sheet, so any acceleration mechanism that relies on plasmoid mergers is found to be
unimportant, in our setup.
Particle injection into the acceleration process happens in the charge-starved regions

where E > B, i.e., in the small-scale X-points that separate each pair of secondary
plasmoids in the current sheet. Indeed, for the same particles as in the top panel, the
middle panel in Fig. 14 presents their locations at the onset of acceleration with open
white circles, superimposed over the 2D plot of 1−E2/B2 (more precisely, of max[0, 1−
E2/B2]). Comparison of the middle panel with the bottom panel shows that particle
injection is localized in the vicinity of the small-scale X-points in the current sheet (i.e.,
the blue regions where E > B). Despite occupying a relatively small fraction of the
overall volume, such regions are of paramount importance for particle acceleration.
The temporal evolution of the electron energy spectrum is presented in the top

panel of Fig. 15, for a simulation with σL = 4 × 102. As the spectral cutoff grows as
γmax ∝ t2 (see also the inset in Fig. 13(c)), the spectrum approaches a hard power law
γdN/dγ ∝ const. The measured spectral slope is consistent with the asymptotic power-
law index obtained in the limit of high magnetizations from PIC simulations of relativistic
plane-parallel reconnection (Sironi & Spitkovsky 2014; Guo et al. 2015; Werner et al.
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Figure 15. Particle energy spectrum and synchrotron spectrum from a PIC simulation of
stressed X-point collapse with vanishing guide field and σL = 4×102. Time is measured in units of
L/c, see the colorbar at the top. Top panel: evolution of the electron energy spectrum normalized
to the total number of electrons. At late times, the spectrum approaches a hard distribution
γdN/dγ ∝ const, much harder than the dotted line, which shows the case γdN/dγ ∝ γ−1

corresponding to equal energy content in each decade of γ. Bottom panel: evolution of the
angle-averaged synchrotron spectrum emitted by electrons. The frequency on the horizontal axis
is in units of νB,0 =

√
σLωp/2π. At late times, the synchrotron spectrum approaches a power law

with νLν ∝ ν, which just follows from the fact that the electron spectrum is γdN/dγ ∝ const.

This is much harder than the dotted line, which indicates the slope νLν ∝ ν1/2 resulting from
an electron spectrum γdN/dγ ∝ γ−1 (dotted line in the top panel).

2016). Due to energy conservation, such hard slopes would not allow the spectrum to
extend much beyond the instantaneous value of the magnetization just upstream of the
current sheet (as we have explained before, in our setup the magnetization at the current
sheet increases quadratically with time, since B(t) ∝ t), in line with the arguments of
Sironi & Spitkovsky (2014) and Werner et al. (2016).
However, we find evidence for a possible solution of this “energy crisis.” In Fig. 17,

we explore the dependence of the particle energy spectrum on the magnetization at
ct/L = 1.8, in the case of vanishing guide field. We find that at high σL the population
of accelerated particles is composed of two components, separated by a break energy
(for the red solid curve corresponding to σL = 4 × 104 in Fig. 17, the break occurs at
a Lorentz factor γ ∼ 200): a low-energy soft component, whose spectral slope is slightly
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Figure 16. Particle momentum spectrum and anisotropy of the synchrotron spectrum from
a PIC simulation of stressed X-point collapse with vanishing guide field and σL = 4 × 102.
Top panel: electron momentum spectrum at the final time ct/L = 3 along different directions,
as indicated in the legend. The total momentum spectrum (i.e., independent of direction) is
indicated with a solid black line for comparison. The highest energy electrons are beamed
along the direction x of the reconnection outflow (blue lines) and along the direction −z of
the accelerating electric field (red dashed line; positrons will be beamed along +z, due to the
opposite charge). The inset shows the 1D profile along x of the bulk four-velocity in the outflow
direction (i.e., along x), measured at y = 0. Bottom panel: synchrotron spectrum at the final
time ct/L = 3 along different directions (within a solid angle of ∆Ω/4π ∼ 3×10−3), as indicated
in the legend. The resulting anisotropy of the synchrotron emission is consistent with the particle
anisotropy illustrated in the top panel.

steeper than γdN/dγ ∝ γ−1 (corresponding to equal energy content per decade);† and a
high-energy hard population, with γdN/dγ ∝ γ1/2 (so, with the highest energy particles
dominating both the number and the energy census). The presence of the soft component,
whose energy per particle is significantly lower than the average energy (namely, of the
local magnetization), allows the high-energy component to stretch to higher energies,
potentially offsetting the energy crisis.
The two sub-populations have different origins: by tracking individual particles, we find

that the soft component is dominated by particles belonging to secondary plasmoids, that
are accelerated during plasmoid mergers; in contrast, the hard component is populated by
particles that are accelerated by the strong electric fields of the charged-starved regions
with E > B, and are nearly unaffected by the presence of secondary plasmoids. In fact,

† The power-law nature of the low-energy component is clearly apparent in the momentum
spectrum, see the black line in the top panel of Fig. 16.
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Figure 17. Dependence of the electron energy spectrum on the magnetization, for three values
of σL (same values and color coding as in Fig. 13) and vanishing guide field: σL = 4×102 (blue),
σL = 4×103 (green) and σL = 4×104 (red). All the spectra are computed at ct/L = 1.8. At high
magnetizations, two components can be seen in the spectrum: a steep low-energy component
and a hard high-energy population that can be fitted as γdN/dγ ∝ γ1/2 (black dotted line). The
red dashed line is the particle spectrum for σL = 4× 104 at the same time as the red solid line,
but including only the particles located in regions where E > B.

the spectrum of the particles located in E > B regions, presented in Fig. 17 with a
dashed red line, only shows the hard component.
Our simulations of X-point collapse in the presence of a nonzero guide field provide fur-

ther support to this conclusion. At early times, when no secondary plasmoids are present
(in fact, the guide field suppresses the secondary tearing mode), particle energization
can only occur via direct acceleration by the charge-starved electric fields in E · B 6= 0
regions. At these times, only the hard component with γdN/dγ ∝ γ1/2 appears in the
corresponding particle spectrum (not shown). At later times, when the guide field at
the current sheet becomes sub-dominant with respect to the in-plane fields, secondary
plasmoids can be generated, and an additional soft component appears in the particle
spectrum.
We conclude by analyzing the anisotropy of the particle distribution, for σL = 4× 102.

In the top panel of Fig. 16, we plot the electron momentum spectrum at the final
time ct/L = 3 along different directions, as indicated in the legend. The particle
distribution is significantly anisotropic. The highest energy electrons are beamed along
the direction x of the reconnection outflow (blue lines) and along the direction −z of
the accelerating electric field (red dashed line; positrons will be beamed along +z, due
to the opposite charge). This is consistent with earlier PIC simulations of plane-parallel
reconnection in a small computational box, where the X-point acceleration phase was
still appreciably imprinting the resulting particle anisotropy (Cerutti et al. 2012b, 2013,
2014; Kagan et al. 2016). In contrast, plane-parallel reconnection in larger computational
domains generally leads to quasi-isotropic particle distributions (Sironi & Spitkovsky
2014). In our setup of a large-scale X-point, we would expect the same level of strong
anisotropy measured in small-scale X-points of plane-parallel reconnection, as indeed
demonstrated in the top panel of Fig. 16. Most of the anisotropy is to be attributed to
the “kinetic beaming” discussed by Cerutti et al. (2012b), rather than beaming associated
with the bulk motion (which is only marginally relativistic, see the inset in the top panel
of Fig. 16).
The angle-averaged synchrotron spectrum expected from a relativistic X-point collapse
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is shown in the bottom panel of Fig. 15. For each macro-particle in our PIC simulation,
we compute the instantaneous radius of curvature and the corresponding synchrotron
emission spectrum. We neglect synchrotron cooling in the particle equations of motion
(unlike Cerutti et al. 2013, 2014; Kagan et al. 2016), and we do not consider the effect of
synchrotron self-absorption and the Razin suppression at low frequencies. At late times,
the synchrotron spectrum approaches a power law with νLν ∝ ν, which just follows
from the fact that the electron spectrum is γdN/dγ ∝ const. This is consistent with
the spectrum of the Crab flares. The frequency on the horizontal axis is in units of
νB,0 =

√
σLωp/2π. Given the maximum particle energy in the top panel, γmax ∼ 104,

one would expect the synchrotron spectrum to cut off at νmax ∼ γ2
maxνB,0 ∼ 108νB,0, as

indeed confirmed in the bottom panel. The bottom panel of Fig. 16 shows the synchrotron
spectrum at the final time ct/L = 3 along different directions (within a solid angle
of ∆Ω/4π ∼ 3 × 10−3), as indicated in the legend. The resulting anisotropy of the
synchrotron emission is consistent with the particle anisotropy illustrated in the top
panel of Fig. 16. In addition, one can see that the resulting synchrotron spectrum along
the direction −z of the accelerating electric field (dashed red line) appears even harder
than the spectrum along x or y.

5. Discussion and Conclusions

In highly magnetized plasma, the collapse of a uniformly compressed X-point proceeds
very rapidly, on the light-crossing time of the configuration. As a result, the collapse
cannot be described using classical quasi-static approach and the generated electric field
is of the order of the magnetic one. In the framework of force-free electrodynamics, we
find that without guide field, the x-point immediately develops a singularity – collapses
into a current sheet bounded by two Y-points, which fly away at the speed of light.
With guide field, the development of singularities is delayed and the initial phase of the
collapse can be described analytically. We have shown that for the central region of the
X-point, where the guide field strength exceeds that of the in-plane magnetic field, the
problem reduces to a single ODE for the squeeze parameter and we have found a simple
asymptotic solution to this equation. The solution describes a systematic increase of this
parameter, thus indicating that in highly magnetized plasma X-points remain unstable
to collapse. This conclusion is confirmed by the results of computer simulations, both
force-free and PIC.
The force-free and PIC simulation agree very well until the point where the devel-

opment of strong electric field leads to a breakdown of the force-free approximation
near the plane of the collapse. Before this point, the plasma kinetic effects are weak
and the evolution is totally controlled by the large-scale magnetic stresses. After this
point, the kinetic effects become increasingly important in determining the current
sheet structure and its feedback to the surrounding electromagnetic field. Although
qualitatively, and in many ways quantitatively, the force-free and PIC solutions remain
similar, a number of differences become manifest. E.g. in the PIC simulations the current
sheet develops magnetic islands (plasmoids) whereas the force-free current sheet remains
rather featureless†.
As the current sheet expands into the region where the guide field is week, its evolution

becomes self-similar. This is observed both in the force-free and PIC simulations. Without
guide field, the transition to this regime is very quick. In PIC simulations this occurs as

† Although such islands may form in force-free simulations, at least for some types of current
sheets, this process is governed by numerical factors and hence not physical.
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soon as the length of the current sheet significantly exceeds the skin depth. In the self-
similar regime, the macroscopic distribution of the magnetic and electric fields around
the current sheet remains unchanged but the field strengths scale with the size of the
current sheet, which increases at almost the speed of light. Hence the strength of average
electric and magnetic fields in the reconnecting region grows linearly with time, whereas
the overall reconnection rate remains unchanged.
We find that as σ increases the reconnection rate approaches the speed of light on

a macroscopic scale. This is in contrast with the previous PIC simulations of magnetic
reconnection where such high rates have been seen only on the microscopic scales. The
large macroscopic stresses typical for the collapsing X-point configuration appear to be
the main factor behind the increase. As the strength of the magnetic field brought into
the reconnection zone grows linearly with time, so does the strength of the reconnection
electric field. This allows the maximum energy of accelerated particles to increase as ∝ t2.
Particle acceleration is a self-consistent by-product of the X-point collapse. Regardless

of whether or not a guide field is present in the initial configuration, the highest energy
particles are injected into the acceleration process in charged-starved regions (i.e., where
E ·B 6= 0 in the case with guide field, or where E > B for zero guide field), and energized
via direct acceleration by the reconnection electric field. As a result, the maximum
particle energy does increase as ∝ t2. While secondary plasmoids are continuously
generated in the current sheet (in the cases with guide field, at sufficiently late times), in
our setup they are not instrumental for the acceleration of the highest energy particles.
The high-energy part of the spectrum is hard, with power-law slope even harder than
−1, and populated by highly anisotropic particles, beamed primarily along the direction
of the accelerating electric field.
The hard high-energy tail can be problematic if it includes a large fraction of the accel-

erated particles as in this case the particle energy is limited by the mean magnetization σ
of plasma brought into the reconnection zone. This would require unrealistic σ ≈ 1010 in
order to explain Crab’s flares. However, as soon as the secondary plasmoids are formed
in the current sheet, we observe an emergence of the second population of the accelerated
particles. These particles are trapped inside the plasmoids, they are accelerated mostly
during plasmoid mergers and their spectrum is significantly softer. By the end of our
simulations, the number of particles trapped in the plasmoids exceeds that of the hard-
energy tail by several orders of magnitude, thus indicating the possible route of resolving
this kind of σ-problem. Unfortunately, due to the computational limitations we have not
been able to reach the particle energies γ ≈ 1010 typical for the Crab flares. Additional
studies are needed to clarify this issue.
Since magnetic X-points are unstable to collapse, this brings about the question of

how they can be formed in the first place. We cannot exclude that static macroscopic
configurations of the sort can be maintained in controlled laboratory experiments, but
they are most unlikely to be found in highly dynamic conditions of astrophysical plasma.
Here we studied this configuration as an example of a system where large scale magnetic
stresses drive magnetic reconnection and dictate its rate. In the second paper of the
series, we consider another artificial example of initially steady-state configuration, the
so-called ABC magnetic structure. This periodic configuration has local macroscopic X-
points. We find that this configuration is unstable and that the development of this
instability triggers collapse of these X-points in the similar fashion to what we described
here. This result suggests that highly-magnetized plasma configurations are generally
unstable and exist mainly in the state of rapid restructuring on the light-crossing time.
During this restructuring, macroscopic stresses drive magnetic reconnection, causing local
magnetic dissipation and acceleration of non-thermal particles. In the final paper of
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the series, we no longer consider a static initial configuration but study a collision of
magnetic current tubes. Such a collision is also accompanied by development of X-points
(highly compressed ones) and also leads to magnetic reconnection driven by macroscopic
magnetic stresses. Thus, it seems that we are dealing with a rather general phenomenon
which may have important applications in relativistic astrophysics.
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Appendix A. Stability of unstressed X-point

The above analytical solution shows that the steady-state X-point solution is kind
of unstable. This rises the question of how such configuration can be created in a first
place. Indeed, unstable states of a dynamical system cannot be reached via its natural
evolution. However, the X-point configuration considered in this analyses occupies the
whole space and so is the perturbation that leads to its collapse. In reality, X-points and
their perturbations occupy only finite volume and in order to address the stability issue
comprehensively one has to study finite size configurations.
In this section we describe the response of X-point to small-scale perturbations studied

via force-free simulations. In one of our experiments, we perturbed the steady-state X-
point configuration by varying only the x-component of the magnetic field:

δBx = B⊥ sin(πy/L) exp(−(y/L)2) .

Obviously, the length scale this perturbation is L and to ensure that it is small we select
a computational domain whose size is much larger than L. In this particular case we
put B⊥ = L = 1 and use the computational domain (−6, 6)× (−6, 6) with 300 cells in
each direction. Fig. 18 shows the initial configuration and the solution at t = 7. One
can see that the perturbation does not push the X-point away from its steady-state. On
the contrary, the waves created by the perturbation leave the central area on the light
crossing time and the steady-state configuration is restored. Although, here we present
the results only for this particular type of perturbation, we have tried several other types
and obtained the same outcome. Thus, we conclude that the magnetic X-point is stable
to perturbations on a length scale which is much smaller compared to its size, even when
the perturbation amplitude is substantial.
We have also verified the stability of unstressed X-points with PIC simulations.

Here, no initial perturbation is imposed on the system. In the standard setup of anti-
parallel reconnection, the system would grow unstable from particle noise. Here, we have
demonstrated that an unstressed X-point is stable to noise-level fluctuations.
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Figure 18. Stability of the X-point to small-scale perturbations in force-free simulations. The
left panel shows the x component of the magnetic field along the line y = 0. The dashed line
corresponds to the initial perturbed solution. The solid line corresponds to the numerical solution
at t = 7. The right panel shows the magnetic field lines of the initial solution (dashed lines) and
the solution at t = 7.
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