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ABSTRACT 

A growing number of loci within the human leukocyte antigen (HLA) region have been 

implicated in non-Hodgkin lymphoma (NHL) etiology. Here, we test a complementary 

hypothesis of "heterozygote advantage" regarding the role of HLA and NHL, whereby HLA 

diversity is beneficial and homozygous HLA loci are associated with increased disease risk. 

HLA alleles at class I and II loci were imputed from genome-wide association studies (GWAS) 

using SNP2HLA for: 3,617 diffuse large B-cell lymphomas (DLBCL), 2,686 follicular 

lymphomas (FL), 2,878 chronic lymphocytic leukemia/small lymphocytic lymphomas 

(CLL/SLL), 741 marginal zone lymphomas (MZL), and 8,753 controls of European descent. 

Both DLBCL and MZL risk were elevated with homozygosity at class I HLA-B and -C loci (OR 

DLBCL=1.31, 95% CI=1.06-1.60; OR MZL=1.45, 95% CI=1.12-1.89) and class II HLA-DRB1 

locus (OR DLBCL=2.10, 95% CI=1.24-3.55; OR MZL= 2.10, 95% CI=0.99-4.45). Increased FL 

risk was observed with the overall increase in number of homozygous HLA class II loci (p-

trend<0.0001, FDR=0.0005). These results support a role for HLA zygosity in NHL etiology and 

suggests that distinct immune pathways may underly the etiology of the different NHL subtypes. 

 

Precis/Statement of Significance: HLA gene diversity reduces risk for non-Hodgkin lymphoma. 
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INTRODUCTION 

Genome-wide association studies (GWAS) have identified a growing list of common 

susceptibility loci modestly associated with risk of non-Hodgkin lymphomas (NHLs) including 

several HLA (human leukocyte antigen) genetic variants on chromosome 6p21, a region that is 

critical for innate and adaptive immune responses.  Putative NHL susceptibility loci either 

directly implicate genes within the Major Histocompatibility Complex (MHC) or appear in 

strong linkage disequilibrium (LD) with extended HLA haplotypes (1-5). Interestingly, there is 

little convincing overlap of the identified HLA susceptibility loci among the NHL subtypes, 

diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), marginal zone lymphoma 

(MZL) and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), suggesting 

that disparate aspects of the MHC and resulting immune responses are involved in the etiology 

of each NHL subtype.     

The HLA genes are the most polymorphic in the human genome and specific HLA loci 

determine the antigens that are bound by antigen presenting cells (e.g., B cells and dendritic 

cells) and presented to T cells to elicit immune responses.  Functionally, HLA molecules are 

critical for the host immune response.  HLA class I molecules present foreign antigens primarily 

to cytotoxic T-cells that in response kill these target cells, while HLA class II molecules 

stimulate antibody production in response to specific antigens. 

Reduced diversity, as defined by homozygosity at each co-dominant HLA loci, might 

adversely affect the host’s ability to recognize a more diverse array of foreign antigens and 

thereby increase subsequent disease burden.  This concept is supported by a priori research that 
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has examined effects of HLA zygosity on infectious disease, whereby a lack of HLA class I and II 

diversity has been associated with increased risk HIV and hepatitis B virus infection (6-8).  

Given the growing evidence that genetic variation within HLA genes play in the etiology 

of NHL subtypes (1-4, 9), we specifically aimed to test whether lack of HLA diversity - as 

measured by HLA homozygosity – was associated with increased NHL risk.  Specifically, we 

posit that associations with HLA Class II, which primarily presents peptides derived from 

extracellular sources, would implicate a role in infectious disease etiology.  On the other hand, 

associations with HLA Class I, which primarily presents peptides derived from intracellular 

sources, would suggest a role in related conditions, such as autoimmune or atopic conditions.  

We present here results from a pooled analysis of 25 studies from North America, Europe, and 

Australia where we measured the associations between HLA class I and/or class II zygosity and 

four main NHL subtypes.   

   

MATERIALS AND METHODS 

Study sample.  Our study sample comprises the same study participants of European 

descent that were included in the original GWAS efforts from which 25 studies participated.  

Specifically, adults diagnosed with incident, non-HIV-related B-cell NHL of mostly European 

descent, ascertained from cancer registries, clinics, or hospitals or through self-report were 

included and where diagnoses were verified by medical and pathology reports (1-4).  Study 

designs included prospective cohort studies, population- and hospital-based case-control studies, 

and clinic-based studies. Original details of design methods for each study and of each GWAS 

have been described previously (1-4).  
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This study was approved by the City of Hope Institutional Review Board.  Each 

participating study obtained approval from human subjects review committees and written 

informed consent from all participants.  A de-identified pooled dataset with individual-level data 

on genotypes, demographic characteristics, and NHL subtypes of cases was provided by the 

InterLymph Data Coordinating Center (Mayo Clinic, Rochester, MN). 

 Genotyping. GWAS platforms used include the Illumina 317K, Illumina HumanHap 

610K, Illumina HumanHap 660W, Illumina Human CNV370-Duo BeadChip, Affymetrix SNP 

6.0, and the Illumina OmniExpress (Table 1).  Quality control metrics employed (e.g., QQ plots 

and Eigenstrat results) and main results of each GWAS have been previously described in-depth 

(1-4).   

HLA imputation.  As reported by Skibola et al
 
(2), classical HLA alleles were imputed at 

HLA class I (HLA-A, HLA-B, HLA-C) and class II loci (HLA-DQA1, HLA-DQB1, HLA-DRB1, 

HLA-DPA1, HLA-DPB1 ) using SNP2HLA and a reference panel from the Type 1 Diabetes 

Genetics Consortium that comprised 5,225 individuals of European descent who were typed for 

HLA-A, B, C, DQA1, DQB1, DRB1, DPA1, DPB1 4 digit alleles.  We note that the SNP2HLA 

reference panel is typed both for a panel of MHC SNPs and using classical HLA typing; the 

imputation algorithms used thus rely on both methodologies particularly when only SNPs are 

available.  A comparison of imputed HLA alleles to 4-digit HLA sequencing data available for a 

subset of samples showed high concordance: HLA-A (97.3%), B (98.5%), C (98.1%) and DRB1 

(97.5%).  In all, 201 classical HLA alleles (two- and four-digit resolution) were successfully 

imputed (info score r
2
>0.3 for alleles) and available for analysis.  Because of the strong LD 

between the HLA class II A1 and B1 loci (e.g., HLA-DQA1 and DQB1), we present results for 
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each of the B1 loci (HLA-DQB1, HLA-DRB1, HLA-DPB1) since there were fewer homozygous 

B1 loci than A1 loci.  For each HLA locus, individuals were coded as homozygote (for any 

allele) or heterozygote, as determined from the imputed alleles.  All results presented are based 

on four-digit resolution. 

NHL Classification.  NHL subtypes were harmonized at the InterLymph Data 

Coordinating Center using the InterLymph Pathology Working Group guidelines (10,11), which 

are based on the World Health Organization classification (12).   

Final analytic sample.  Data for HLA loci were directly imputed from the original 

GWAS SNP panels and evaluated for the 3,617 DLBCL, 2,686 FL, 2,878 CLL/SLL, 741 MZL, 

and 8,753 controls.  We note that, as with the original GWAS manuscripts, the specific numbers 

of controls differed by NHL subtype, due to different study inclusion and control selection 

criteria for each NHL subtype analyses, as described by the original GWAS publications 

(enumerated in Table 2). 

Statistical analysis.  Heterozygosity and homozygosity at each individual HLA locus and 

the number of homozygous loci for class I loci (A, B, C) and class II loci (DQB1, DRB1, DPB1) 

were determined; odds ratios (ORs) and 95% confidence intervals (CIs) were calculated as 

estimates of NHL risk with heterozygotes as the referent category, adjusted for sex, age, study, 

GWAS platform, and ancestry (with principal components as conducted for each subtype-

specific GWAS and previously published (1-4).  For analyses of MZL, adjustment by geographic 

region was conducted due to sample size restrictions (instead of by individual study).  In addition 

to calculating the risk estimates for each additional number of homozygous loci, we further 

calculated the p-trend.   
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To further describe associations of zygosity by loci, we conducted joint effects analyses 

for HLA class I loci and class II loci.  Each HLA loci (class I or II) was conducted in a stratified 

manner whereby heterozygotes for all loci were the referent groups and all combinations of 

homozygosity among the loci were evaluated.  For example, to pinpoint whether HLA class I 

associations were attributable to HLA Class I B or C loci, we modeled as one covariate, 4 

levels/combinations for HLA-B and -C (e.g., homozygous for both HLA-B and –C, homozygous 

only for HLA-B, homozygous for only HLA-C, and heterozygous for both), with heterozygote for 

both HLA-B and -C as reference (Table 3). For the associated p-trends reported in Table 3, each 

category is modeled based on ordinal variable in the order listed in the table, with heterozygosity 

at all loci as the referent group in a logistic regression model.  For each p-trend, we also present 

the linearized additive relative-risk-per-locus, reflecting the slope of the trend-line.   

   Platform-specific results are shown in a Supplemental Table 1.  Additional sensitivity 

analysis included evaluation of potential confounders, including evaluation of associations by 

previously implicated autoimmune conditions and HLA loci associated with specific NHL 

subtypes.  We conducted stratified analysis to evaluate whether HLA zygosity associations were 

present among participants with and without autoimmune conditions (generally, and by specific 

conditions); similarly stratified analyses were conducted among participants with and without 

previously identified SNPs associated with NHL subtypes.  We further calculated the risks, 

adjusting for autoimmune conditions and for all reported genetic susceptibility loci (for each 

NHL subtype).  As neither variable altered the odds ratio >10%, those data are not presented.   

Analyses that restricted studies to population-based controls only also did not have measurable 

effect on the results.  Finally, to evaluate the probability that some of our results could be due to 

chance, we used the Benjamini-Hochberg method to calculate the false discovery rate (FDR) and 
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applied it to the p-trends as this allows for the fewest number of comparisons and thus degrees of 

freedom to assess the additive model.  

Unconditional logistic regression models were applied using SAS 9.4 (SAS Institute).  

All tests of statistical significance were 2-sided.   

 

RESULTS 

The numbers of European cases and controls from each of the 25 studies in North 

America, Europe, and Australia for which HLA class I and II loci were evaluated are detailed in 

Table 1. 

  DLBCL.  Elevated DLBCL risks of 20-50% were observed for homozygosity for 

individual HLA class I (B and C) and/or class II loci (DRB1 and DQB1) (Table 2).  DLBCL risk 

also increased with increasing number of homozygous class I loci (p-trend=0.0008; FDR 

p=0.003) and class II loci (p-trend<0.0001; FDR p=0.0005) (Table 2).  Although homozygosity 

for HLA-A had a borderline non-significant effect for increasing DLBCL risk, joint analyses 

suggested that the 30% risk increase observed with two or more homozygote loci (Table 2) was 

attributable to homozygosity at the HLA-B and -C locus (OR=1.31, 95% CI=1.06-1.60, Table 3).   

Similarly, for class II loci, joint analysis showed statistically significant associations for 

homozygosity specifically at the HLA-DRB1 locus (OR=2.10, 95% CI=1.24-3.55) as 

significantly increased risk was observed only in combination with homozygous HLA-DRB1 

locus (Table 3). 

FL.  There were no significant associations between zygosity at HLA class I loci and FL 

risk (Table 2). Statistically significant 24-54% increases, however, were observed for FL risk for 
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each of the three HLA class II loci.  Further, FL risk increased with the total number of 

homozygous HLA class II loci (p-trend<0.0001; FDR p=0.0005), with an odds ratio of 1.89 (95% 

CI=1.37-2.61) for those fully homozygous compared with those fully heterozygous at all three 

HLA class II loci. Joint analyses additionally supported a statistically significant increased risk 

for FL with overall homozygosity at the HLA class II loci (p-trend<0.0001; FDR p=0.0005, 

Table 3). 

MZL.  Homozygosity at HLA class I loci HLA-B (OR=1.34, 95% CI=1.01-1.78) and –C 

(OR=1.33, 95% CI=1.04-1.70) but not -A (OR=1.06, 95% CI=0.82-1.38) increased MZL risk 

(Table 2). Stratified analysis supported independent associations for both HLA-B and –C and 

MZL (Table 3).  Homozygosity at HLA class II loci increased MZL risk (Table 2), but only the 

association with HLA-DRB1 reached statistical significance (OR=1.45, 95% CI-1.12-1.89, Table 

2).  Analyses considering single locus homozygosity provided evidence of a role for HLA-DRB1 

in increasing MZL risk (Table 3). 

  CLL/SLL.  Modest CLL/SLL risk increases were observed for HLA-A (OR=1.19, 95% 

CI=1.02-1.38), HLA-DRB1 (OR=1.19, 95% CI=1.00-1.42) and HLA-DQB1 (OR=1.20, 95% 

CI=1.03-1.39) (Table 2).  Increasing CLL/SLL risk was not observed with increasing number of 

homozygote class I or class II loci, though when evaluating total numbers of class I and II loci 

altogether, a borderline significant increased risk was observed for those with all five 

homozygote class I and II loci (OR=1.57, 95% CI=1.04-2.38, p-trend = 0.029; FDR=0.055) 

(Table 2).  We were unable to isolate CLL/SLL associations with HLA zygosity to any singular 

locus (Table 3).   
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DISCUSSION 

 Based on the largest number of NHL subtypes to date for whom imputed HLA data is 

available, we demonstrate that HLA homozygosity plays a role in four B-cell NHL subtypes, and 

that the associations between homozygosity at HLA Class I and/or Class II loci are distinct by 

these subtypes.  Specifically, FL risk was associated with homozygosity at HLA class II loci, but 

not Class I loci.  CLL/SLL risk appeared to be associated (borderline) with homozygosity at 

either HLA Class I or Class II loci.  In contrast, while both DLBCL and MZL were associated 

with zygosity at HLA Class I and Class II loci, the associations appeared specific to Class I HLA-

B and –C loci and to the Class II HLA-DRB1 locus.  We note that the p-trends evaluated for each 

additional homozygous loci remained statistically significant after adjust for multiple 

comparisons, with exception of that for CLL/SLL.  Our results add to the growing body of 

literature implicating different roles for HLA class I and II loci, key modulators of human 

immune response, in the heterogeneous etiologies of B-NHL subtypes (1-4).  Our results also 

add to the current literature which points to similarities in the etiologic profiles of DLBCL and 

MZL (13) .  Overall, these data support the importance of HLA diversity in NHL etiology, with 

the type of HLA diversity potentially varying by NHL subtype. 

The underlying hypothesis regarding the role of HLA zygosity and disease is that 

homozygosity at HLA loci reduces the diversity of peptides that can be presented, with the 

hypothesis that these peptides can reflect etiologic agents such as infectious diseases, self-

antigens for atopic or autoimmune conditions, and even cancerous cells.  At present, there is a 

growing body of literature supporting that HLA heterozygotes are more resistant to infectious 

diseases, and the corollary, that HLA homozygotes are more susceptible to infectious diseases. 

Specifically, HLA class I heterozygote advantage (e.g., presenting greater diversity of antigenic 
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peptides to CD8+ cytotoxic T lymphocytes) has been demonstrated for slowing progression to 

AIDS (6), whereas heterozygotes at HLA class II loci appear to have greater ability in clearing 

HBV infection (8) and HCV infection (14) than homozygotes.  HLA-DRB1 heterozygosity has 

also been reported to confer favorable outcome (e.g., against end-stage liver disease) among 

HCV-infected liver transplant recipients (15). There are also reports evaluating HLA zygosity as 

a key contributor in autoimmune conditions.  For example, reports of heterozygote advantage for 

class II loci and inflammatory bowel disease (16) and for class I loci and psoriatic arthritis (17) 

have both been published.  Specific associations between HLA zygosity and NHL have been 

limited to reports of CLL.  Evidence of the importance of HLA zygosity include reports that 

homozygosity at HLA-A, -B, and -DRB1 are associated with CLL (18) and with CLL disease 

progression (19-20), with the hypothesis that limited HLA diversity provided an advantage of the 

tumor to escape the immune response.   

HLA heterozygote advantage is posited to work in concert with specific allele 

associations (as opposed to exclusively) (21); our results thus complement ongoing efforts that 

have identified the most role that specific HLA alleles have on NHL subtype risk. In sensitivity 

analysis, we evaluated the effect of known HLA associations and, in stratified and adjusted 

analysis, did not find that these associations diminish the reported association between HLA 

zygosity and NHL subtypes. Further evaluation into how these complementary associations act 

in concert are thus warranted and inclusion of HLA zygosity in the construct of genetic risk 

scores for each NHL subtype should be considered.   

Further research to understand the association – or independence - between HLA zygosity 

with infections and autoimmune conditions and NHL risk are also needed (21-24).   For 
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example, efforts to evaluate autoimmune conditions linked to class II alleles (e.g., Sjögren 

syndrome, systemic lupus erythromatosus, and rheumatoid arthritis) (23) with class II zygosity in 

relation to FL risk could provide potential insight regarding immune mechanisms modulating FL 

risk.  A particularly pressing research question is understanding what are the underlying 

mechanisms of individual allele-associations and how are they distinct from HLA zygosity 

associations.  Similar efforts to identify commonalities between autoimmune and infectious 

disease associations with HLA loci and zygosity among other NHL subtypes are also warranted.  

Finally, extension of these efforts towards understanding the genetic and structural variants and 

HLA expression are also required to fully understand the implication of HLA-allelic associations 

in the context of overall class I or II zygosity.   

Study strengths include the large sample size available to evaluate individual NHL 

subtypes which no studies have been able to do adequately to date (25).  Potential study 

limitations include possible misclassification of HLA alleles due to imputation, although direct 

comparison of a subset with genotyped HLA alleles showed >97% concordance (2).  While the 

present analysis leverages the available GWAS data through imputation of HLA alleles, we 

recognize that confirmation with direct HLA allelotyping may provide additional levels of 

information not ascertained in imputed data. 

Our study’s restriction to individuals of European ancestry requires our results to be 

replicated for other racial or ethnic groups, as the associations may not apply universally to all 

ethnic groups. However, as demonstrated for HLA associations in autoimmune conditions, fine-

mapping studies show that the same amino acid changes contribute to disease in both European 

and Asian populations (26), implicating similar underlying biologic mechanisms for disease 
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etiology. Studies limitations also include our inability to evaluate heterogeneity within NHL 

subtypes, either defined molecularly, by infectious etiology, or by organ site.    

In summary, our results add to the growing evidence of HLA alleles as susceptibility loci 

in the etiology of B-cell NHL subtypes.  In addition to ongoing fine-mapping studies being 

conducted as follow-up to GWAS, our results here suggest that functional studies aiming to 

understand the underlying biology of zygosity and NHL subtype risk will also be important.  

Additional efforts to evaluate larger-scale zygosity, such as of immune genes and perhaps the 

entire genome may prove important in understanding the full extent of the role diversity of the 

immune response plays in lymphoma etiology. 
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TABLES 

Table 1. Genome-wide association studies (GWAS) included in the evaluation of human 

leukocyte antigen (HLA) homozygosity and risk of four non-Hodgkin lymphoma (NHL) 

subtypes: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), chronic 

lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), and marginal zone lymphoma 

(MZL). 

Table 2: Effect of homozygosity at the three HLA class I loci -A, -B and -C and three HLA class 

II loci -DRB1, DQB1, and DPB1 on susceptibility to four NHL subtypes (DLBCL, FL, 

CLL/SLL, and MZL) in participants of European-descent within participating lymphoma 

genome-wide association studies (analyses adjusted for sex, study or region, age, and 

ancestry/principal components). 

Table 3: Effects of zygosity by individual HLA class I and class II loci, for DLBCL, MZL, and 

FL (analyses adjusted for sex, age, and ancestry/principal components). 
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Table 1. Genome wide association studies (GWAS) included in the evaluation of human leukocyte antigen (HLA) homozygosity and risk of four non-Hodgkin  
lymphoma (NHL) subtypes: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), chronic lymphocytic leukemia/small lymphocytic lymphoma  
(CLL/SLL), and marginal zone lymphoma (MZL). 

NHL Cases Controls 
Study Name Study GWAS Platform DLBCL FL CLL/SLL MZL 

  Abbreviation   (n=3617) (n=2686) (n=2878) (n=741)   (n=8753) 

Alpha-Tocopherol, Beta-Carotene Lung Cancer Prevention Study  ATBC Illumina OmniExpress 43 17 50 1 238 

British Columbia Non-Hodgkin Lymphoma Study  BCCA Illumina OmniExpress 92 98 26 40   109 
American Cancer Society Cancer Prevention Study-II Nutrition 
Cohort  CPS-II Illumina OmniExpress 188 141 251 52 220 
Treatment program of DLBCL patients from the Groupe d'Etude 
des Lymphomes de l'Adulte (GELA) consisting in LNH03-1B, 2B, 
3B, 39B, 6B and 7B. GELA Illumina HumanHap 610K 549 0 0 0   0 

Epidemiology & Genetics Unit Lymphoma Case-Control study  ELCCS Illumina OmniExpress 229 182 0 0 245 

Environmental and genetic risks factors study in adult lymphoma  ENGELA Illumina OmniExpress 56 30 44 5   63 

European  Prospective Investigation into Cancer, Chronic 
Diseases, Nutrition and Lifestyles EPIC Illumina OmniExpress 46 46 72 8 265 

Epilymph case-control study in six European countries  EpiLymph Illumina OmniExpress 198 123 158 59   211 

Genetic Epidemiology of CLL (GEC) Consortium GEC Affymetrix 6.0 0 0 391 0 296 

Health Professionals Follow-up Study HPFS Illumina OmniExpress 12 5 19 5   85 

Iowa-Mayo SPORE Molecular Epidemiology Resource  
IOWA-MAYO 
SPORE Illumina OmniExpress 146 228 242 112 0 

Multicenter Italian study on gene-environment interactions in 
lymphoma etiology: translational aspects Italian GxE Illumina OmniExpress 16 16 5 6 45 

Mayo Clinic Case-Control Study of NHL and CLL 
MAYO-Case-
Control Illumina OmniExpress 25 245 132 75   343 

Mayo Clinic Case-Control Study of NHL and CLL 
MAYO-Case-
Control Illumina HumanHap 660W 393 0 0 0 172 

The Melbourne Collaborative Cohort Study  MCCS Illumina OmniExpress 71 58 57 8   75 

Memorial-Sloan Kettering Lymphoproliferative Disorders Study  MSKCC Illumina OmniExpress 175 174 36 47 4 
National Cancer Institute-Surveillance, Epidemiology, and End 
Results Interdisciplinary Case-Control Study of Non-Hodgkin's 
Lymphoma  NCI-SEER Illumina OmniExpress 251 217 86 62   270 

Nurses' Health Study NHS Illumina OmniExpress 28 24 18 12 88 

New South Wales non-Hodgkin lymphoma study  NSW Illumina OmniExpress 115 146 13 34   154 

New York University Women's Health Study  NYU-WHS Illumina OmniExpress 8 11 10 6 53 

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial PLCO Illumina OmniExpress 153 115 278 26   3076 

Scandinavian Lymphoma Epidemiology Study SCALE Illumina OmniExpress 405 0 395 64 291 

Scandinavian Lymphoma Epidemiology Study SCALE Illumina HumanHap 317K 0 376 0 0   791 

Molecular Epidemiology of non-Hodgkin lymphoma 1 UCSF1 Illumina OmniExpress 38 7 22 91 10 

Molecular Epidemiology of non-Hodgkin lymphoma 1 UCSF1 
Illumina HumanCNV370-

Duo 254 210 213 0   749 

Molecular Epidemiology of non-Hodgkin lymphoma 2 UCSF2 Illumina OmniExpress 0 119 0 0 349 

Utah Chronic Lymphocytic Leukemia Study UTAH Illumina HumanHap 610K 0 0 321 0   405 

Population-based NHL case-control study in Connecticut women  YALE Illumina OmniExpress 126 98 39 28 146 
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Table 2: Effect of homozygosity at the three HLA class I loci -A, -B and -C and three HLA class I loci -DRB1, DQB1, and DPB1 on 
susceptibility to four NHL subtypes (DLBCL, FL, CLL/SLL, and MZL) in Caucasian participants within participating lymphoma 
genome-wide association studies (analyses adjusted for sex, study or region, age, and ancestry/principal components). 

                      

    
Controls 
(n=6912) 

DLBCL 
(n=3617) 

Controls 
(n=7880) 

FL 
(n=2686) 

    n % n % OR (95% CI) n % n % OR (95% CI) 

Class I locus           
HLA-A Heterozygote 6039 89 3096 86 1.00 (ref)  6843 88 2330 88 1.00 (ref)  

Homozygote 756 11 484 14 1.14 (0.98-1.34) 923 12 313 12 1.03 (0.88-1.21) 

HLA-B Heterozygote 6430 93 3297 91 1.00 7330 93 2469 92 1.00 (ref)  
Homozygote 476 7 318 9 1.22 (1.01-1.47) 544 7 216 8 1.14 (0.94-1.38) 

HLA-C Heterozygote 6238 90 3182 88 1.00 7112 90 2383 89 1.00 (ref)  
Homozygote 674 10 435 12 1.20 (1.02-1.41) 768 10 302 11 1.13 (0.96-1.34) 

Total # of homozygous 
Class I loci 0 5535 80 2792 77 1.00 6266 80 2121 79 1.00 (ref)  

1 950 14 524 14 1.05 (0.90-1.21) 1120 14 361 64 0.98 (0.84-1.13) 
2 297 4 187 5 1.33 (1.05-1.69) 342 4 132 5 1.18 (0.93-1.51) 

    3 130 2 114 3 1.31 (0.95-1.81) 152 2 72 3 1.29 (0.93-1.79) 
p-trend         0.0008 0.12 
OR per locus          1.11 (1.03-1.19) 1.06 (0.98-1.15) 

Class II locus           

HLA-DRB1 Heterozygote 6331 92 3173 88 1.00 (ref)  7212 92 2339 87 1.00 (ref)  
Homozygote 561 8 435 12 1.51 (1.27-1.78) 648 8 338 13 1.54 (1.31-1.82) 

HLA-DQB1 Heterozygote 6137 89 3055 84 1.00 (ref)  6999 89 2255 84 1.00 (ref)  
Homozygote 773 11 561 16 1.30 (1.12-1.51) 879 11 431 16 1.42 (1.23-1.65) 

HLA-DPB1 Heterozygote 5544 80 2817 78 1.00 (ref)  6292 80 2064 77 1.00 (ref)  
Homozygote 1356 20 798 22 1.05 (0.93-1.19) 1576 20 620 23 1.24 (1.10-1.40) 

Total # of homozygous 
Class II loci 0 4889 71 2341 65 1.00 (ref)  5545 71 1694 63 1.00 (ref)  

1 1428 21 830 23 1.08 (0.95-1.22) 1656 21 660 25 1.28 (1.14-1.45) 
    2 426 6 344 10 1.51 (1.25-1.83) 493 6 239 9 1.47 (1.21-1.78) 

3 136 2 91 3 1.30 (0.92-1.82) 153 2 82 3 1.89 (1.37-2.61) 
p-trend         <0.0001 <0.0001 

OR per locus         1.15 (1.07-1.23) 1.24 (1.15-1.32) 
Total # of 
homozygous Class I  0 3972 59 1866 52 1.00 (ref)  4486 58 1390 53 1.00 (ref)  
or Class II loci 1 1750 26 992 28 1.11 (0.98-1.25) 2029 26 710 27 1.13 (1.00-1.28) 

2 625 9 407 11 1.32 (1.11-1.58) 741 10 293 11 1.22 (1.03-1.45) 
3 232 3 128 4 0.96 (0.73-1.27) 259 3 130 5 1.55 (1.19-2.00) 
4 98 1 82 2 1.92 (1.30-2.81) 114 1 58 2 1.94 (1.32-2.85) 
5+ 84 1 92 3 1.72 (1.19-2.49) 100 1 50 2 1.50 (1.02-2.22) 
p-trend         <0.0001 <0.0001 

  OR per locus         1.10 (1.06-1.16)         1.13 (1.08-1.18) 

*adjusted by geographic region (continent) rather than study 
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Table 2 (continued): Effect of homozygosity at the three HLA class I loci -A, -B and -C and three HLA class I loci -DRB1, DQB1, 

and DPB1 on susceptibility to four NHL subtypes (DLBCL, FL, CLL/SLL, and MZL) in Caucasian participants within participating 
lymphoma genome-wide association studies (analyses adjusted for sex, study or region, age, and ancestry/principal 
components). 

                        

    
Controls 
(n=7441) 

CLL/SLL 
(n=2878) 

Controls 
(n=5991) 

MZL* 
(n=741) 

    n % n % OR (95% CI) n % n % OR (95% CI) 

Class I locus           
HLA-A Heterozygote 6504 89 2460 87 1.00 (ref)  5244 89 649 89 1.00 (ref)  

Homozygote 821 11 378 13 1.19 (1.02-1.38) 646 11 78 11 1.06 (0.82-1.38) 

HLA-B Heterozygote 6916 93 2656 92 1.00 (ref)  5576 93 675 91 1.00 (ref)  
Homozygote 519 7 221 8 1.04 (0.87-1.26) 411 7 66 9 1.34 (1.01-1.78) 

HLA-C Heterozygote 6719 90 2576 90 1.00 (ref)  5414 90 651 88 1.00 (ref)  
Homozygote 722 10 301 10 1.10 (0.94-1.29) 577 10 90 12 1.33 (1.04-1.70) 

Total # of homozygous 
Class I loci 0 5965 80 2225 77 1.00 (ref)  4805 80 586 79 1.00 (ref)  

1 1009 14 457 70 1.19 (1.03-1.36) 822 14 94 13 0.97 (0.76-1.23) 
2 323 4 130 5 1.08 (0.85-1.37) 256 4 37 5 1.16 (0.80-1.68) 

    3 144 2 66 2 1.16 (0.83-1.62) 108 2 24 3 2.13 (1.33-3.42) 
p-trend         0.0518 0.026 
OR per locus          1.08 (1.00-1.16) 1.08 (1.00-1.16) 

Class II locus           

HLA-DRB1 Heterozygote 6810 92 2583 90 1.00 (ref)  5500 92 663 89 1.00 (ref)  
Homozygote 608 8 286 10 1.19 (1.00-1.42) 480 8 78 11 1.45 (1.12-1.89) 

HLA-DQB1 Heterozygote 6603 89 2494 87 1.00 (ref)  5310 89 638 98 1.00 (ref)  
Homozygote 836 11 384 13 1.20 (1.03-1.39) 681 11 10 2 1.20 (0.95-1.52) 

HLA-DPB1 Heterozygote 5972 80 2320 81 1.00 (ref)  4809 80 582 79 1.00 (ref)  
Homozygote 1455 20 554 19 0.92 (0.81-1.04) 1176 20 158 21 1.13 (0.93-1.38) 

Total # of homozygous 
Class II loci 0 5255 71 1994 70 1.00 (ref)  4247 71 501 68 1.00 (ref)  

1 1543 21 586 20 0.95 (0.84-1.08) 1241 21 159 21 1.08 (0.89-1.31) 
    2 462 6 224 8 1.20 (0.99-1.46) 363 6 60 8 1.42 (1.05-1.91) 

3 143 2 62 2 1.10 (0.77-1.57) 123 2 20 3 1.48 (0.89-2.43) 
p-trend         0.1924 0.0124 

OR per locus         1.04 (0.97-1.12) 1.15 (1.03-1.28) 
Total # of homozygous 
Class I or Class II loci 0 4275 59 1569 56 1.00 (ref)  3446 59 407 56 1.00 (ref)  

1 1880 26 767 27 1.07 (0.95-1.20) 1528 26 181 25 1.03 (0.85-1.25) 
2 683 9 284 10 1.11 (0.94-1.32) 538 9 71 10 1.16 (0.87-1.53) 
3 247 3 106 4 1.10 (0.84-1.44) 204 3 39 5 1.52 (1.04-2.21) 
4 111 2 49 2 1.06 (0.71-1.57) 83 1 16 2 1.84 (1.04-3.27) 
5+ 87 1 49 2 1.57 (1.04-2.38) 70 1 12 2 1.64 (0.86-3.13) 
p-trend         0.029 0.0024 

  OR per locus         1.05 (1.01-1.10)         1.12 (1.04-1.20) 

*adjusted by geographic region (continent) rather than study 
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Table 3: Effects of zygosity by individual HLA Class I and Class II loci, for DLBCL, MZL, FL, and CLL/SLL ( analyses adjusted for sex,  
age, study/region, and ancestry/principal components). 

      
Controls 
(n=6912) 

DLBCL 
(n=3617) 

Controls 
(n=7880) 

FL 
(n=2686) 

      n % n % OR (95% CI) n % n % OR (95% CI) 

Class I locus 

HLA-B HLA-C 

Heterogyzote Heterozygote 6133 89 3127 87 1.00 (ref) 6992 89 2350 88 1.00 (ref) 

Heterogyzote Homozygote 297 4 170 5 1.07 (0.83-1.36) 338 4 119 4 1.01 (0.79-1.29) 

Homozygote Heterozygote 100 1 53 1 0.89 (0.58-1.38) 115 1 33 1 0.81 (0.51-1.28) 

Homozygote Homozygote 376 5 265 7 1.31 (1.06-1.60) 429 5 183 7 1.23 (1.00-1.52) 

 p-trend 0.02 0.1258 
 p-trend OR 1.08 (1.01-1.15) 1.05 (0.99-1.13) 

Class II locus 

HLA-DPB1 HLA-DQB1 HLA-DRB1 

Heterozygote Heterozygote Heterozygote 4889 72 2341 65 1.00 (ref) 5545 71 1694 63 1.00 (ref) 

Heterozygote Heterozygote Homozygote 52 1 42 1 2.10 (1.24-3.55) 62 1 48 2 2.60 (1.66-4.06) 

Heterozygote Homozygote Heterozygote 239 3 149 4 1.01 (0.77-1.33) 263 3 122 5 1.33 (1.03-1.73) 

Heterozygote Homozygote Homozygote 345 5 277 8 1.54 (1.25-1.91) 403 5 195 7 1.42 (1.14-1.76) 

Homozygote Heterozygote Heterozygote 1137 17 639 18 1.05 (0.92-1.21) 1331 17 490 18 1.21 (1.06-1.39) 

Homozygote Heterozygote Homozygote 28 0 24 1 1.44 (0.77-2.71) 30 0 13 0 1.33 (0.66-2.68) 

Homozygote Homozygote Heterozygote 53 1 43 1 1.38 (0.82-2.33) 60 1 31 1 1.88 (1.14-3.10) 

Homozygote Homozygote Homozygote 136 2 91 3 1.30 (0.92-1.82) 153 2 82 3 1.89 (1.37-2.61) 

p-trend 0.0091 <0.0001 
p-trend OR 1.04 (1.01-1.06) 1.07 (1.05-1.10) 
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Table 3 (continued): Effects of zygosity by individual HLA Class I and Class II loci, for DLBCL, MZL, FL, and CLL/SLL (analyses adjusted  
for sex, age, study/region, and ancestry/principal components). 

      
Controls 
(n=5991) 

MZL* 
(n=741) 

Controls 
(n=7441) 

CLL/SLL 
 (n=2878) 

      n % n % OR (95% CI) n % n % OR (95% CI) 

Class I locus 

HLA-B HLA-C 

Heterogyzote Heterozygote 5321 89 637 86 1.00 (ref) 6608 89 2520 88 1.00 (ref) 

Heterogyzote Homozygote 255 4 38 5 1.28 (0.89-1.85) 308 4 135 5 1.19 (0.94-1.50) 

Homozygote Heterozygote 89 1 14 2 1.27 (0.70-2.30) 106 1 55 2 1.10 (0.75-1.62) 

Homozygote Homozygote 322 5 52 7 1.38 (1.01-1.90) 413 6 166 6 1.04 (0.84-1.29) 

 p-trend 0.02 0.43 
 p-trend OR 1.12 (1.02-1.24) 1.03 (0.96-1.10) 
Class II 
locus 

HLA-DPB1 HLA-DQB1 HLA-DRB1 

Heterozygote Heterozygote Heterozygote 4247 71 501 68 1.00 (ref) 5255 71 1994 70 1.00 (ref) 

Heterozygote Heterozygote Homozygote 42 1 9 1 2.10 (0.99-4.45) 61 1 39 1 1.76 (1.09-2.86) 

Heterozygote Homozygote Heterozygote 213 4 24 3 0.80 (0.51-1.26) 257 3 110 4 1.15 (0.88-1.49) 

Heterozygote Homozygote Homozygote 297 5 48 6 1.43 (1.03-2.00) 378 5 172 6 1.12 (0.90-1.39) 

Homozygote Heterozygote Heterozygote 986 17 126 17 1.11 (0.89-1.37) 1225 17 437 15 0.88 (0.76-1.01) 

Homozygote Heterozygote Homozygote 18 0 1 0 0.62 (0.08-4.82) 26 0 13 0 1.15 (0.54-2.48) 

Homozygote Homozygote Heterozygote 48 1 11 1 1.54 (0.75-3.16) 58 1 39 1 1.78 (1.11-2.85) 

Homozygote Homozygote Homozygote 123 2 20 3 1.48 (0.90-2.44) 143 2 62 2 1.10 (0.77-1.57) 

p-trend 0.04 0.95 
p-trend OR 1.04 (1.00-1.09) 1.00 (0.97-1.03) 
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