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Abstract: We present a unified theoretical framework for the study of spin dynamics and

relativistic transport phenomena in disordered two-dimensional Dirac systems with pseudospin-spin

coupling. The formalism is applied to the paradigmatic case of graphene with uniform

Bychkov-Rashba interaction and shown to capture spin relaxation processes and associated

charge-to-spin interconversion phenomena in response to generic external perturbations, including

spin density fluctuations and electric fields. A controlled diagrammatic evaluation of the generalized

spin susceptibility in the diffusive regime of weak spin-orbit interaction allows us to show that the

spin and momentum lifetimes satisfy the standard Dyakonov-Perel relation for both weak (Gaussian)

and resonant (unitary) nonmagnetic disorder. Finally, we demonstrate that the spin relaxation rate can

be derived in the zero-frequency limit by exploiting the SU(2) covariant conservation laws for the spin

observables. Our results set the stage for a fully quantum-mechanical description of spin relaxation

in both pristine graphene samples with weak spin-orbit fields and in graphene heterostructures with

enhanced spin-orbital effects currently attracting much attention.

Keywords: graphene; spintronics; spin relaxation; 2DEGs; diagrammatic theory; spin-Galvanic effect;

spin-orbit coupling

1. Introduction

1.1. Spin Relaxation in Graphene

Graphene is considered a promising material for spintronics applications due to its negligible

hyperfine interactions and low spin-orbit coupling (SOC) [1,2]. Early theoretical estimates hinted

at ultra-long spin lifetime (ts ⇡ 1–100µs) [3], whereas experiments found ts to be limited to a few

nanoseconds [4]. The microscopic mechanisms responsible for the relatively fast spin relaxation in

high-mobility graphene samples remain controversial [5], but recent findings indicate that spinful

scatterers, such as magnetic adatoms, are the primary cause of spin relaxation [6–9].

The spin dynamics in graphene is conventionally probed by means of nonlocal transport

measurements [10,11]. In this approach, a spin current is injected from ferromagnetic electrodes

into the graphene channel and allowed to diffuse under the effect of a perpendicular magnetic field.

The Larmor precession of the electrons’ spin about the external field modulates the average spin

accumulation detected away from the injection point (Hanle curve), resulting in a bona fide spin

signal from which ts can be deduced. Such Hanle precession measurements found a large spread

in ts from tens of picoseconds up to a few nanoseconds [12–22], reflecting the different sample

preparation and device fabrication methods. Theoretical studies have revealed a number of possible
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spin relaxation sources, including magnetic impurities, spin-orbit active adatoms, ripples and other

substrate effects [23–30]. Numerical approaches have provided further insight into the relaxation

mechanisms, enriching the scenario to include the impact of electron-hole puddles, pseudospin-spin

coherence and ballistic effects [31–33]. Despite the relatively short ts of clean samples, the high

charge carrier mobility allows spins to diffuse over extremely long distances up to 13µm at room

temperature [34–36].

The paradigmatic model for studies of spin relaxation in graphene is the two-dimensional (2D)

Hamiltonian of massless Dirac fermions supplemented with a (uniform or random) Bychkov-Rashba

interaction [37]. This type of SOC has its origin in perturbations breaking the inversion symmetry,

which include substrate-induced electric fields, adatoms, and ripple-induced gauge fields [3,4].

The Bychkov-Rashba interaction in graphene (hereafter referred to as Rashba SOC) can be seen

as a non-Abelian gauge field that couples to the intrinsic pseudospin of Dirac fermions, enabling spin

relaxation upon impurity scattering, e.g., via the familiar Dyakonov-Perel (DP) mechanism [38].

Graphene with random Rashba SOC has been recently shown to host novel charge-to-spin

conversion effects by means of a quantum extension of the Boltzmann transport theory [39,40]. Previous

theoretical descriptions of spin relaxation in such 2D Dirac models with uniform Rashba interaction were

instead based on semiclassical approximations [41,42]. On the other hand, a fully quantum-mechanical

theory of spin-orbit-coupled transport for 2D Dirac-Rashba systems in the static (DC) limit has been

formulated recently by the authors [43,44]. Analogously to the 2D electron gas (2DEG) case [45–47],

it was shown that impurity scattering corrections exactly balance the intrinsic generation of a spin

Hall current for spin-independent disorder, hJSHiE = 0, where E is an external DC electric field [43].

The vanishing of the spin Hall effect in this model is connected to the establishment of a robust

nonequilibrium in-plane spin polarization hSiE 6= 0 with S?E , known as inverse spin-Galvanic

effect (ISGE) [44]. However, a time-dependent framework able to unveil how the steady state is

reached within the 2D Dirac-Rashba model is yet to be developed. In this paper, we address this

problem. We derive the coupled spin-charge drift-diffusion equations for nonmagnetic disorder

and generic homogeneous perturbations by means of the diagrammatic technique for disordered

electrons. A similar approach has been adopted very recently in the context of 2DEGs with both

Bychkov-Rashba and Dresselhaus interactions [48], where it was shown perfect agreement between the

Kubo diagrammatic formalism and the Keldysh SU(2) gauge theory [49]. In this work, we extend the

standard quantum diagrammatic formalism to accommodate the enlarged 2 (spin) ⌦ 2 (pseudospin)

Clifford structure of the 2D Dirac-Rashba model leading to a 16-dimensional diffuson operator in the

absence of intervalley scattering. We find that the typical DP relation connecting the spin relaxation

time (SRT) and the momentum lifetime in the weak SOC regime, that is ts ∝ t�1 for lt ⌧ 1, where

l is the SOC strength, holds at all orders in the scattering potential strength. The meaning and

interpretation of our results for the SRTs can be also clarified by the SU(2) covariant conservation laws

inherent to the diagrammatic (perturbative) structure, whose usage allows us derive the DP relation

even in the zero-frequency limit. In particular, we provide the analytical expression of ts in the unitary

limit of very strong potential scattering.

1.2. Dirac-Rashba Model

The effective low-energy Hamiltonian describing the electronic properties of 2D Dirac fermions

subject to a uniform Rashba interaction around the K point reads as [50]

H =
Z

dx Ψ†(x) [v σ · p + l (σ ⇥ s) · ẑ + V(x)]Ψ(x) , (1)

where v is the bare velocity of massless Dirac fermions, p = �ır is the 2D kinematic momentum

operator, l is the SOC strength and si, si (i = x, y, z) are Pauli matrices associated with sublattice

(pseudospin) and spin degrees of freedom, respectively. Here, V(x) is a disorder potential describing

elastic scattering from nonmagnetic short-range impurities. For simplicity, in this work, we neglect
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intervalley scattering processes, which in the pure Rashba model can renormalize the momentum

lifetime but are not expected to impact fundamentally the spin dynamics [43]. Thus, it suffices to

consider the low-energy dynamics around the K point.

The energy dispersion relation of the free Hamiltonian H0 = H � V in Equation (1) is

eµn(k) = µl + n
q

l2 + v2|k|2 , (2)

where µ, n = ±1 labels the various subbands (Figure 1a).

Figure 1. (a) Energy dispersion around the K point. The splitting of the Dirac bands leads to a spin gap

or pseudogap. (b) Tangential winding of the spin texture in regimes I and II.

The Rashba interaction aligns the electron spin at right angles to the wavevector, the so-called

spin-momentum locking configuration (Figure 1b) [51,52]. For Fermi energy |e| > 2|l| (region II),

the split Fermi surface displays counter-rotating spin textures reminiscent of (nonchiral) 2DEGs with

Rashba interaction [37]. A regime (pseudogap, region I) where the Fermi energy intersects a single

subband, with electronic states having well-defined spin helicity, extends for energies |e| < 2|l|. In the

conventional 2DEG this circumstance only happens at a single point, i.e., the intersection between the

parabolic bands [53]. Importantly, the spin texture of energy bands in the 2D Dirac-Rashba model is

modulated by the band velocity, i.e.,

hsiµnk = �µhσiµnk ⇥ ẑ , (3)

where hσiµnk = (n/v)rkeµn(k) is the pseudospin polarization vector. The entanglement between

pseudospin and spin degrees of freedom in the model is responsible for a rich energy dependence of

transport coefficients [43,44]. For brevity of notation, we assume e, l > 0 in the remainder of the work.

1.3. Disorder Effects

The random potential in Equation (1) affects the spin dynamics by inducing elastic transitions

between electronic states (µnk) ! (µ0n0k0) associated with different effective Larmor fields, Ωµnk =

lhsiµnk ⇡ �µnl k̂ ⇥ ẑ for e � l. This random change in the spin precession axis is responsible for the

irreversible loss of spin information. To describe the effects of disorder, we employ standard many-body

perturbation theory methods. We work within the zero-temperature Green’s function formalism.

The retarded (R)/advanced (A) single-particle Green’s function (a = A, R ⌘ �,+) is

Ga(x, x0; t � t0) = ⌥ı
D

0|T
h

Ψ(x, t), Ψ†(x0, t0)
i

|0
E

q(±t ⌥ t0), (4)

where T is the time-ordering symbol and q(.) is the Heaviside step function. Changing to the energy

domain, one obtains

Ga(x, x0; e) = hx0|
1

[Ga
0(e)]

�1 � V
|xi , (5)
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where Ga
0(e) = (e + ıvσ ·r+ l (σ ⇥ s) · ẑ ± ı0+)�1 is the Green’s function of free 2D Dirac-Rashba

fermions (see Appendix A).

The central quantity in our approach is the disorder averaged Green’s function, Ga(x � x0, e) =

Ga(x, x0; e), where the bar · denotes the average over all impurity configurations (Figure 2a). Its

momentum representation is

Ga
k(e) =

1

[Ga
0k(e)]

�1 � Σa
k(e)

, (6)

where Ga
0k(e) is the Fourier transform of Ga

0(x � x0; e) and

Σa
k(e) =

Z

d(x � x0) e�ık(x�x0)hx0|V
1

1 � Ga
0(e)V

|xi (7)

is the disordered averaged self-energy within the noncrossing approximation. The latter neglects

coherent multiple impurity scattering corrections, which is justified in the diffusive regime with

et � 1 [54]. The self-energy induced by short-range impurities is k-independent, Σa
k(e) ⌘ Σa(e), and

hence we drop this index in what follows.

(b)

(a)

(c)

Figure 2. (a) Dyson equation for the disordered averaged Green’s function; and (b,c) approximation

schemes for evaluation of the self-energy: Gaussian (b); and T-matrix approximation (TMA) (c).

Box shows Feynman rules for the disorder potential insertions (dashed lines) and impurity density

insertion (red crosses).

To account for the characteristic resonant (unitary) scattering regime of graphene with relaxation

time t ∝ e [55,56], we adopt a T-matrix approach by evaluating the self-energy Σa(e) at all orders in V.

We obtain

Σa(e) = ni
u0

1 � u0ga
0(e)

+ O(n2
i ) = niT

a(e) , (8)

where u0 parameterizes the scattering strength of the spin-transparent (scalar) impurities, ni is the

impurity areal density and Ta(e) is the single-impurity T-matrix. Note that multiple impurity

scattering diagrams ∝ O(n2
i ) can be neglected in the limit et � 1, i.e., away from the Dirac

point (refer to Section 2.4 for a brief discussion of the spin relaxation within the full noncrossing

approximation). We have also introduced

ga
0(e) = ga

0,0(e)g0 + ga
0,zz(e) gzz + ga

0,r(e) gr , (9)
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as the momentum integrated Green’s function of the clean system (cf. Equation (A1) of Appendix A),

where g0 ⌘ s0s0 is the 4 ⇥ 4 identity matrix, gzz = szsz, gr = (σ ⇥ s)z and

ga
0,0(e) = �

1

8pv2
[e (LII(e) + aıp qII(e)) + l (LI(e) + aıp qI(e))] , (10)

ga
0,zz(e) = �

l

8pv2
(LI(e) + aıp qI(e)) , (11)

ga
0,r(e) = +

e

16pv2
(LI(e) + aıp qI(e)) . (12)

In the above, qI(II)(e) = q(e + 2l)⌥ q(e � 2l) selects the energy regime and

LI(II)(e) = log

�

�

�

�

Λ2

e(e + 2l)

�

�

�

�

⌥ log

�

�

�

�

Λ2

e(e � 2l)

�

�

�

�

, (13)

with Λ denoting the ultraviolet cutoff of the low-energy theory [55].

The self-energy simplifies in two important limiting cases: (i) weak Gaussian disorder

(|u0| ⌧ |ga
0|
�1); and (ii) unitary disorder (u0 ! ±∞). In the weak scattering regime, it suffices

to only take into account the “rainbow” diagram with two impurity lines in the Dyson expansion

(see Figure 2b). For scalar disorder, this approximation is equivalent to assuming that the disorder

potential satisfies white-noise statistics [54]

hV(x)i = 0 , (14)

hV(x)V(x0)i = niu
2
0 d(x � x0) . (15)

In this case, we have

Σa(e)|Gauss. = niu
2
0 ga

0(e) . (16)

The real part of the self-energy provides a parametrically small renormalization of the band

structure, which can be safely neglected in the diffusive regime of interest [43]. We thus find

ΣR/A = ⌥ı ni(h0g0 + hr gr + hzz gzz) , (17)

where the functions h0, hr, hzz, proportional to the imaginary parts of Equations (10)–(12), have different

forms depending on the Fermi level position. In this work, we restrict the analysis to diffusive systems

with weak SOC lt ⌧ 1 and e � l. It is thus convenient to express the various quantities in Σa(e) in

terms of the quasiparticle broadening in regime II, i.e.,

1

2t
⌘ nih0|e>2l. (18)

Explicitly, we have

1

2t

�

�

�

�

Gauss.

= ni
u2

0e

4v2
, hzz = 0, hr = 0. (19)

For a typical choice of parameters, say, ni = 1012 cm�2, u0 = 1 (u0 is in units of eV·nm�2) and

e = 50 meV, one finds t|Gauss ' 1.14 ps, which is representative of clean graphene samples [55].

Within the T-matrix formalism, the nontrivial part of =Σa(e) acquires a finite value. However,

in the unitary limit of strong potential scattering (u0 ! ∞), we have Σa(e) = �ni/ga
0,0(e) and we

recover a scalar self-energy, with

1

2t

�

�

�

�

TMA;u!∞

=
ni

e

4p2v2

p2 + L2
II(e)

, hzz = 0, hr = 0 . (20)
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In this case, considering l = 10 meV, Λ = 10 eV and ni, e as above, one obtains a substantially

shorter scattering time t|TMA = 0.08 ps. The unitary result captures the typical energy dependence

t ∝ e observed in high-mobility graphene samples [55], where the charge carrier mobility is likely

limited by short-range scatterers, including adsorbates, short-range ripples and vacancies [57–60].

2. Microscopic Linear Response Theory for Spin Relaxation

2.1. General Formalism

We consider the long-wavelength spin dynamics generated by a generic external perturbation

Hext
ab (x, t) = �JabAab(x, t) , (21)

where Jab ∝ sasb (a, b = 0, i) is the current density operator (a = x, y) or density operator (a = 0, z)

and Aab is a generalized vector potential [43]. We consider in detail two important cases: (i) an electric

field perturbation e.g., Hext
x0 (x, t) = �vsxs0 Ax(x, t); and (ii) a spin density fluctuation Hext

0i (x, t) =

� 1
2 s0siBi(x, t). The induced spin polarization density

Si(x, t) =
1

2
hΨ†(x, t) s0si Ψ(x, t)i , (22)

is evaluated within the framework of linear response theory. This approach has been applied to

derive charge-spin diffusion equations describing spin dynamics and magnetoelectric effects in

2DEGs [48,61,62]. As shown below, a suitable extension of this approach to accommodate the enlarged

(spin ⌦ pseudospin) Clifford algebra gab = sasb will allow us to obtain a rigorous microscopic theory

of diffusive transport and spin relaxation for 2D Dirac systems.

The linear response of the î-component of the spin polarization vector at zero temperature reads as

Si(x, t) = �
Z

dx0
Z ∞

�∞
dt0 ci,ab(x � x0, t � t0) ∂t0Aab(x

0, t0) , (23)

where ci,ab(x � x0, t � t0) is the generalized spin susceptibility associated to the external perturbation,

i.e., an electric field Ex(x, t) = �∂t Ax(x, t) or a “spin injection field” Φi(x, t) = �∂tBi(x, t) [63].

Expressing the above equation in terms of the Fourier transform ci,ab(q, w) in the long-wavelength

limit q ! 0, we have

ci,ab(0, w) =
k

2
Tr
D

g0i GR(x, x0; e + w) gab GA(x0, x; e)
E

, (24)

where k = v (k = 1/2) for a electric (spin injection) field and Tr is the trace over all degrees of freedom.

Terms involving products of Green’s functions on the same sector (RR and AA) are smaller by a factor

of (et)�1 and thus can be safely neglected.

The disorder average in Equation (24) is evaluated by means of the diagrammatic technique

(Figure 3). For brevity of notation, we first present the formalism within the Gaussian approximation

for the self-energy, Equation (16). In Section 2.3, we provide the connection with the full T-matrix result.

A summation of noncrossing two-particle (ladder) diagrams leads to

c
(NC)
i,ab (0, w) =

k

2 ∑
k

tr
n

g0i G
R
k (e + w) g̃ab(w) GA

k (e)
o

, (25)

where tr is the trace over internal degrees of freedom (spin and sublattice). The dressed vertex g̃ab

satisfies the Bethe-Salpeter (BS) equation

g̃ab(w) = gab +
4

2ptN0
∑
k

GR
k (e + w) g̃ab(w) GA

k (e) . (26)
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where N0 ⌘ e/pv2 (for the T-matrix extension see Equation (59) and text therein). Projecting onto the

elements of the Clifford algebra

g̃ab$V(w) =
1

4
tr[g̃ab(w) s$sV] , (27)

we recast the BS equation into the form

g̃ab$V(w) = da$dbV + ∑
µ,n=0,x,y,z

Mµn$V(w)g̃abµn(w) , (28)

where

Mµn$V(w) =
1

2ptN0
∑
k

tr
h

GR
k (e + w)gµnG

A
k (e)g$V

i

. (29)

Introducing the 16-dimensional vectors γ̃ab(w) = (g̃ab00(w), ..., g̃abzz(w))t and γab =

(0, 0, ..., gabab, ..., 0)t a more compact matrix form for Equation (26) is given in terms of the diffusion

operator D�1 as

D�1
γ̃ab(w) ⌘ (116⇥16 � Mt(w))γ̃ab(w) = γab . (30)

The spin relaxation rates are simply identified as the poles of the generalized susceptibility in the

complex w-plane. The determination of the SRTs is thus reduced to the analysis of the behavior of

D�1 = D�1(w) [64].

(a)

(b)

(c)

Figure 3. Diagrammatic technique for evaluation of generalized spin susceptibilities: (a) two-particle

ladder diagram; (b) BS equation for the vertex renormalization; and (c) skeleton expansion of the ladder

diagram in terms of an infinite series of two-particle, noncrossing diagrams. Full (open) square denotes

a T(T†) matrix insertion.

The formal result (Equation (30)) deserves a few comments. Firstly, D�1 spans in principle the

entire Clifford algebra, which physically encodes the coupled dynamics of spin and other observables

associated with the elements gab. However, by exploiting symmetries, D�1 can be reduced into block

diagonal form, such that only some observables are coupled to the spin polarizations along the three

spatial directions. Secondly, a distinct feature of Dirac systems is that spin densities are coupled to

charge currents even in the case (considered here) of spatially uniform external perturbations q = 0.

The linear Dirac dispersion of graphene is reflected in the form of the charge current Ji = vsi and spin

current J a
i = vsisa/2 vertices, which do not depend explicitly on momentum; by virtue of that they

can be directly identified (apart from constants) as elements of the Clifford algebra. Therefore, all the
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relevant information about coupling between currents and densities is built-in on the 16 ⇥ 16 diffusion

operator (Equation (30)) in our formalism. This will allows us to obtain a unified description of spin

relaxation processes and relativistic transport phenomena (e.g., charge-to-spin conversion) within our

q = 0 formalism. We analyze the implications below.

The coupling of the electrons’ spin to currents or other observables in the long wavelength limit

also suggests two equivalent scenarios to study spin relaxation. The first natural choice is to consider

spin injection and investigate the relaxation of the spin density profile (density-density response);

alternatively, one can probe the spin response indirectly by exciting an observable coupled to the

spin density through D�1. For instance, as we show in the following, one can drive a charge current

via application of an electric field to obtain a in-plane spin polarization of carriers (ISGE). In that

case, the information about the in-plane SRTs is readily accessible by examining how the steady state

(Edelstein) polarization is achieved (density-current response).

Before moving on, let us stress that, within the Gaussian approximation, a useful relation can be

derived connecting the generalized susceptibility Equation (25) and the renormalized vertex:

c(NC)
i,ab (0, w) =

k

2a ∑
µn

Mµn0i(w)g̃abµn(w) =
k

2a

�

g̃ab0i(w)� da0dbi

�

, (31)

where a ⌘ (2ptN0)
�1 and we have used Equation (28). The above equation states the spin response

can be solely obtained from the associated component of the renormalized vertex g̃ab0i. A similar

relation holds for other response functions. For example, the AC longitudinal (Drude) conductivity is

written as

sxx(w) = v2 ∑
k

tr
n

gx0 G
R
k (e + w) g̃x0(e, w) GA

k (e)
o

=
v2

a
(g̃x0x0(w)� 1) . (32)

Therefore, Equation (31) and similar relations allow identifying the components of a renormalized

vertex with the associated observables, and will turn useful in the following.

Let us now determine the allowed couplings to Sx,y,z by exploring symmetry. The model of

Equation (1) is invariant under the group C∞v, which is an emergent symmetry of the continuum

(long-wavelength) theory. As rotations in the continuum do not describe the sublattice symmetry

A $ B of the graphene system, a representation U for the relevant set of discrete operations has

to be considered. Relevant to us are C2, the rotation of p around the ẑ-axis exchanging sublattice

(and valleys), and Rx, the reflection over the x̂-axis. We have

U(C2) = txsz , (33)

U(Rx) = tzsxsyrx. (34)

where rx : (x, y) ! (x,�y) and ti=x,y,z are Pauli matrices acting on the valley degree of freedom.

We also make use of isospin (valley) rotations Λx,y,z [65,66]

Λx,y = tx,ysz , (35)

Λz = tz . (36)

For scalar disorder, it suffices to examine the form of the clean-system susceptibility at w = 0

cRA,clean
i,ab ⌘

1

4
Tr
h

g0i G
R
0 (e) gab G

A
0 (e)

i

. (37)
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For any of the symmetries S listed above, we have S�1GR/A
0 S = GR/A

0 , and, inserting resolutions

of the identity in the form S†S into Equation (37), we find

cRA,clean
i,ab =

pab p0i

4
Tr
h

g0i G
R
0 (e)gab G

A
0 (e)

i

= pab p0i cRA,clean
i,ab , (38)

where pab(p0i) = ±1 is the parity of gab(g0i) under S . From this result, we see that a nonzero

response requires the operator gab to have the same parity of the spin vertex under the action of any

of S . The allowed couplings and parities under S are shown in the Table 1. As anticipated above,

the in-plane components Sx(y) are coupled to orthogonal charge currents sy(x), as well as spin Hall

currents gxz(gyz) and staggered magnetizations gzy(gzx) [43,44]. The out-of-plane component Sz is

instead coupled to a mass term sz and in-plane spin currents gxx, gyy.

Table 1. Table summarizing the allowed couplings to the spin polarizations in the 2D Dirac-Rashba

model with nonmagnetic scalar disorder.

Polarization C2 Rx Λx,y,z Couplings

Sx �1 �1 +1 sy, gxz, gzy

Sy �1 +1 +1 sx, gyz, gzx

Sz +1 �1 +1 sz, gxx, gyy

2.2. Diffusive Equations and SRTs

In the following, we choose to consider the in-plane spin response to an AC electric field Hext
k

=

�vsi Ai(w) = �(iw)�1vsiEi(w), i = x, y. This choice, as discussed above, is equivalent to consider

in-plane spin injection, but has the advantage to allow for a unified description of spin dynamics and

charge-spin interconversion, e.g., to capture the ISGE or similar effects [40,67,68]. For the out-of-plane

spin dynamics, we take a spin-density perturbation Hext
? = 1

2 szBz(w) (see Table 1).

2.2.1. In-Plane Spin Dynamics

Without loss of generality, let us consider the dynamics of the ŷ polarization. According to Table 1,

sy is coupled to three operators: sx, sysz and szsx. However, leading terms in the (et)�1 expansion

are only contained in the sy/sx sub-block. Hence, to capture the SRTs, it suffices to restrict to this

2 ⇥ 2 algebra. As anticipated above, we consider here the response to an AC electric field Ex(w),

associated with the vertex kgx0 = vsx ⌘ vx. (Details of calculation and full form of the 4 ⇥ 4 diffusion

operator is given in Appendices C and D.) To capture purely diffusive processes, we expand D�1(w)

in the low-frequency and small SOC limits, wt ⌧ 1 and lt ⌧ 1, respectively. In this regime,

Equation (30) is written then as

 

1
2 (1 � ıwt) l

e Γs(1 + 3ıwt)
l
e Γs(1 + 3ıwt) Γs � ıwt

! 

g̃x0x0

g̃x00y

!

=

 

1

0

!

, (39)

where Γs = t/ts = 2l2t. In the light of previous discussions (cf. Equations (31) and (32)), g̃x0x0

and g̃x00y are connected by a linear transformation to the steady-state charge current and the spin

polarization (Appendix D).

Off-diagonal elements of Equation (39) carry in relation to diagonal ones an extra order of

smallness l/e, suggesting spin and charge to be weakly coupled in this limit. Their inclusion
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however encodes charge-to-spin interconversion and it is essential to get a correct physical description.

The eigenvalues �ıw± are found as

�ıw+ '
1

t

✓

1 + 16
Γ3

s

e2t

◆

, (40)

�ıw� '
1

ts

✓

1 �
Γ3

s

e2t

◆

, (41)

and can be associated with charge current and spin relaxation times, respectively. We see then the SRT

can be identified as the mass (w = 0) term of the spin-spin part of the diffusion

1

ts
⌘

1

t
k
s

' 1 � M0y0y(w = 0) ' 2l2t . (42)

Inverting Equation (39), we find

g̃x0x0 '
1

t

2

�ıw + 1
t

, (43)

g̃x00y ' 2
l

e

1

t

Γs

�ıw + Γs
t

, (44)

from which, by using Equations (31) and (32), is it possible, upon Fourier transform, to derive the

diffusive equation of motion for coupled charge-spin dynamics as

∂t Jx(t) = �
1

2t
(Jx(t)� J0

x(t)) , (45)

∂tSy(t) = �
1

t
k
s

(Sy(t)� S0
y(t)) , (46)

where J0
x(t) ⌘ 2v2Ex(t)/a and S0

y(t) ⌘ �lEx(t)/ea. Note that charge current relaxation is regulated

by the transport time ttr ⌘ 2t, indicating the absence of backscattering [43,54,55].

2.2.2. Out-of-Plane Spin Dynamics

For the out-of-plane spin dynamics we consider the renormalized vertex kg̃0z = 1
2 s̃z. The off

diagonal components of the associated 4 ⇥ 4 diffusion block contains sub-leading terms in the (et)�1

expansion (Appendix C), such that the out-of-plane SRTs can be calculated similarly to Equation (42) as

1

t?
s

' 1 � M0z0z(w) ' 4l2t . (47)

The generalization of the equations of motion, i.e., Equations (45) and (46), in this case is written as

∂tSz(t) = �
1

t?
s

(Sz(t)� S0
z(t)) , (48)

where S0
z(t) = Ḃz(t)/4a is the effect of the external perturbation (spin-injection field). The in-plane

and out-of-plane SRTs are in the following relation

1

t
k
s

=
1

2

1

t?
s

, (49)

which is nothing but the well-known DP ratio for 2DEGs [61]. The above result has also been obtained

for graphene within the time-dependent perturbation theory for the density matrix [42]. The agreement

between graphene and the Rashba 2DEG results is expected at high electronic density e � l.
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2.3. SRT from the Conservation Laws in the DC Limit

In this section, we demonstrate how the SRTs we have obtained above can be equivalently

extracted in the static limit w = 0. This remarkable result is rooted in the conservation laws associated

to the disordered Dirac-Rashba Hamiltonian Equation (1) [43]. The first step is to write the Heisenberg

equation of motion for the spin polarizations

∂tSi = ı[H, Si] =
2l

v
el j ec

li Jc
j , (50)

where el j, ec
li are the second and third rank Levi-Civita tensors and Jc

j = hJ c
j i is the ĵ-component of the

pure spin current (with polarization “c”). As before, we consider an electric field applied along the x̂

direction. We find

∂tSy =
2l

v
Jz
y , (51)

where Jz
y is identified as the spin Hall current according to the chosen geometry. The spin Hall current

is written in response to the electric field as

Jz
y = sz

yxEx , (52)

where sz
yx is the DC spin Hall conductivity calculated according to Equation (25) with g̃0y ! vg̃yz.

As for now, no assumption has been made for the self-energy approximation associated to the scalar

impurities field. Let us start from the more transparent Gaussian case. Using the corresponding

version of Equation (31) for sz
yx, together with Equation (28) we have

sz
yx =

v2

2a
g̃x0yz =

v2

2a

�

Mx0yzg̃x0x0 + M0yyzg̃x00y

�

. (53)

In the latter, we have neglected the terms Myzyz and Mzxyz which, as said above, provide higher

order corrections in the (et)�1 expansion. Multiplying both sides of Equation (53) by the electric field

Ex, and using Sy = cy,x0 Ex together with Equation (31), we find

Jz
y =

v2

2a
Mx0yzg̃x0x0 Ex + v M0yyzSy . (54)

Despite the Dirac character of fermions, the steady-state case of the continuity equation

Equation (51) imposes the latter spin Hall current to vanish, analogously to the 2DEG case [43].

This implies the establishment of the out-of-equilibrium value for the spin polarization as

S0
y =�

g̃x0x0

2av

Mx0yz

M0yyz
Ex . (55)

Evaluating the above quantities explicitly g̃x0x0 = 2, Mx0yz/M0yyz = l/e and we recover the

ISGE obtained in [44]. Using Equation (51), we finally arrive at

Jz
y = v M0yyz

⇣

Sy � S0
y

⌘

, (56)

and therefore

∂tSy ⌘ �
1

t
k
s

⇣

Sy � S0
y

⌘

, (57)

where we have identified the spin relaxation time

1

t
k
s

= �2l M0yyz = 2l2t , (58)
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in perfect accordance with the result obtained above, Equation (42). The bubble M0yyz is therefore

what completely determines the in-plane spin relaxation.

We now ask how the above result is modified when treating the self-energy in the T-matrix

approximation. The Bethe Salpeter equation Equation (26) now reads

g̃x0(e) = gx0 + ni ∑
k

TR(e) GR
k (e) g̃x0(e) G

A
k (e) TA(e) , (59)

where TR/A(e) is the single-impurity T-matrix in the R/A sectors introduced in Equation (8). Projecting

onto the Clifford algebra, similar to Equation (28), we have

g̃x0$V = dx$d0V + ∑
µnzx=0,x,y,z

Y$Vzx Nµnzx g̃x0µn , (60)

where we have defined

Nµnzx =
ni

4 ∑
k

tr (GR
k gµn G

A
k gzx) , (61)

Y$Vzx =
1

4
tr[TA g$V TR gzx ] . (62)

Recasting Equation (60) in vector notation, in the same spirit of Equation (30), we have

γ̃x0 = γx0 + Y Nt
γ̃x0 , (63)

and consequently

Y�1(γ̃x0 � γx0) = Nt
γ̃x0 . (64)

The latter equation allows again to find a connection with the observables. For example,

the generalization of Equation (31) is written as

cy,x0 =
2v

ni
∑
µn

Nµn0yg̃x0µn =
2v

ni
∑
µn

Y�1
0yµng̃x0µn . (65)

The spin Hall conductivity instead is found as

sz
yx =

2v2

ni
∑
µn

Y�1
yzµng̃x0µn . (66)

Different from the Gaussian case, where we could relate the response of an observable uniquely to

the associated component of the renormalized vertex, in the T-matrix limit, in principle, all components

of γ̃x0 would contribute, each of them with weight given by Y�1. In the limiting case of unitary limit

u0 ! ∞, where limu0!∞ TR/A = � 1

gR/A
0

, we find a simplification as

Y�1
$Vzx = |gR

0,0|
2d$z dVx . (67)

This implies that, for Equation(66), a relation similar to the Gaussian case is obtained

Jz
y = sz

yxEx =
2v2

ni
|gR

0,0|
2g̃x0yz Ex =

2v2

ni
Nx0yzg̃x0x0Ex + v N00yz|g

R
0,0|

�2Sy , (68)
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where we have restricted ourselves again to the dominant subspace sx/sy. After standard algebra,

we arrive at

∂tSy =
2l

v
sz

yxEx =
2l

v
v N0yyz(Sy � S0

y) , (69)

and the SRT defined as

1

t
k
s

= 2l |gR
0,0|

�2N00yz = 2l
1

e2

16p2v4

p2 + L2
II

N00yz = 2l2t , (70)

where we have used the definition of t in the unitary limit, Equation (20). We conclude that the

the formal expression connecting ts and t (the DP relation) is the same as found in the Gaussian

limit for the self-energy. However, given the different dependence of t on the Fermi level in the two

approximations—cf. Equations (18) and (20)—one has

t(e)

t
k
s (e)

=

8

>

>

<

>

>

:

2l2

e2

✓

2v2

niu
2
0

◆2

Gaussian,

e2 l2

2

✓

p2+L2
II

4p2niv
2

◆2

Unitary.

(71)

The SRT associated to the out-of-plane component can be derived along the same lines.

The relevant Heisenberg equation now reads

∂tSz = �
2l

v
(Jx

x + J
y
y ) , (72)

and a similar reasoning that led to Equation (58) allows us to conclude

1

t?
s

= 2l(M0zxx + M0zyy) = 4l2t , (73)

in the Gaussian limit, and a similar relation for the unitary limit.

2.4. Discussion

Here, we discuss the DP relation obtained in Equation (71) within the Gaussian and unitary limits

of potential scattering. The energy dependence of the spin lifetime for fixed impurity concentration is

shown in Figure 4. Away from the Dirac point, within the Gaussian approximation, the spin lifetime

increases linearly since t ∝ e�1 (see Equation (18)). In the unitary limit, instead, one has a linear

dependence t ∝ e (see Equation (20)), leading to vanishing spin lifetime at high electron doping. On the

other hand, near the Dirac point, the noncrossing approximation breaks down. It is not surprising

that the spin lifetime dependences are found to be nonphysical as e ! 0: vanishingly small for the

Gaussian limit and divergent for the unitary limit. To overcome this limitation, one needs to evaluate

crossing diagrams encoding quantum coherent processes, which includes weak localization corrections

and diffractive skew-scattering from two or more impurities [54,69,70]. However, here, we are mostly

interested in the diffusive regime away from the Dirac point et � 1, thus neglecting interference

effects that can correct the standard DP relation [32,33,71]. However, an important refinement is

possible within the noncrossing formalism used here by evaluating the O(n2
i ) terms in Equation (8).

Such higher-order terms encode the strong renormalization of the single-particle propagators by

incoherent multiple scattering approaching the Dirac point. To show this, it suffices to resume the
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infinite class of “rainbow” diagrams, a scheme known as self-consistent Born approximation (SCBA).

The SCBA self-energy is given by the solution of the following self-consistent equation [66]

1

2t

�

�

�

�

SCBA

= �=ΣSCBA(e) = �=



ni

4pv2
(e � ΣSCBA(e)) log

✓

�Λ2

(e � ΣSCBA(e))2

◆�

. (74)

In Figure 4, we show that the SCBA provides a physical (finite, nonzero) ts approaching the Dirac

point. To obtain a representative curve, we take l = 1 meV and we choose the impurity density and

the scattering strength such that the SCBA nonperturbative energy scale Γ = Λ e�2pv2/(niu
2
0) [66] is

a few tens meV. The in-plane SRT is then found to lie in the range 50–100 ps. Concerning the magnitude

of t
k
s we note the result is compatible with previous reports where the (uniform or random) Rashba

SOC is treated by semiclassical or numerical approaches [32,42].

  

  

  

0

20

40

60

80

100

−100 −50 0 50 100

Figure 4. DP in-plane spin relaxation time calculated according different schemes for the self-energy:

SCBA (red line), Gaussian (blue line) and unitary limit (green line). The most important feature

obtained within the SCBA is a strong renormalization of t
k
s in the vicinity of the Dirac point, reflecting

a disorder-induced finite density of states in that region. In the plot, l = 1 meV and Γ = 60 meV.

3. Conclusions

In the present work, we laid the foundations of a general microscopic theory of diffusive transport

and spin relaxation in 2D Dirac systems subject to spin-orbit interactions. Our work represents the

logical extension of the previously-developed diagrammatic treatments [61,62] to all orders in the

scattering potential, for disordered electron systems with an enlarged pseudospin ⌦ spin Clifford

algebra [43,44]. We applied the formalism to the paradigmatic case of 2D Dirac fermions with Rashba

spin-orbit coupling considering the purely diffusive regime lt ⌧ 1 ⌧ et. We demonstrated how the

Dyakonov-Perel relation between momentum and spin lifetime t ∝ t�1
s holds in both the Gaussian

(weak short-range scatterers) and the unitary (strong short-range scatterers) limits, despite the drastic

different dependence momentum scattering times t = t(e) in the two regimes. We derived the

same result both by direct diagrammatic resummation (in the noncrossing approximation) and by

exploiting the conservation laws of the theory in the zero-frequency limit. Under the diffusive regime

lt ⌧ 1 ⌧ et is not possible to study the dynamics in the region of Fermi energies comparable

to the Rashba pseudogap region e ⇠ 2l, which was recently predicted to display interesting

out-of-equilibrium phenomena [44]. The strong spin-momentum locking approaching this regime lets

us infer a modification of the relation between ts and t towards the Elliot-Yafet type ts ∝ t. Our theory

sets the stage to study the spin dynamics in that regime. This topic has become of renewed great interest

due to recent progresses in graphene-based heterostructures, where the spin relaxation anisotropy has

been recognized as a viable tool to estimate the induced large spin-orbital effects [72–75].
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Appendix A. Clean Green’s Function

The explicit form of the clean single-particle Green’s function is

Ga
0k(e) = �

1

2 ∑
µ=±1

La
0µ

h

(l + µe)g0 + v σ · k �
µe

2
gr + v (s ⇥ k)z + lgzz + dM2fk

i

, (A1)

where

L
A(R)
0µ

=
µ

v2k2 � e2 � 2µle ± ı 0+sign(e � µl)
, (A2)

dM2fk
= �

1

2
(e + 2µl)

⇥

(sysy � sxsx) sin 2fk + (sxsy + sysx) cos 2fk

⇤

, (A3)

and fk is the angle formed by the wavevector with k̂x.

Appendix B. Integrals and Expansion

The current work makes extensive use of momentum integrations involving products of

two renormalized Green’s functions with analyticity opposite halves of the complex plane

(see e.g., Equations (24) and (26)). The retarded function is displaced in energy by the amount w.

Similar to the bare Green’s function decomposition Equations (A1) and (A3), we write the renormalized

(disorder averaged) propagators as

Ga
k(e) = Ma

1k(e) La
1k(e) + Ma

2k(e) La
2k(e) , (A4)

where Ma
ik(e) = M

a (0)
i + v2k2M

a (2)
i , i = {1, 2} are matrix coefficients and the kernels La

µ = La
ik are

obtained in the Gaussian limit from the functions L0µ of Equation (A2) by analytical continuation

e ! e + a ı
2t . In the T matrix approach, the analytical continuation has to be performed as to include

the other matrix structure of the self-energy ∝ gr, gzz [44]. We can generically write

La
ik(e) =

1

v2k2 � za
i (e)

, (A5)

where za
i (e) are complex quantities. Given the decomposition in Equation (A4), the integrals we need

to solve are reduced to product of two kernels in different combinations, accompanied or not by
a factor v2k2. Terms proportional to v4k4 can be shown to vanish upon angular integration

R

dfk.
We write below an exact solution and then expand at linear order in w. For simplicity, we show the
results for the Gaussian approximation. The first type of integrals is

Γij =
Z ∞

0

dk k

2p
LR

ik(e + w) LA
jk(e) =

Z ∞

0

dk k

2p

1

v2k2 � zR
ik(e + w)

1

v2k2 � zA
jk(e)

(A6)

=
1

zR
ik(e + w)� zA

jk(e)

Z ∞

0

dk k

2p

 

1

v2k2 � zR
ik(e + w)

�
1

v2k2 � zA
jk(e)

!

(A7)

=
1

4pv2

1

zR
ik(e + w)� zA

jk(e)
⇥ (A8)

"

� log
⇣

�zR
ik(e + w)

⌘

+ log
⇣

�zA
jk(e)

⌘

�

 

1

zR
ik(e)

∂ezR
ik(e)

!

w

#

, (A9)
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where the principal branch of the log function has been chosen. Note za
1(l) ! za

2(�l). Thus,

Γ11(l) = Γ22(�l) and Γ12(l) = Γ21(�l). At linear order in w, we find

Γ11 =
1

4pv2



p

e + l
�

1

e(e + 2l)
+ ıpwt

t

e + l

�

, (A10)

Γ22 = Γ11(l ! �l) , (A11)

Γ12 =
1

4pv2



2ıp

4el
� w

e + l

2e2l(e + 2l)

✓

1 + ıp
e + 2l

2l

◆�

, (A12)

Γ21 = Γ12(l ! �l) , (A13)

where we have retained leading order terms in (et)�1. The other class of integrals we need to solve is

Γ
(3)
ij =

Z Λ/v

0

dk k3

2p
LR

ik(e + w) LA
jk(e) =

Z Λ/v

0

dk k3

2p

1

v2k2 � zR
ik(e + w)

1

v2k2 � zA
jk(e)

(A14)

=
1

4pv2 zR
ik(e + w)� zA

jk(e)

"

2ı Im

 

zR
ik(e) log

 

Λ2

�zR
ik(e)

!!

� ∂ezR
ik(e)

 

1 � log

 

Λ2

�zR
ik(e)

!!

w

#

, (A15)

where the ultraviolet cutoff Λ/v � kF has been introduced to regularize the integrals. A careful

evaluation yields

Γ
(3)
11 =

1

4pv2



pe(e + 2l)t

e + l
(1 + ıwt) + log

�

�

�

�

Λ2

e2 + 2el

�

�

�

�

� 1 � w
pelt

2(e + l)2

�

, (A16)

Γ
(3)
12 =

1

4pv2



2ıpe + 2lLII

4l
� w

e + l

2el

✓

1 + 2p
e + 2l

4l

◆�

, (A17)

and the expressions for 1 $ 2 are again obtainable with the replacement l ! �l.

Appendix C. Full Form of the Diffusion

Here, we report the full form of the two relevant blocks of the diffusion, involving Sy,z.

The expressions are provided at leading order in the expansions for wt ⌧ lt ⌧ 1 ⌧ et.

• Subspace sx, sy, sysz, szsx

D�1
�

�

�

sy

=

0

B

B

B

B

B

B

B

B

B

B

@

1
2 (1 � ıwt) 2l3t2

e (1 + 3ıwt) � l2t
e (1 + 2ıwt) l3t

e2 (1 + 2ıwt)

2l3t2

e (1 + 3ıwt) 2l2t2 � ıwt �lt(1 + 2ıwt) l2t
e (1 + 2ıwt)

l2t
e (1 + 2ıwt) lt(1 + 2ıwt) 1

2 (1 � ıwt) l
2e (1 + ıwt)

� l3t
e2 (1 + 2ıwt) � l2t

e (1 + 2ıwt) l
2e (1 + ıwt) 1 � ıwt l2

2e2

1

C

C

C

C

C

C

C

C

C

C

A

, (A18)

• Subspace sz, sxsx, sysy, sz

D�1
�

�

�

sz

=

0

B

B

B

B

B

B

B

B

B

B

@

4l2t2 � ıwt lt(1 + 2ıwt) lt(1 + 2ıwt) � l
pte2 + O[(et)�4]

�lt(1 + 2ıwt) 1
2 (1 � ıwt) l2t2

2 (1 + 3ıwt) O[(et)�4]

�lt(1 + 2ıwt) l2t2

2 (1 + 3ıwt) 1
2 (1 � ıwt) O[(et)�4]

� l
pte2 + O[(et)�4] O[(et)�4] O[(et)�4] 1 + ıw

4e2t

1

C

C

C

C

C

C

C

C

C

C

A

. (A19)
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Appendix D. Equations for Observables Instead of Vertices

In the main text, we have written equations of motion for the renormalized vertices, rather

than for the observables themselves. As an example, here, we report the diffusive matrix D�1 for

the observables, in the relevant sub-block sy/sx for the in-plane spin dynamics. In addition, here,

we consider the response to an external electric field Ex. To this aim, we recall in the Gaussian

approximation (cf. Equations (31) and (32))

Jx = sxx Ex =
v2

a
(g̃x0x0 � 1)Ex , (A20)

Sy = v cy,0x Ex =
v

2a
g̃x00yEx . (A21)

Manipulating Equation (30), we have

D�1
γ̃x0 = γx0 =) Cγ̃x0 = CDγx0 , (A22)

where we have defined the matrix

C =
v Ex

a
diag(v,

1

2
) . (A23)

Consequently, by subtracting from both sides v2Exγx0/a, we have

v Ex

a

" 

v g̃x0x0
g̃x0x0

2

!

�

 

v

0

!#

⌘

 

Jx

Sy

!

= (CD �
v2

a
Exg0)γx0 . (A24)

We conclude the diffusive matrix for the observables is

D�1
obs = (CD �

v2

a
Exg0)

�1 . (A25)

Direct inspection shows that D�1
obs and D�1 share the same poles structures, justifying the approach

in the main text.
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