

This is a repository copy of *Computationally efficient*, *electro-thermally coupled model for permanent magnet machines in electric vehicle traction applications*.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/131206/</u>

Version: Accepted Version

Proceedings Paper:

Chen, L., Chen, X., Wang, J. orcid.org/0000-0003-4870-3744 et al. (1 more author) (2017) Computationally efficient, electro-thermally coupled model for permanent magnet machines in electric vehicle traction applications. In: UNSPECIFIED SAE Thermal Management Systems Symposium, TMSS 2017, 10-12 Oct 2017, Plymouth, MI, USA. .

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

COMPUTATIONALLY EFFICIENT, ELECTRO-THERMALLY COUPLED MODEL FOR PERMANENT **MAGNET MACHINES IN ELECTRIC VEHICLE TRACTION APPLICATIONS**

Liang Chen, Xiao Chen, Jiabin Wang and Antonio Griffo, University of Sheffield, UK

University Sheffield

Outline

Research Motivation

- > Methodology (Equivalent d-axis current representing temperature effect)
- Electro-thermally Coupled Model
- FE Validation
- Simulation Results
- Experimental Validation

Research Motivation

□ Electrical machine temperatures are subject to its copper loss, core loss, etc.

□ Machine copper loss and core loss are largely affected by machine temperatures

- a) Winding resistance increases by 39% for every 100°C temperature rise;
- b) Magnet remanence reduces by 12% for every 100°C temperature rise (for NdFeB);
- c) High nonlinearity in the machine flux linkage map due to core saturation

Research Motivation

□ Electrical machine temperatures are subject to its copper loss, core loss, etc.

□ Machine copper loss and core loss are largely affected by machine temperatures

- a) Winding resistance increases by 39% for every 100°C temperature rise;
- b) Magnet remanence reduces by 12% for every 100°C temperature rise (for NdFeB);
- c) High nonlinearity in the machine flux linkage map due to core saturation

Essential to accurately model the electro-thermally coupling effect in the electrical machine, in order to accurately simulate the waste heat recovery in the vehicle powertrain system.

10kW 18-slot 8-pole IPM machine

 $B_{r2}(T_2) = B_r(T_1) \times [1 + \alpha \times (T_2 - T_1)]$

where α is temperature coefficient, B_{r2} and B_{r1} represent the remanence at temperature of T_2 and T_1 , respectively.

d-axis flux linkage increment over *d*-, *q*-axis current ranges when temperature decreases from 100°C to 20°C (normalized to the flux-linkage due to permanent magnets at 120°C)

The increment can be up to 18%; The increment is non-uniform in the range of *d*- and *q*axis currents

10kW 18-slot 8-pole IPM machine

 $B_{r2}(T_2) = B_r(T_1) \times [1 + \alpha \times (T_2 - T_1)]$

where α is temperature coefficient, B_{r2} and B_{r1} represent the remanence at temperature of T_2 and T_1 , respectively.

q-axis flux linkage increment over *d*-, *q*-axis current ranges when temperature decreases from 100°C to 20°C (normalized to the flux-linkage due to permanent magnets at 120°C)

Neglecting the temperature effect on the *q*-axis flux linkage does not incur large error

10kW 18-slot 8-pole IPM machine

 $B_{r2}(T_2) = B_r(T_1) \times [1 + \alpha \times (T_2 - T_1)]$

where α is temperature coefficient, B_{r2} and B_{r1} represent the remanence at temperature of T_2 and T_1 , respectively.

FE predicted open-circuit *d*-axis flux linkage ψ_d variation with magnet temperature.

Due to saturation effect, ψ_d varies not strictly linear with temperature

Equivalent *d*-axis Current Representing Temperature Effects

Magnetic flux path

Equivalent magnetic circuit

Therefore the total equivalent excitation current in the *d*-axis seen by the stator windings is i_d+i_m

 i_m changes proportionally to the temperature variation

Equivalent *d*-axis Current Representing Temperature Effects

Therefore, when temperature changes,

$$\begin{split} \psi_{d}(i_{d}, i_{q}, T_{1}) &= \psi_{D}(i_{d} + i_{m1}, i_{q}) \\ \psi_{d}(i_{d}, i_{q}, T_{2}) &= \psi_{D}(i_{d} + i_{m2}, i_{q}) \\ \psi_{d}(i_{d}, i_{q}, T_{2}) &= \psi_{D}(i_{d} + i_{m1} + i_{m2} - i_{m1}, i_{q}) \\ &= \psi_{d}(i_{d} + (i_{m2} - i_{m1}), i_{q}, T_{1}) \\ &= \psi_{d}(i_{d} + i_{mc}, i_{q}, T_{1}) \end{split}$$
where $i_{mc} = i_{m2} - i_{m1}$

Therefore the flux linkages at a new temperature T_2 can be predicted using the model at the reference temperature T_1 with its d-axis current displaced by a constant i_{mc} , which is equal to the magnet equivalent current difference between the two temperatures.

Equivalent *d*-axis Current Representing Temperature Effects

Considering the flux linkage variation due to different rotor position:

$$\psi_d(i_d, i_q, \theta, T_2) = \psi_d(i_d + i_{mc}, i_q, \theta, T_1)$$

$$\psi_q(i_d, i_q, \theta, T_2) = \psi_q(i_d + i_{mc}, i_q, \theta, T_1)$$

Neglecting the saturation effect in the rotor bridge region:

 $i_{mc} = i_{m2} - i_{m1} = i_{m1} \times \alpha \times (T_2 - T_1)$

 i_{m1} can be calculated using the short-circuit condition:

 $\psi_D(i_{d-sc1} + i_{m1}, 0) = \psi_d(i_{d-sc1}, 0, T_1) = 0$

Once i_{m1} has been determined from the FE simulation of the short-circuit condition at the reference temperature T_1 , the i_{mc} at any given temperature T_2 can be obtained.

Then, use the modified *d*-axis current $i_d + i_{mc}$ to calculate the flux linkages and torque at any temperature.

SAE INTERNATIONAL

Inverse Flux Linkage Model with Temperature Effects

Conventional flux linkage model:

 $\Psi_{dq}(i_{d}, i_{q}, \theta, T)$

 ψ_q

 $i_d(\psi_d, \psi_q, \theta, T) = i_{d1}(\psi_d, \psi_q, \theta, T_1) - k(T - T_1)$

$$i_q(\psi_d, \psi_q, \theta, T) = i_{q1}(\psi_d, \psi_q, \theta, T_1)$$

FE Validation

x 10⁻³ $rac{1}{2.5}$ $rac{1}{-1}$ $rac{1}{-4.5}$ $rac{1}{-35}$ $rac{-70}{-105}$ $rac{10}{-140}$ $rac{10}{40}$ $rac{80}{80}$ 120 160

q-axis flux linkage error

RMS error over i_d and i_q ranges:

d-axis flux linkage error

Variables	% change (from 100 °C to 20 °C)	Relative error of proposed model
${\psi}_d$	10.82%	1.41%
ψ_q	1.45%	1.51%
ψ_m	8.98%	1.28%
T_q	4.66%	0.98%

Time Domain Simulation

Rated torque and base speed (35Nm and 1350r/min)

Time Domain Simulation

Field weakening operation (20Nm and 4500r/min)

Good agreement achieved

Electro-thermally Coupled Simulation

140 140 130 130 Winding temperature (^{o}C) Magnet temperature (^{o}C) 120 120 110 110 100 100 90 90 w/o temperature effect w/o temperature effect 80 80 70 70 with temperature effect with temperature effect 60 60 50 50 0.5 0.5 0 1.5 2 1.5 2 Time (s)Time (s)x 10 x 10

Magnet temperature:

Rated torque and base speed operation

'w/o temperature effect' refers to assuming the machine temperature is fixed at 100°C

With the temperature effect considered, the winding and magnet temperatures are ~5°C higher than the results calculated using the conventional method when the machine gets into thermal steady state.

Winding temperature:

20 Artemis Urban Driving Cycles, 10° gradient

Winding temperature:

Magnet temperature:

With the temperature effect considered, the winding and magnet temperatures are ~20°C higher than the results calculated using the conventional method and ~10°C higher than the results considering only the temperature effects on winding resistance.

Test rig

Power resistors:

A prototype machine of the 36-slot 6-pole IPM is driven by a dynamometer in the generator mode with a resistive load at different temperatures.

With the calibrated remanence, the predicted open-circuit back EMFs at 20°C have good agreements with the measure ones.

Current Measurements

6% reduction in fundamental current when temperature rises from 20°C to 70°C

Comparison

20°C 70°C Test-voltage - Model-voltage - Model-voltage - Test-voltage ____ 60 80 Test-current ___ Model-current 60 - Model-current 80 - Test-current 60 60 40 40 40 40 02-20 0 00-20 **Voltage (V)** 20 (A) 0 D -20 O2-Current (A) 20 0 0.007 0.012 0.017 0.002 0.009 0.019 0.004 0,014 -20 -40 -40 -40 -60 -40 -60 -60 -80 Time (s) Time (s) -60 -80

Good agreement achieved

Measured torque

Mean torque error: 0.58%

Conclusions

- This paper proposed a high fidelity, computationally efficient method for representing the temperature effect of magnets on the machine behaviors.
- It employs an equivalent d-axis current proportional to the temperature variations in the machine flux linkage maps characterized at a reference temperature and expressed as functions of d- and q-axis currents and rotor position.
- The method can greatly reduce simulation time for performance evaluation under driving cycles various driving conditions.
- The effectiveness of the method has been validated by finite element analysis and tests on a prototype machine.

Thank you for your attention!