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Abstract 8 

Finding new ways to quantify discontinuity persistence values in rock masses in an automatic or 9 

semi-automatic manner is a considerable challenge, as an alternative to the use of traditional methods based 10 

on measuring patches or traces with tapes. Remote sensing techniques potentially provide new ways of 11 

analysing visible data from the rock mass. This work presents a methodology for the automatic mapping of 12 

discontinuity persistence on rock masses, using 3D point clouds. The method proposed herein starts by 13 

clustering points that belong to patches of a given discontinuity. Coplanar clusters are then merged into a 14 

single group of points. Persistence is measured in the directions of the dip and strike for each coplanar set 15 

of points, resulting in the extraction of the length of the maximum chord and the area of the convex hull. 16 

The proposed approach is implemented in a graphic interface with open source software. Three case studies 17 

are utilized to illustrate the methodology: (1) small-scale laboratory setup consisting of a regular distribu-18 

tion of cubes with similar dimensions, (2) more complex geometry consisting of a real rock mass surface 19 

in an excavated cavern and (3) slope with persistent sub-vertical discontinuities. Results presented good 20 

agreement with field measurements, validating the methodology. Complexities and difficulties related to 21 

the method (e.g,. natural discontinuity waviness) are reported and discussed. An assessment on the applica-22 

bility of the method to the 3D point cloud is also presented. Utilization of remote sensing data for a more 23 

objective characterization of the persistence of planar discontinuities affecting rock masses is highlighted 24 

herein. 25 
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Abbreviations 28 

DBSCAN Density Based Scan 29 

DS  Discontinuity Set 30 

DSE  Discontinuity Set Extractor 31 

EIFOV  Effective Instantaneous Field of View 32 

GPR  Ground Penetrating Radar 33 

HDS  High Definition Surveying 34 

ISRM  International Society for Rock Mechanics and Rock Engineering 35 

JCS  Joint (wall) Compressive Strength 36 

JRC  Joint (wall) Roughness Coefficient 37 

KDE  Kernel Density Estimation 38 

LiDAR  Light Detection and Ranging 39 

RMSE  Root-Mean-Square Error 40 

SfM  Structure from Motion 41 

TLS  Terrestrial Laser Scanner 42 

List of symbols 43 

ai Area of the ith discontinuity in a 3D region of volume V 44 

aRi Area of the discontinuity i within region R 45 

A First parameter of the general form of the equation of a plane 46 

AR Total area of the region 47 
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B Second parameter of the general form of the equation of a plane 48 

C Third parameter of the general form of the equation of a plane 49 

Ch Convex hull 50 

Cl Cluster 51 

D Fourth parameter of the general form of the equation of a plane 52 

I Intensity of discontinuities within a rock mass 53 

J Discontinuity 54 

k Numerical parameter that controls the sensitivity of the merging process of coplanar clusters 55 

K Discontinuity persistence 56 

m Mean 57 

n Number of data 58 

O Origin of a Cartesian coordinate system 59 

P Point 60 

R Region of a plane 61 

s normal spacing 62 

V Volume of a region 63 

x First coordinate of a point in a Cartesian coordinate system 64 

X Set of points 65 

y Second coordinate of a point in a Cartesian coordinate system 66 

z Third coordinate of a point in a Cartesian coordinate system 67 

Greek letters 68 

g Dip direction angle of a discontinuity set 69 
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く Dip angle of a discontinuity set 70 

そ Mean trace termination or persistence frequency 71 

た Mean of point-plane distances 72 

j Standard deviation of the distances point-plane distances 73 

1 Introduction 74 

1.1 General overview 75 

Discontinuity is a general term in rock mass engineering, and denotes any separation in a rock 76 

mass characterized by low or non-existent tensile strength (Zhang 2006). These features are usually orga-77 

nized in pseudo-parallel surfaces referred to as joint sets or discontinuity sets (International Society for 78 

Rock Mechanics 1978), although the International Society for Rock Mechanics (ISRM) suggested the gen-79 

eral term discontinuities instead of joints. The ‘Suggested Methods for the Quantitative Description of Dis-80 

continuities’ (International Society for Rock Mechanics 1978) of the ISRM defined the different types of 81 

discontinuities and suggested characterization methods, summarized in Table 1. Although these parameters 82 

are widely accepted by the scientific and technical community, advances in new technologies and new 83 

methodologies are changing how rock mass discontinuities are being investigated, as shown in Table 1. 84 

Table 1 85 

Discontinuity persistence has a significant effect on rock mass strength, but is a difficult parameter 86 

to measure (Einstein et al. 1983). Traditional methods to measure discontinuity persistence were designed 87 

several decades ago, according to the existing available techniques and instruments (International Society 88 

for Rock Mechanics 1978) and are still widely applied in situ by engineers. The limitations of these methods 89 

are widely known, including the risks of working on difficult and unstable platforms, the absence of access 90 

to outcrops and the subjectivity associated with direct measures (Slob et al. 2010). However, the recent 91 

acceptance of 3D remote sensing techniques such as Light Detection and Ranging (LiDAR) instruments, 92 

digital photogrammetry or Structure from Motion (SfM) (Ullman 1979) is changing how rock slopes are 93 

being investigated. Digital photogrammetry is a well-known technique that enables the 3D study of the 94 

morphology of natural and engineered rock slopes (Sturzenegger and Stead 2009a). SfM is becoming an 95 
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extremely important topic in the scientific community due to the availability of photogrammetrically de-96 

rived point clouds in terms of the cost-benefit ratio of the equipment, ease of use and quality of results 97 

(Micheletti et al. 2015; Abellán et al. 2016). 98 

3D point clouds captured from remote sensing techniques usually comprise millions of points that 99 

are defined by means of: (1) coordinates of each point of the surface on a local reference system; (2) inten-100 

sity reflected by the surface and recorded by the sensor; and (3) possibility of automatic superposition of 101 

photographs captured during the scanning process, assigning an estimated colour (R, G, B) to each point. 102 

These digital datasets captured in the study area enable the analysis of rock mass features with the use of 103 

geometrical or radiometric parameters (e.g. intensity, visible colours, or other hyperspectral data) of rock 104 

masses. These data provide geometrical information (among other data) on the slope (e.g., natural, blasted 105 

or excavated) along with the visible discontinuities in the rock mass.  106 

Although discontinuities are not planes but surfaces that present roughness and waviness (and  107 

could even present curved or undulatory shapes) (Dershowitz 1985), they are usually treated as planes when 108 

an appropriate study scale is used (International Society for Rock Mechanics 1978). For instance, if a bed-109 

ding plane is studied by 3D datasets, a 0.1×0.1 m sample window could provide a good approximation to a 110 

plane in terms of its root-mean-square error (RMSE). However if the sample window is 100×100 m, the 111 

approximation of this surface to a plane could be poor, with a high RMSE. Another source of non-planarity 112 

in discontinuities is found in the termination of fractures, such as the “horsetail splay” (Vaskou 2016). 113 

Although few studies used digital datasets to investigate folded geological layers (Humair et al. 2015), it is 114 

usual to consider discontinuities as planes for practical purposes. 115 

It is convenient to distinguish between three types of persistence when investigating rock masses: 116 

(a) visible persistence, or persistence extracted from visible data on rocky outcrops (i.e., only visible traces 117 

or exposed patches can be used), (b) real persistence, or persistence of the discontinuity within the rock 118 

mass (can only be investigated if combining geophysics or boreholes and visible data), and finally (c) esti-119 

mated persistence, determined from information on the surface of the rock mass. The work presented herein 120 

addresses estimated persistence, which is calculated considering that  some superficial characteristics (i.e., 121 

orientation, spacing, persistence and roughness) are also present inside the rock mass.   122 

The study of the discontinuity persistence parameter requires the classification of discontinuities 123 

as persistent (Figure 1 - a), non-persistent (produced by intermittent discontinuities) (Figure 1 - b) or as 124 
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separate non-persistent discontinuities (Figure 1 - c) (Hudson and Priest 1983). Other authors have consid-125 

ered the existence of macro-discontinuities persisting to depths of thousands of meters (Goodman 1989). 126 

Persistent discontinuities could be affected by faults, reducing lateral continuity. 127 

Figure 1 128 

Analysis of persistent discontinuities is straightforward for 1D, 2D and even 3D measurements. 129 

Nevertheless, computation of the apparent lack of persistence produced by intermittent or separate discon-130 

tinuities is not always a simple task. Mauldon (1994) suggested that intermittent non-persistent discontinu-131 

ities are geologically unlikely, concluding in an implication of the existence of weakness planes throughout 132 

the rock mass, locally separated to form discontinuities. Consequently, he suggested considering the inter-133 

mittent discontinuities as persistent for mechanical analysis purposes (i.e., when a discontinuity plane is 134 

detected, coplanar discontinuity planes should be found and merged to calculate the persistence). Addition-135 

ally, Mauldon (1994) concluded that although discontinuity intensity cannot be directly measured in an 136 

opaque rock mass, it can be estimated from outcrops (exposed areas) and line samples (boreholes and scan-137 

lines). Further studies have analysed the persistence within opaque rocks through the application of Ground 138 

Penetrating Radar (GPR) (Longoni et al. 2012). 139 

Computation of discontinuity spacings from 3D point clouds has rapidly evolved during the most 140 

recent decade: Slob (2010) considered discontinuities as persistent and measured the spacing with a virtual 141 

scanline, and Riquelme et al. (2015) considered both persistence and impersistence, assuming that the 142 

planes of a discontinuity set are parallel and proposed a method to measure the normal spacing for persistent 143 

and non-persistent discontinuities with 3D datasets, enabling the study and discussion on how to extract 144 

persistence information from 3D datasets. 145 

A common situation in rock mechanics is incomplete information on the rock mass, hampering 146 

the investigation on discontinuity persistence of rock masses. A 3D dataset could exhibit intermittent dis-147 

continuity planes due to: (1) lack of discontinuities (e.g. there is a rock bridge and the discontinuity is really 148 

intermittent); or (2) impossibility of data collection due to occlusion (e.g. a rock was lying on the disconti-149 

nuity and could not be scanned) or absence (e.g. the block defined by that part of the discontinuity slid 150 

down the slope or was removed). Traditional methods oversimplified the estimation of the “true” persis-151 

tence by measuring the “visible persistence” (Sturzenegger and Stead 2009b; Oppikofer et al. 2011; Tuckey 152 

and Stead 2016), and therefore there is still no method to estimate the real value of discontinuity persistence. 153 
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The work presented herein proposes a methodology for the automatic mapping  of the persistence of dis-154 

continuity sets on rock masses, using 3D datasets. 155 

A component of the present study is based on previous findings for extracting discontinuity sets and 156 

clusters (i.e. sets of member points of the same plane) from 3D point clouds (Riquelme et al. 2014; 157 

Riquelme et al. 2015). A new methodology is proposed herein to measure persistence from a geometrical 158 

perspective, using 3D datasets acquired by means of remote sensing techniques. 159 

1.2 Measuring persistence 160 

Persistence was defined by the ISRM (1978) as the “areal extent or size of a discontinuity along a 161 

plane”. The same parameter was defined by Mauldon (1994) as the “measure of the degree to which dis-162 

continuities persist before terminating in solid rock or against other discontinuities”. The measurement of 163 

discontinuity persistence was initially proposed by computing the lengths in the direction of the dip and 164 

strike (International Society for Rock Mechanics 1978). Nevertheless, new available data can help develop 165 

new approaches to quantify the properties of discontinuities in a more realistic manner. Not surprisingly, 166 

true persistence is still considered difficult to be measured in practice (Shang et al. 2017) and therefore, 167 

actual persistence seems to be impossible to be measured using data acquired from the surface. Only visible 168 

persistence can be measured when using field data (regardless of the use of geophysics). A good example 169 

is the construction of a tunnel: the maximum persistence is limited by the maximum length of the visible 170 

discontinuities recognized in the excavation front, and therefore, by the excavation diameter, height or span. 171 

Herein the focus is on the measurable persistence, using visible data only. 172 

Einstein et al. (1983) defined the discontinuity persistence K: 173 

計 噺 lim凋馴蝦 著 デ 欠眺沈畦眺  
( 1 ) 

R is the region of a plane, with AR being its total area and aRi the area of the discontinuity i within 174 

region R. This definition uses areal measurements, but frequently only trace lengths can be observed. K  175 

should be considered as a random variable because of the uncertainty of the measured values. Eq. ( 1 ) can 176 

be adapted to lengths (Einstein et al. 1983). Later, Park et al. (2005) suggested that since rock exposures 177 

are small and 2D, it is impossible to measure the discontinuity area accurately in a field survey, suggesting 178 

the use of trace lengths (1D) to estimate persistence. 179 
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Discontinuity intensity I is a different rock mass index  (i.e. the quantity of discontinuities within 180 

a given rock mass) and  is used to determine the effect of jointing on the mechanical and hydrological 181 

performance of jointed rock masses (Dershowitz 1985). The intensity index is defined as the number of 182 

discontinuities per unit area or volume, or total discontinuity trace length per unit area or total area of 183 

discontinuities per unit of rock volume (Dershowitz and Einstein 1988). Intensity can be considered in two 184 

dimensions as areal intensity or in three dimensions as volumetric intensity. The intensity index is defined 185 

using the number of traces or their length, with several definitions and methods available (Dershowitz 1985; 186 

Zhang and Einstein 2000). For instance, the volumetric intensity (P32) is defined as (Einstein et al. 1983; 187 

Dershowitz 1985): 188 

荊 噺 lim蝶蝦 著 デ 欠沈撃  ( 2 ) 

 欠沈 is the area of the ith discontinuity in a 3D region of volume V.  189 

1.3 Measuring persistence from 3D point clouds 190 

Persistence measurements have traditionally been collected using manual methods. Collection of 191 

measurements has experienced rapid evolution since 3D datasets have become available. Previous studies 192 

of persistence estimation using 3D datasets (acquired 3D laser scanners and digital photogrammetry) have 193 

manually measured features using profiles, on which lengths were measured parallel to the probable sliding 194 

direction (Oppikofer et al. 2011). Baecher’s Disk Model (Baecher 1983) assumes that discontinuities are 195 

circular and defines the diameter of those circular discontinuities as “equivalent trace length” (Sturzenegger 196 

and Stead 2009a; Sturzenegger and Stead 2009b). More recently, Tuckey and Stead (2016) presented im-197 

provements on remote sensing methods for mapping discontinuity persistence and rock bridges in slopes, 198 

and also analysed three rock slopes of open pit mines using digital photogrammetry, LiDAR and window 199 

mapping datasets. Tuckey and Stead (2016) estimated persistence using the length of the discontinuity 200 

traces measured in field window maps, along with manually mapped best-fit circles to 3D datasets, which 201 

enabled the diameter measurements of outcrops. However, a major source of error was found in remote 202 

sensing surveys due to limitations in image resolution. High-resolution images enable identification of 203 

small discontinuities, whereas low resolution images can result in indistinguishable smaller features (Ortega 204 

et al. 2006; Sturzenegger and Stead 2009a; Tuckey and Stead 2016). 3D datasets enable automated or su-205 

pervised analysis of geometric features. Several algorithms have been proposed for the extraction of the 206 
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number of discontinuity sets and orientations (Jaboyedoff et al. 2007; García-Sellés et al. 2011; Gigli and 207 

Casagli 2011; Vöge et al. 2013; Assali et al. 2016; Wang et al. 2017; Chen et al. 2017), classification of 208 

point clouds (Riquelme et al. 2014) and normal spacing analysis (Riquelme et al. 2015). However, persis-209 

tence measurement presents wide margins for improvements and could benefit from the aid of new meth-210 

odologies. 211 

2 Methodology 212 

2.1 Definition of a discontinuity set and cluster 213 

The proposed methodology starts with a previously analysed point cloud. Discontinuity sets are 214 

extracted, along with their corresponding main orientations, and for each discontinuity set the parallel pla-215 

nar surfaces of the rock surface (patches) are identified. Additionally, each point is classified according to 216 

its discontinuity set and the plane to which it belongs.  217 

Before introducing this methodology, it is convenient to outline previous concepts by means of an 218 

example consisting of a point cloud for a cube scanned by Terrestrial Laser Scanner (TLS) (Figure 2 - a). 219 

The cube is analysed by the open-source software Discontinuity Set Extractor (DSE), which utilizes the 220 

methodology of Riquelme et al. (2014; 2016). Three discontinuity sets were identified, as shown in Figure 221 

2 – b. For each discontinuity set, two parallel patches or planes are identified (the base of the cube was not 222 

scanned and therefore it does not appear in this analysis). Essentially, a discontinuity set is defined by those 223 

points whose assigned normal vectors have approximately the same orientation. Therefore, those points 224 

that are members of a discontinuity set and present an even spatial density can be considered preliminarily 225 

as members of a plane (Riquelme et al. 2014). These sets of points correspond to ‘patches’ and are herein 226 

referred to as clusters.  227 

Figure 2 228 

For DS 1 (Figure 2 - b in blue), two planes or clusters are found as shown in Figure 2 - c. Further-229 

more, the equations of both clusters are given by (Figure 2 - c): 230 

畦捲 髪 稽検 髪 系権 髪 経 噺 ど ( 3 ) 
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Both clusters present the same orientation (defined by the normal unit vector 岫畦┸ 稽┸ 系岻) but are 231 

non-coplanar because the constant parameter D, which represents the distance from the origin, is different 232 

(Figure 2 - d). 233 

In this work, the classified point cloud is defined by the following properties: coordinates of the 234 

points 岫捲┸ 検┸ 権岻, discontinuity set and cluster to which the point belongs to, and the parameters of the equa-235 

tion of the corresponding cluster 岫畦┸ 稽┸ 系┸ 経岻. 236 

2.2 Analysis of the coplanarity of clusters 237 

In fieldwork, two planes can be considered coplanar after visual inspection and the assistance of 238 

traces. However, when this test is programmed using 3D datasets it is necessary to use a mathematical 239 

criterion to determine  coplanarity. A simple case in which two horizontal planes are scanned using TLS is 240 

shown in Figure 3 (a). Both planes are identified by two clusters of points: 1 and 2. A front view is shown 241 

in Figure 3 - b, where coplanarity can be visually determined. However, elevations are represented in Figure 242 

3 - c, and the means of these elevations are 1.5486 and 1.5494 for clusters 1 and 2, respectively. As both 243 

means are slightly different, coplanarity cannot be definitively establiched. 244 

Figure 3 245 

In general, two planar clusters can be assumed to be coplanar when Eq. ( 4 ) is satisfied (Riquelme 246 

et al. 2015): 247 

倦 抜 岫購怠 髪 購態岻 半 】経怠 伐 経態】 
( 4 ) 

D1 and D2 are the parameters of clusters 1 and 2, respectively, j1 and j2 are the standard deviation 248 

of the normal distances of all points to the best-fit-plane, and k is a parameter that controls the sensitivity 249 

of this test. This test can only be applied if all fitted planes have the same orientation, and therefore the 250 

same parameters A, B and C in Eq. ( 3 ). 251 

In the example shown in Figure 3 (c), D is equal to the mean of elevations because planes are 252 

horizontal. Otherwise, the least-square method should be used to calculate D. Then, if k is set to 3 the 253 

relationship shown in Eq. (4) is fulfilled as illustrated by Eqs. ( 5 ) and ( 6 ) . Consequently, both clusters 254 

can be considered coplanar:  255 
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ぬ 抜 岫ど┻どどなにば 髪 ど┻どどななぱ岻 半 】伐な┻のねぱぬ 伐 岫伐な┻のねひね岻】 
( 5 ) ど┻どどばぬの 半 ど┻どどなな 
( 6 )  

In terms of rock mechanics, this means that the two analysed patches belong to the same disconti-256 

nuity plane. If k is set to 0, all clusters of the same discontinuity set will be considered as different planes. 257 

2.3 Computing discontinuity persistence 258 

The proposed methodology starts by classifying an input dataset (3D point cloud) with the mean 259 

orientation of the discontinuity sets. Then, the algorithm analyses the clusters of member points of a given 260 

discontinuity set and searches for clusters that are coplanar within a certain user-supervised threshold con-261 

trolled by parameter k from Eq. ( 4 ). Accordingly, the user must decide whether discontinuities will be 262 

considered as persistent or non-persistent (intermittent or separate, as presented in Figure 1). When inter-263 

mittent discontinuities are considered, the user must then decide whether empty areas between coplanar 264 

clusters are considered as: a) non-scanned surfaces of a discontinuity (when detected patches should be 265 

merged); b) rock bridges (when patches may or not be merged); or c) simply rock (when they should not 266 

be merged). When a rock bridge is detected, the idea of establishing a threshold may emerge. This leads to 267 

considering the full area of all coplanar clusters (being conservative) when the size of the rock bridge is 268 

small, or measuring persistence as separate clusters when the rock bridge size is higher. However, the use 269 

of scanned data implies in uncertainties associated with the non-scanned rock mass. Therefore the use of a 270 

threshold requires significant experience, meaning that this step requires careful consideration. Rock bridge 271 

length remains underexplored in scientific literature, and therefore further research is required.  272 

Herein Mauldon (1994) is followed: despite the existence of rock bridges, if intermittent disconti-273 

nuities are detected as coplanar, they are considered as a single merged discontinuity. This idea leads to 274 

higher values for persistence, and is more conservative. 275 

A flowchart of the proposed methodology for the calculation of discontinuity persistence is shown 276 

in Figure 4. The first stage consists of the analysis of the coplanarity of clusters for every discontinuity set. 277 

This process estimates if two or more clusters are coplanar as defined in section 2.2 and modifies the pa-278 

rameter D of the corresponding plane. The next step consists of merging separate clusters with the same 279 

parameter D into a single cluster.  280 
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Figure 4 281 

The second stage consists of the measurement of the persistence. The member points of each dis-282 

continuity set are extracted, and a transformation is applied using a rigid transformation matrix R: 283 

三 噺 崛cos岫紅岻 sin岫糠岻 伐cos 岫糠岻 sin岫紅岻 sin岫糠岻cos岫紅岻 cos岫糠岻 sin 岫糠岻 sin岫紅岻 cos岫糠岻伐 sin岫紅岻 ど cos岫紅岻 崑 
( 7 ) 

In this matrix く and g are the dip and dip direction angles of the corresponding orientation of the 284 

discontinuity set, respectively. Alternatively, this transformation can be applied to each cluster whose cen-285 

troid has been previously translated to the origin of the coordinate system. 286 

Figure 5 287 

Figure 5 shows a scheme of the transformation, which enables the direct extraction of the maxi-288 

mum discontinuity persistence measured in the directions of the dip and strike, according to ISRM (1978). 289 

Considering the set of points X(i, j), members of the discontinuity set id i and simultaneously of the cluster 290 

of points id j, Eqs. ( 8 ) and ( 9 ) show how both lengths are calculated, where x’(i, j) and y’(i, j) are the 291 

local coordinates of X(i, j): 292 

詣結券訣建月 伐 鶏結堅嫌件嫌建結券潔結鳥沈椎岫件┸ 倹岻 噺 max盤捲嫗岫沈┸珍岻匪 伐 min 岫捲旺岫件┸ 倹岻岻 
( 8 ) 詣結券訣月建 伐  鶏結堅嫌件嫌建結券潔結鎚痛追沈賃勅岫件┸ 倹岻 噺 max盤検嫗岫沈┸珍岻匪 伐 min 岫検旺岫件┸ 倹岻岻 
( 9 ) 

Additionally, the maximum length can be calculated through the computation of the convex hull 293 

Ch(X(i, j)) according to Eq. ( 10 ). The convex hull also enables the estimation of the area of the cluster 294 

according to Eq. ( 11 ). The convex hull is calculated by the projection of the cluster points on the OX’Y’ 295 

plane, and then function ‘convhull’ (available in MATLAB software) is applied, which returns the convex 296 

hull of points X(i,j). 297 

詣結券訣建月 伐  鶏結堅嫌件嫌建結券潔結陳銚掴岫件┸ 倹岻 噺 max length岫系朕岫隙岫件┸ 倹岻岻岻 
( 10 ) 畦堅結欠 伐  鶏結堅嫌件嫌建結券潔結岫件┸ 倹岻 噺 Area岫系朕岫隙岫件┸ 倹岻岻岻 
( 11 ) 
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3 Case study 298 

3.1 Case study 1 299 

The first case study consists of a laboratory test where regular cubes of granite are organised on a 300 

pallet that lies on the floor (Figure 6). The side of each cube is approximately 0.095 m. The granite cubes 301 

are arranged forming a square, whose side is approximately 0.8 m (distances |P1P2| and |P3P4| in Figure 6). 302 

This setup was scanned by a TLS model Leica C10 from three stations, and registered using High-Defini-303 

tion Surveying (HDS) targets by means of the Leica Cyclone software (Leica 2016). Finally, the 3D point 304 

cloud was rotated to represent a non-horizontal discontinuity.  305 

Figure 6 306 

Three orthogonal discontinuity sets are used in this case study. The top of the set of cubes repre-307 

sents a planar discontinuity. Empty spaces between cubes (i.e., deleted cubes) represent rock bridges (which 308 

cannot be scanned) or discontinuities that are hidden within the rock or simply not present. The dip angle 309 

of this discontinuity is 39º and  dip direction is 180º. Additionally, some of the cubes have been randomly 310 

removed to represent intermittent discontinuities. As a result, there are clusters of points with the same 311 

orientation and that belong to the same discontinuity set. Two more sub-vertical discontinuity sets are pre-312 

sent on the sides of the cubes. This case study will be used to validate the proposed methodology.  313 

3.2 Case study 2 314 

This case study aims to apply the proposed methodology to a real cavern rock surface. A 3D point 315 

cloud was downloaded from a public repository (Lato et al. 2013) to allow reproducibility. It consists of a 316 

cavern excavated in weathered gneiss in Oslo (Norway), in 2011. The surface of the cavern was scanned 317 

using a phase-based Faro Photon 120 and two scan stations (acquisition of two point clouds), with a point 318 

spacing of less than 1 cm (Figure 7). 319 

Figure 7 320 

The surface of the cavern shows three differentiated regions: shotcrete, planar outcrops of rock 321 

and rock damaged during the blasting process. Only planar outcrops of intact rock are of interest, so shot-322 

crete and damaged rock areas were cropped from the available 3D point cloud. Case study 2 provides a real 323 
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case scenario with a discontinuity set that can be identified on both sides of an excavation. Therefore, the 324 

proposed methodology should be able to identify separated patches of the same discontinuity and measure 325 

the persistence of separated clusters of points of the same discontinuity. Manual measurements were made 326 

and compared with those derived from the 3D point clouds to validate the results. 327 

3.3 Case study 3 328 

Case study 3 consists of a carbonate Flysch rock slope over a railway tunnel protection track (Fig-329 

ure 8 (a) to (c)) (Cano and Tomás 2013). The bedding plane is observed as a persistent sub-vertical discon-330 

tinuity set, which presents some waviness (Figure 8 (c)). One scan station was performed using a long-331 

range 3D laser scanner model Optech at 200 m. The 3D point cloud was registered to a levelled DEM (not 332 

oriented with respect to the north), so dip measurements could be extracted. The point cloud was decimated 333 

with a spacing of 0.1 m, yielding an evenly-spaced point cloud 334 

This case study aims to demonstrate the proposed methodology using typical rock slope problems 335 

and scans conducted at longer ranges than previous case studies. As the discontinuity is persistent, meas-336 

urements using the 3D point cloud should provide results according to the sample window size (i.e. 337 

40x25x25 m). 338 

Figure 8 339 

4 Results 340 

4.1 Case study 1 341 

The methodology requires the classification of the point cloud to differentiate the discontinuity set 342 

and, subsequently, the cluster of points. Three discontinuity sets were found (Figure 9 – a and b). Conse-343 

quently, the clusters of points were extracted (Figure 9 – c to g). The orientation of discontinuity set 1 is 344 

(179º/39º), as expected, and corresponds to the top of the cubes. As all cubes are distributed contiguously, 345 

a single cluster of points is detected for this discontinuity set (Figure 9 – c). The orientations of  disconti-346 

nuity sets 2 and 3 are (359º/51º) and (089º/89º), respectively. The clusters of points extracted are not con-347 

tiguous, and are identified as different (Figure 9 – d and f). However, coplanar clusters were merged after 348 
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the analysis to determine if they were coplanar or not (Figure 9 – e and g). Merging coplanar clusters 349 

considered that parameter k of Eq. ( 4 ) was 3. 350 

Figure 9 351 

The proposed methodology calculates the persistence of those clusters that have the same D pa-352 

rameter, or in other words, are considered to belong to the same discontinuity. The single cluster for dis-353 

continuity set 1 is shown in Figure 10 - a. The convex hull of the cluster is represented as a closed polygon 354 

filled in transparent red. This point cloud has been transformed to a new local coordinate system in which 355 

the measurement of the persistence can be performed.  356 

Figure 10 357 

A more complex scenario was obtained for discontinuity set 2, where clusters are identified sepa-358 

rately (Figure 9 - d) but coplanarity analysis has merged some clusters (Figure 9 - e), e.g. cluster 2 (Figure 359 

10 - b). This leads to the measurement of the persistence as a continuous surface, instead of different isolated 360 

regions.  361 

Discontinuity set 3 shows a case in which four clusters were expected to be coplanar, but are not. 362 

Four clusters can be seen on the left side of the cubes (Figure 9 - f). However, the analysis merged those 363 

clusters not as a single set but as two different sets (Figure 10 – c and d). Accordingly, parameter D for 364 

both sets shows a separation of approximately 6 mm. A subsequent detailed inspection of those clusters 365 

showed that those four sides were not as coplanar as initially supposed. This is due to the precision of rock 366 

cutting and manual placement. The standard deviation (j) of the point-plane distances of these clusters is 367 

approximately 0,85 mm (considerably flat surfaces). Considering Eq. ( 4 ) and k = 3, if normal spacing 368 

between clusters is higher than 5 mm, the clusters are considered as different, and consequently persistence 369 

is not measured in the merged clusters. Although a persistence measurement of 0.8 m was expected, two 370 

measurements of 0.51 and 0.50 m were extracted. A possible solution to this issue is to increase the k value 371 

to 3.5. 372 
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 373 

Figure 11 374 

Table 2 375 

For all discontinuity sets, the persistence was measured in the directions of dip and strike as well as the 376 
length of the maximum chord and the area of the convex hull. Measured persistence values were plotted 377 
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in the corresponding histograms shown in 378 

 379 

Figure 11. Additionally, a negative exponential distribution was plotted using the corresponding 380 

mean persistence or mean discontinuity trace length and the mean trace termination frequency (膏) (Priest 381 

and Hudson 1981). It can be observed that the histograms do not fit properly to the assumed probability 382 

distribution. However, in this case study the size of the sample is small (i.e. 1 to 10 samples), and the 383 

physical model is not a rock slope. 384 

Case study 1 deepens understanding on the application of the proposed methodology and shows 385 

that the obtained persistence values correspond to the expected values. The length of the maximum chord 386 

within the convex hull is shown in Table 2, and the maximum length corresponds to the size of the global 387 

set of cubes. In contrast, the observed mean value is less than the expected value. A possible explanation is 388 

that the merging of clusters is sensitive to irregularities: dividing a set of clusters into subsets (e.g. case of 389 

discontinuity set 3, clusters 1 and 6 of Figure 10 – c and d) increases the size of the sample and reduces the 390 

measured persistence. Both facts lead to a reduction in the mean value, while the maximum remains invar-391 

iant. Consequently, it seems appropriate to consider the persistence as the interval defined by the mean and 392 

the maximum values. 393 
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4.2 Case study 2 394 

For case study 2, the classification of the point cloud was initially performed using software DSE. 395 

The normal vector orientation of each point was calculated using 30 neighbours to enable higher conver-396 

gence of the principal orientations (i.e., discontinuity set orientation). The value of tolerance (parameter 397 

utilized by software DSE) was set to 0.2 (Riquelme et al. 2014). The number of bins was set to 256 to 398 

represent the density of the poles of the normal vectors, enabling higher accuracy. The minimum angle 399 

between principal normal vectors was set to 30º. Assignment of a point to a principal pole considered that 400 

the minimum angle between the assigned normal vector of that point and the principal pole candidate was 401 

set to 15º. This value ensured that resulting planes were more planar and less irregular. For each cluster, 402 

the calculated plane fixed the orientation equal to the corresponding discontinuity set. This assumption 403 

resulted in all clusters that were members of a discontinuity set. Additionally, clusters were merged using 404 

k = 3 ( 4 ). 405 

Figure 12 406 

Five discontinuity sets were extracted based on the density of the poles (Figure 12 - e). Visual 407 

inspection of the classified point cloud provided a planar pattern on the surface of the cavern (Figure 12 -c 408 

and d). Additionally, the normal spacing was analysed using the methodology proposed by Riquelme et al. 409 

(2015), and implemented in the software DSE. The obtained values of the normal spacing for discontinuity 410 

set 1 were 0.35 m for the non-persistent hypothesis and 0.13 m for the persistent hypothesis. 411 

As case study 2 corresponds to the surface of a convex cavern, it was interesting to determine 412 

whether or not a series of discontinuities located on the same plane (but not connected) could be success-413 

fully identified as a single discontinuity in a real scenario. A detailed example in which discontinuity set 1 414 

has been analysed is shown in Figure 13. The merged clusters number 6 and 10 (with D values -9.0250 and 415 

-7.5093, respectively) have been extracted for illustration purposes (Figure 13 - a and c, respectively). 416 

Figure 13 417 

The first discontinuity (i.e. discontinuity set 1, cluster 6, D=-9.025) extends throughout almost the 418 

entire study area (Figure 13 - a and b). Manually measured persistence ranges from 11 to 13 m. The pro-419 

posed method indicates a maximum estimated persistence of 13.69 m. However, Figure 13 - e shows that 420 

this discontinuity is curved, which results in patches of two adjacent discontinuities being identified as a 421 
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single discontinuity. This indicates that if the scale of the study area is greater than the spacing of disconti-422 

nuities, the natural curvature might lead to the mixing of discontinuity clusters. In this case, normal spacing 423 

is approximately 0.2 m and persistence is approximately 14 m. The ratio between the scale and the normal 424 

spacing is 14/0.2 ≈ 70. 425 

The size of the second discontinuity is smaller than the first one (Figure 13 – c and d). Manually 426 

measured persistence is approximately 8 m, and the proposed method indicates a maximum persistence of 427 

8.44 m. In this case, visual inspection indicates that the clusters belong to the same discontinuity (Figure 428 

13 – e). The ratio between the scale and the persistence is approximately 8.44/0.2≈40, almost half the value 429 

obtained in the previous case. 430 

These results suggest that the probability of merging clusters incorrectly increases with: (1) larger 431 

study area sizes; (2) smaller extent of clusters; (3) higher waviness of the folding of discontinuities, and (4) 432 

smaller normal spacing of discontinuities. 433 

Unlike case study 1, the number of measurements is higher in this case and therefore the histo-434 

grams of persistence fit better to a negative exponential distribution (Figure 14). Persistence values ex-435 

tracted from the maximum length of the convex hull are shown in Table 3. It must be mentioned that the 436 

expected values correspond to the maximum values and not to the mean values; this occurs because a num-437 

ber of small clusters are identified and provide low values of persistence. Therefore, it is appropriate to 438 

provide a range of persistence values rather than providing a single value or distribution. 439 

Table 3  440 

Figure 14 441 

The methodology has been applied to this case study considering  parameter k = 0 (i.e. clusters are 442 

not merged and persistence is measured separately) to analyse the effect of merging clusters. Table 3 shows 443 

the measured persistence for this case. The observed persistence values are lower than those calculated 444 

considering the merging of the clusters. Moreover, these values only consider the extent of single clusters, 445 

and the existence of coplanar discontinuities is not considered. Accordingly, the observation of discontinu-446 

ity set 1 shows that this assumption is inappropriate as the manually extracted value is higher (i.e. 14 m). 447 



20 

4.3 Case study 3 448 

Firstly, the 3D point cloud was analysed using the DSE software. As a result, a sub-vertical dis-449 

continuity set was extracted (025º/086º), which corresponded to the bedding plane (Figure 15). Clusters 450 

with less than 50 points were removed, so the minimum size of clusters is 0.5 m2. The normal spacing of 451 

this discontinuity set was analysed considering non-persistent and persistent discontinuities, providing 452 

mean values of 1.5 and 1.1 m, respectively. A mean normal spacing of 1.1 m was considered in the analysis 453 

of the persistence. 454 

Figure 15 455 

Measured discontinuity persistence is shown in Figure 16. The average values in the direction of 456 

the strike and in the maximum direction are 8.0 and 11.7 m, respectively. However, maximum values are 457 

18.0 and 27.0 m, approximately. The maximum value is similar to the size of the sampling window. 458 

Figure 16 459 

5 Discussion 460 

5.1 Discussion of the analysed case studies 461 

This work presents a novel methodology to semi-automatically analyse the persistence of discon-462 

tinuity sets using 3D point clouds. The proposed approach build upon the ISRM method, applied to measure 463 

the persistence of discontinuities (International Society for Rock Mechanics 1978) – the method proposed 464 

herein has been further adapted to the acquisition of modern digital datasets to fully exploit 3D capabilities. 465 

Three case studies have been utilized to illustrate the application and validate the proposed method. 466 

Case study 1 shows that the method successfully identifies sets or member points of the same plane and 467 

measures the persistence. Case study 1 consists of regular cubes whose sides represent exposed planes with 468 

the empty spaces corresponding to rock bridges or non-scanned planes. The method was able to merge 469 

coplanar clusters in some cases. However, other clusters were detected as different clusters. Interestingly, 470 

detailed analysis of data showed that these clusters were not as coplanar as expected. Therefore, this work 471 

highlights that discontinuities are not planes but surfaces that present roughness and waviness characteris-472 

tics.  473 
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Case study 2 presents a cavern and demonstrated that the proposed methodology was able to suc-474 

cessfully extract the persistence. The specific geometry (i.e., circular section) enabled discontinuities to be 475 

scanned on both sides of the section, which proved to be useful for validating the method. Clusters of 3D 476 

points belonging to the same plane were successfully detected on both sides of the rock mass.  477 

Case study 3 presents a carbonate Flysch rock slope, scanned using a long-range 3D laser scanner 478 

at 200 m. Despite the waviness of the bedding plane, a number of clusters were successfully merged. Ad-479 

ditionally, the largest clusters were also merged, and a realistic persistence measure was provided. How-480 

ever, small clusters were not successfully merged because of irregularities. 481 

Extraction of the orientation of discontinuity sets can affect the results and therefore an optimum 482 

application of the proposed method requires: (1) a solid background in structural geology and rock mechan-483 

ics; (2) the use of supporting material such as field photographs and (3) visual inspection and validation of 484 

the results. In addition, other difficulties were found (and discussed within the text) when addressing high 485 

persistence values of low normal spacing discontinuities, along with their waviness. Finally, it is important 486 

to emphasize that the measured persistence in Case Study 2 was limited by the excavation diameter and the 487 

span of the tunnel. Limitations will always be present depending on the size of the sample window used. 488 

As a result, the maximum value of persistence that can be measured will always be the size of the 3D point 489 

cloud from the study area. 490 

5.2 K Threshold for merging clusters 491 

Case study 1 showed that coplanar clusters could not be merged as a single discontinuity when the 492 

normal spacing is small with respect to the standard deviation (j) of the point-plane distances. Therefore, 493 

it is reasonable to consider the establishment of a test to assess the value of parameter k. 494 

It is important to be aware of these errors because if non-coplanar clusters are merged, lower dis-495 

continuity persistence values are measured. Representative discontinuity normal spacing should be greater 496 

than the distance of merging clusters to minimize incorrect classifications, according to Eq. ( 4 ). For this 497 

purpose, the following equations are proposed:  498 

嫌 伎 倦 抜 岫購怠 髪 購態岻 ( 12 ) 

倦 抜 岫購怠 髪 購態岻 伎 嫌頂墜椎鎮銚津銚追貸頂鎮通鎚痛勅追鎚 ( 13 ) 
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s is the normal spacing of the considered discontinuity set, j1, j2 and k are the parameters of Eq. ( 499 

4 ) and 嫌頂墜椎鎮銚津銚追貸頂鎮通鎚痛勅追鎚 is the representative normal spacing of coplanar clusters. The spacing of coplanar 500 

clusters is related to operator error and non-planarity of discontinuities.  501 

In case study 1 the normal spacing (s) of the discontinuity set 3 is 0.1 m. On the one hand, the 502 

standard deviation (j) of each cluster is approximately 0.001 m. If k is set to 3, 倦 抜 岫購怠 髪 購態岻 is 0.006, 503 

lower than 0.1. On the other hand, the normal spacing of coplanar clusters is approximately 0.006 m. Con-504 

sequently, the value of k should be greater than 3 to merge coplanar clusters according to Eq. ( 13 ). 505 

In case study 2, considering discontinuity set 1 and coplanar clusters 6 and 21, parameter D is -506 

7.0593 and -7.134, respectively, and standard deviation (j) is 0.0134 and 0.0498, respectively. The mean 507 

normal spacing is 0.35 m and the normal spacing between coplanar clusters is approximately 0.1 m. The 508 

test is applied according to Eqs. ( 12 ) and( 13 ), and Eqs. ( 14 ) and ( 15 ) showing that in this case, a k = 3 509 

is appropriate. However, there were difficulties to apply to proposed method in case study 2, when discon-510 

tinuities present significant waviness, as shown in Figure 13. 511 

ど┻ぬの 伎 ぬ 抜  岫ど┻どなぬね 髪 ど┻どねひぱ岻 噺 ど┻なぱひ ( 14 ) 

ぬ 抜 岫ど┻どなぬね 髪 ど┻どねひぱ岻 噺 ど┻なぱひ 伎 ど┻な ( 15 ) 

Equations ( 12 ) and ( 13 ) also show when the proposed method can be applied and when not. 512 

Considering a discontinuity set, its discontinuity normal spacing (s) and the normal spacing of coplanar 513 

clusters (嫌頂墜椎鎮銚津銚追貸頂鎮通鎚痛勅追鎚), the method can be applied if: 514 

嫌 伎 嫌頂墜椎鎮銚津銚追貸頂鎮通鎚痛勅追鎚 ( 16 ) 

 Case study 3 consists of a typical rock slope, in which the bedding plane is sub-vertical. Coplanar 515 

clusters 9 and 17 were selected to discuss the application of the proposed method. Their D values are -516 

70.9279 and -70.6047, and their standard deviations are 0.0563 and 0.1141 m, respectively. The normal 517 

spacing of coplanar clusters (嫌頂墜椎鎮銚津銚追貸頂鎮通鎚痛勅追鎚) is estimated as 0.3 m. The k parameter was set to 3. Equa-518 

tions ( 17 ) and ( 18 ) apply the test presented in Eqs. ( 12 ) and ( 13 ). It can be observed that, despite the 519 

inequations being fulfilled, the ratio is approximately 2. Consequently, this method can indeed be applied, 520 

but special attention is necessary.  521 
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な┻な 伎 ぬ 抜  岫ど┻どのはぬ 髪 ど┻ななねな岻 噺 ど┻のななに ( 17 ) 

ぬ 抜  岫ど┻どのはぬ 髪 ど┻ななねな岻 噺 ど┻のななに 伎 ど┻ぬ ( 18 ) 

5.3 Precision and scanner range implications 522 

The use of LiDAR-derived datasets requires consideration of the influence of: (1) accuracy (in-523 

strumental and operational) and (2) resolution and truncation. 524 

The consideration of accuracy leads to the establishment of precision. Planar discontinuities pre-525 

sent a standard deviation (j), which is calculated using the point-plane distances and depends on several 526 

parameters (of which one of the main is instrumental uncertainty). If a close-range TLS is considered, for 527 

instance the 3D laser scanner Leica C10, manufacturer specifications indicate angular accuracy 12’’, dis-528 

tance accuracy 4 mm and noise 2 mm at 50 m (Leica Geosystems AG 2011). Additionally, recent laboratory 529 

tests show that when scanning approximately at 10 m, close range error is less than 1 mm (Riquelme et al. 530 

2017). According to the 68-95-99.7 rule of normal data sets, 99.7% of data is represented in the interval 531 岷航 伐 ぬ購┸ 航 髪 ぬ購峅. Consequently, it is reasonable to consider a precision of 0.1 mm for LiDAR-derived data.  532 

Special considerations must be made for long range TLS. The raw range accuracy of TLS model 533 

ILRIS 3D is 7 mm at 100 m (Optech 2017), and the laser beam footprint of a TLS model RIEGL VZ-6000 534 

is 15 mm at exit and 240 mm at 2000 m (RIEGL 2017). Therefore when using long-range instruments, the 535 

order of magnitude of the error is 10 mm. Using a precision of 0.1 mm would not lead to errors in terms of 536 

internal operations and it can be concluded that a precision of 0.1 mm is adequate for close and long-range 537 

scanners. 538 

Regarding resolution and truncation, the Effective Instantaneous Field of View (EIFOV) is a res-539 

olution measure for the sampling interval and the laser beamwidth (Lichti and Jamtsho 2006). According 540 

to Sturzenegger et al. (2007), this parameter defines the maximum resolution that can be obtained for a 541 

specific distance, so the longer range, the larger the footprint size. As the principal effect of resolution is 542 

data truncation, surfaces smaller than a threshold value cannot be measured. Application of the proposed 543 

methodology requires the footprint size to be sufficiently small to detect discontinuity planes and disconti-544 

nuity normal spacing. 545 
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5.4 Sensitivity analysis of the proposed methodology 546 

Simplistic case study 1 enables a comprehensive discussion on the sensitivity of the proposed 547 

methodology. Figure 10 – a illustrates an interesting issue that affects the results. The top of the cubes is 548 

identified as a single cluster of points and defines a plane of a discontinuity set. The plane, depicted in red, 549 

is defined by the orientation of the principal pole extracted in Figure 9 – a. The plane is adjusted using the 550 

least squared method, so the centroid of the cluster fits perfectly. However, angular deviation is observed, 551 

as points located on the top of the figure are below the plane and those placed on the lower part of the figure 552 

are above the plane. When two ‘coplanar’ clusters are separated, the angular deviation would result in both 553 

being considered as two different planes and consequently the measured persistence will be low. 554 

The angular deviation of the plane is due to the extraction process utilized. Herein the plane was 555 

extracted using the DSE software and therefore was controlled by the following processes. Firstly, the 556 

number of points, density and error of the point clouds affect the density of the poles. The higher the noise, 557 

the more inaccurate is the non-parametric calculated function. Another source of error is related to the 558 

nature of the scanned surface: irregular, with presence of vegetation, soils or non-planar. Those points that 559 

do not belong to discontinuities will introduce poles in the stereographic analysis that will ‘contaminate’ 560 

the density function. Therefore, if the contaminated poles are close to the orientation of the discontinuity 561 

set, the local maximum of the pole density function will be displaced, and the orientation of the extracted 562 

plane will be slightly rotated. Additionally, the number of neighbours used to calculate the normal vector 563 

of each point has a significant effect on its value (Riquelme et al. 2014). The higher the number of neigh-564 

bours used, the better the convergence to a mean value. However, details of the surface can be lost, and 565 

additional computing resources are needed. Experience shows that using 30 neighbours generally provides 566 

satisfactory results. 567 

Secondly, the number of bins used in the kernel density estimation (KDE) (Botev et al. 2010) can 568 

also affect the mean value. The higher the number of bins, the more precise the value extracted. However, 569 

this can also result in artefacts. Experience shows that 64 or 128 bins generally provide acceptable results. 570 

Thirdly, the assignment of points to a principal pole is also important. Once a principal pole is 571 

extracted, the closest poles are assigned to it. This process is controlled by the angle defined by their vectors. 572 

The higher this angle, the more irregular the surface identified as a plane. As stated in the beginning of this 573 
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work, discontinuities are not planes but surfaces with roughness and waviness, so this fact must be consid-574 

ered. Irregular surfaces can seriously hinder the application of the proposed method. Experience shows that 575 

using a value of 30º generally provides good results. 576 

Fourthly, the clustering process is the final operation that can affect the results. The clustering 577 

process is performed through the density based algorithm (DBSCAN) (Ester et al. 1996).It is highly rec-578 

ommended to use a uniform density of points to obtain optimal results. Otherwise, the clustering process 579 

will lead to poor results. Once the clustering process is completed, small clusters will be automatically 580 

created (e.g. clusters of 10 points). Although these clusters could be part of actual discontinuity planes, they 581 

could also be noise. Therefore, it is convenient to remove clusters that exhibit a size lower than a specific 582 

predefined threshold value. If these clusters are not removed, they will provide very small persistence val-583 

ues when identified as isolated planes or could provide extremely high persistence values if highly separated 584 

and identified as coplanar. A recommendable threshold value is 100 points per cluster, although this thresh-585 

old also depends on the point spacing. 586 

6 Conclusions 587 

A new methodology was presented herein to measure discontinuity persistence using 3D point 588 

clouds. The proposed approach was designed to estimate the true persistence rather, in opposition to tradi-589 

tional approaches t hatfocus on estimating the “visible persistence”. To this end, the proposed algorithm 590 

groups the different patches of discontinuity planes outcropping on the rock mass that can be geometrically 591 

classified as belonging to the same discontinuity plane. The algorithm is described herein, along with its 592 

applicability to three different case studies.  593 

This work showed that measured persistence corresponded to the expected values. However, the 594 

use of 3D point clouds implied in the testing of several conditions prior to the application of the proposed 595 

methodology.  Firstly, the resolution of the instrument (when 3D laser scanners are used) can affect data, 596 

especially when long-range TLS is used. Secondly, two tests were suggested to check the applicability of 597 

the method to the analysed data. This work also highlighted the need of considerable experience and geo-598 

logical knowledge in the application of the proposed automatic persistence measurement method.  599 
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Future efforts should focus on: (1) validating the presented approach with in-depth measurements 600 

of discontinuity persistence with new techniques of site investigation; and (2) investigating real persistence 601 

as a continuous function rather than a unique value.  602 
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List of figures 766 

 767 

Figure 1. Types of persistence produced by different persistent or non-persistent discontinuities: (a) persistent 768 
discontinuities; (b) intermittent discontinuity planes and (c) separate non-persistent discontinuity planes. Modified from 769 
(Hudson and Priest 1983). 770 

 771 

 772 

Figure 2. Classification of a TLS-derived point cloud cube: (a) 3D view of the point cloud; (b) view of the 773 
three discontinuity sets; (c) sets of member points (clusters) of the discontinuity set 1 that define two planes; and (d) 774 

equations of the planes of the two clusters of points shown in (c). (Colour figure online) 775 

 776 
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 777 

Figure 3. Process of merging coplanar clusters of points, example of horizontal planes: (a) view of clusters 778 
1 and 2; (b) front view of both clusters, that seem to be coplanar; (c) distribution of the z coordinates for each cluster. 779 
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 782 

Figure 4. Workflow of the proposed methodology. 783 
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 785 

Figure 5. Perspective of the 3D point cloud for three patches of a discontinuity. Three clusters are identified 786 
as coplanar and the convex hull is extracted. A coordinate system transformation is applied, where OXYZ is the orig-787 
inal and O’X’Y’Z’ the transformed. Persistence is extracted in the direction of dip O’X’ and in the direction of strike 788 

O’Y’. O’Z’ is orthogonal to plane O’X’Y’ and has the direction of the normal vector of the plane. 789 
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 791 

Figure 6. Case study 1: a laboratory model. (a) Orthogonal 3D view of the cubes; (b) front view of the cu-792 
bes and (c) side view of the cubes. Shadow areas exist due to the scanning process. (Colour figure online) 793 
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 795 

Figure 7. Case study 2: a cavern in Oslo downloaded from the Rockbench Repository (Lato et al. 2013), 796 
with a selected surface for analysis. 797 
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 799 

Figure 8. Case study 3: carbonate Flysch outcrop in El Campello, Spain:(a) and (b) location of the rocky 800 
slope; (c) aerial image of the rock; (d) 3D point cloud scanned using a long-range 3D laser scanner. (Colour figure 801 

online) 802 
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 803 

 804 

Figure 9. Results of case study 1: (a) density of the poles of the normal vectors; (b) classified point cloud; 805 
(c), (d) and (f) clusters of DS 1, 2 and 3, respectively; (e) and (g) clusters of DS 2 and 3, respectively, classified ac-806 

cording to parameter D. (Colour figure online) 807 
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 809 

Figure 10. Results of case study 1: identification of some merged clusters of points. (a) DS 1 (blue) only 810 
shows a single cluster of points, result of merging of clusters of the top of the cubes; (b) DS 2, a set of coplanar clus-811 

ters of the side of the cubes; (c-d) DS 3, two sets of clusters that were expected to be recognised as coplanar (left 812 
side), but due to the non-exact coplanar disposition of the cubes, were recognized as two different sets. (Colour figure 813 

online). 814 
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 816 

Figure 11. Case study 1. Histograms of the three defined discontinuity sets for persistence measured in 817 
the direction of dip, strike, maximum length within the convex hull and area.  818 
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 820 

Figure 12. Case study 2. Classification of the point cloud in one colour per DS: (a) and (b) 3D orthogonal 821 
view of the unclassified point cloud and (c) and (d) respective classified point clouds; (e) density of poles of the ex-822 

tracted DS. J1 (342/39); J2 (060/54); J3 (202/78), J4 (152/37) and J5 (093/86). (Colour figure online) 823 
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 825 

Figure 13. Case study 2. Extraction of the persistence of a discontinuity within DS 1, D=-9,025. (a) 3D or-826 
thogonal view of the point cloud and the extracted cluster members of the same plane; (b) member points of the plane 827 
D=-9,025 and its convex hull; (c) and (d) similarly to D=-7,5093; (e) view of both estimated discontinuities. (Colour 828 

figure online) 829 
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 831 

Figure 14. Case study 2. Histograms of the five defined discontinuity sets for persistence measured in the 832 
direction of dip, strike and maximum chord within the convex hull and the area of the convex hull. 833 
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 837 

Figure 15. Case study 3. (a) and (b) density of the poles of the normal vectors; (c) analysed sector;  (d) 838 
clusters extracted from discontinuity set 1; (e) clusters classified according the value of D and (f) merged clusters 839 
grouped per randomized colours. (Colour figure online) 840 
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 843 

Figure 16. Case study 3. Measured persistence (m) in the direction of dip, strike, maximum length within 844 
the convex hull and area (m2). 845 
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List of tables 847 

Table 1. Parameters used to characterize discontinuities and methods of data collection (1978 and current). 848 

Parameter Traditional method (International Society for 
Rock Mechanics 1978) 

Current methods 

1. Orientation (A) Compass and clinometer method 
Compass and clinometer 
Clino-rule of 50 m. 
(B) Photogrammetric method 
Reconnaissance survey equipment 
Phototheodolite and tripod 
Control survey equipment 
Stereoscopic plotting instrument 

3D point clouds: 
3D laser scanning (Jaboyedoff et al. 2012; 
Riquelme et al. 2014) 
Digital stereo-photogrammetry (Haneberg 
2008; Lato et al. 2012) 
SfM (Jordá Bordehore et al. 2017) 

2. Spacing Measuring tape, min 3 m 
Compass and clinometer 

3D point clouds  
TLS and ALS (Slob et al. 2010; Oppikofer et 
al. 2011; Riquelme et al. 2015) 

3. Persistence Measuring tape, min 10 m 3D point clouds:  
TLS (Sturzenegger and Stead 2009a; 
Oppikofer et al. 2011) 

4. Roughness (A) linear profiling method and JRC (Barton 
and Choubey 1977):  
Folding straight edge of at least 2 m, in mm 
Compass and clinometer 
10 m of light wire, marks at 1 m 
(B) compass and disc-clinometer method 
Clar geological compass 
Four thin circular plates 
(C) photogrammetric method: same as (1) 

3D point clouds (Rahman et al. 2006; 
Haneberg 2007; Oppikofer et al. 2009; 
Khoshelham et al. 2011; Lai et al. 2014) 
Photographs (Alameda 2014) 
Profiles (Tatone and Grasselli 2010) 

5. Wall strength Geological hammer with one tapered end 
Strong pen knife 
Schmidt hammer: JCS  
Facilities for measuring the dry density of the 
rock 

 

6. Aperture Measuring tape of at least 3 m, graduated in 
mm 
Feeler gauge 
White spray paint 
Equipment for washing the exposed rock 

Infill scale-independent classification (Ortega 
et al. 2006) 

7. Filling Measuring tape of at least 3 m, graduated in 
mm 
Folding straight-edge, at least 2 m 
Plastic bags for taking samples 
Geological hammer with one tapered end 
Strong pen knife 

Hyperspectral imaging (Kurz et al. 2011) 

8. Seepage Visual observation 
Air photographs, weather records 

TLS (Sturzenegger et al. 2007; Vivas et al. 
2015) 
Photographs 
Digital Photogrammetry 
Thermal images (Vivas et al. 2015) 

9. N of sets Based on (1) Based on (1) 
10. Block size Measuring tape of at least 3 m, graduated in 

mm 
3D point clouds: 
TLS (Sturzenegger et al. 2011) 
SfM (Ruiz-Carulla et al. 2017) 

 849 

Table 2. Case study 1: extracted persistence of DS 1. 850 

Persistence Mean Max Expected 

Dip (m) 0.8118 0.8118 0.80 

Strike (m) 0.8153 0.8153 0.80 



46 

Maximum (m) 1.0668 1.0668 1.13 

Area (m2) 0.6306 0.6306 0.64 

 851 

 852 

Table 3. Case study 2: extracted persistence measured in the direction of maximum length. 853 

 k = 3 k=0 
Discontinuity Set Mean (m) Maximum (m) Mean (m) Maximum (m) 
01  5.1560  13.6965 0.5084 3.0904 
02  2.0184  6.7079 0.4291 3.7815 
03  2.4082  9.7109 0.6799 3.0416 
04  1.7331  7.9335 0.5225 2.2660 
05  1.5318  4.9280 0.3788 2.2097 

 854 


