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ABSTRACT

We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion

B star-forming region. For L1622, NGC 2068/NGC 2071, and NGC 2023/NGC 2024, we mea-

sure the amount of spatial substructure using the Q-parameter and find all three regions to be

spatially substructured (Q < 0.8). We quantify the amount of mass segregation using �MSR

and find that the most massive cores are mildly mass segregated in NGC 2068/NGC 2071

(�MSR ∼ 2), and very mass segregated in NGC 2023/NGC 2024 (�MSR = 28+13
−10 for the

four most massive cores). Whereas the most massive cores in L1622 are not in areas

of relatively high surface density, or deeper gravitational potentials, the massive cores in

NGC 2068/NGC 2071 and NGC 2023/NGC 2024 are significantly so. Given the low density

(10 cores pc−2) and spatial substructure of cores in Orion B, the mass segregation cannot be

dynamical. Our results are also inconsistent with simulations in which the most massive stars

form via competitive accretion, and instead hint that magnetic fields may be important in

influencing the primordial spatial distributions of gas and stars in star-forming regions.

Key words: methods: numerical – stars: formation – stars: kinematics and dynamics – stars:

massive – galaxies: star clusters: general.

1 IN T RO D U C T I O N

One of the great challenges in astrophysics is to understand the

star formation process. Stars form in groups where the mean stel-

lar density exceeds that of the Galactic field by several orders of

magnitude (Lada & Lada 2003; Porras et al. 2003; Bressert et al.

2010). At these high densities, environmental conditions can affect

the outcome of star formation due to early disc truncation and dis-

ruption (Scally & Clarke 2001; Adams et al. 2004; Portegies Zwart

2016), and the properties of primordial binary and multiple systems

are rapidly altered due to internal and external dynamical evolution

(Kroupa 1995; Reipurth et al. 2014).

Due to the rapid changes experienced by infant stars, it is imper-

ative to quantify and understand the early stages of star formation,

such as the initial distribution of dense cores that will eventually

form one or more stars. Studies of the mass function of prestellar

cores (André et al. 2010; Könyves et al. 2010) have shown that

they follow a similar distribution to the stellar initial mass function

(IMF), but with the core mass function (CMF) shifted to higher

masses. However, it is unclear if the stellar IMF is set by this CMF,

which is simply shifted due to lower masses by a star formation

efficiency of ∼1/3 (Alves, Lombardi & Lada 2007), or whether the

form of the IMF is independent of the CMF (see e.g. Offner et al.

2014, for a review).
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In addition to the mass distribution of cores, a wealth of spatial

and kinematic information now exists for these objects. The general

spatio-kinematic picture is that cores form along dense filaments

(e.g. André et al. 2010; Hacar et al. 2013; Henshaw et al. 2016; Smith

et al. 2016; Kainulainen et al. 2017), with low (subvirial) velocity

dispersions (e.g. Peretto, André & Belloche 2006; Schneider et al.

2010; Kauffmann, Pillai & Goldsmith 2013; Foster et al. 2015).

However, it is unclear how much of a signature the stars that form

from dense cores retain from the initial conditions of the gas. Several

studies have pointed out similarities between the amount of spatial

substructure in young stars and the interstellar medium (Hoyle 1953;

Elmegreen & Falgarone 1996; Elmegreen 2002; Gouliermis, Hony

& Klessen 2014), although analysis of simulations suggests that the

stars and gas become decoupled early in the star formation process

(and similarities in their spatial distributions may be unrelated, Bate

& Bonnell 2005; Kruijssen et al. 2012; Parker & Dale 2015).

The spatial distribution of the most massive stars in star-forming

regions has been the topic of numerous observational (Hillenbrand

& Hartmann 1998; Raboud & Mermilliod 1998; de Grijs et al. 2002;

Littlefair et al. 2004; Allison et al. 2009; Wright et al. 2014; Kuhn

et al. 2017; Parker & Alves de Oliveira 2017) and theoretical studies

(Bonnell & Davies 1998; Moeckel & Bonnell 2009a,b; Allison et al.

2010; Maschberger & Clarke 2011; Olczak, Spurzem & Henning

2011; Girichidis et al. 2012; Parker et al. 2014; Kuznetsova, Hart-

mann & Ballesteros-Paredes 2015; Domı́nguez et al. 2017), with

the goal of understanding if the formation channel of massive stars

produces a different spatial distribution to that of low-mass stars –

so-called mass segregation. Initially, mass segregation was thought
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to be a natural outcome of the competitive accretion theory for star

formation (Zinnecker 1982; Bonnell, Bate & Zinnecker 1998; Bon-

nell et al. 2001), where the most massive stars would from in the

most gas-rich regions of the cluster, which, in turn, would likely be

the more central regions. However, extensive analysis of several hy-

drodynamic simulations of star formation (Parker, Dale & Ercolano

2015; Parker & Dale 2017) suggests that competitive accretion

does not necessarily lead to mass segregation, ostensibly because

the star-forming region is substructured and the dense cores/stars

cannot fully interact with one another during the formation process.

Given that most star formation theories appear not to predict a

different spatial distribution for the most massive stars, any ob-

served variation as a function of stellar mass that could not be

explained through dynamical processes (McMillan, Vesperini &

Portegies Zwart 2007; Allison et al. 2010; Parker et al. 2014), or at-

tributed to stochasticity in the star formation process, would require

a new theoretical framework for star formation. So far, most stud-

ies have focused on the spatial distributions of pre-main-sequence

stars, but it is unclear if observed cores could be primordially mass

segregated (e.g. Elmegreen, Hurst & Koenig 2014).

To fully address these issues, a comprehensive comparison be-

tween the spatial distributions of cores and stars in observations and

simulations is required. Recently, Kirk et al. (2016a) used SCUBA–

2 data from the James Clerk Maxwell Telescope (JCMT) to identify

pre-stellar and protostellar cores in the Orion B star-forming region.

Using the 850-µm flux as a tracer or proxy for core mass, Kirk

et al. (2016b) quantified the spatial substructure of three spatially

distinct areas of Orion B: the Linds Dark Nebula 1622 (hereafter

L1622) and the NGC 2068/NGC 2071, and NGC 2023/NGC 2024

regions.

Kirk et al. (2016b) found that none of the three subregions are

spatially substructured according the Q-parameter (Cartwright &

Whitworth 2004; Cartwright 2009), which is surprising as all three

regions appear visually substructured. The authors also claim to

find mass segregation of the cores, but using the group segrega-

tion ratio method (Kirk & Myers 2011; Kirk, Offner & Redmond

2014). However, Parker & Goodwin (2015) find serious flaws in this

technique, to the extent that it may not accurately find or quantify

mass segregation in spatially substructured star-forming regions.

For these reasons, we have decided to revisit the JCMT SCUBA–2

data from Kirk et al. (2016a,b) to produce an independent analysis

of the spatial distributions of the dense cores in Orion B.

In this paper, we use the same Orion B data as Kirk et al. (2016b)

to quantify the spatial distribution of cores, but add two further di-

agnostics to the analysis: the �MSR mass segregation ratio (Allison

et al. 2009) and the local gravitational potential difference ratio,

�PDR (Parker & Dale 2017). The paper is organized as follows. In

Section 2, we briefly describe the data, in Section 3, we describe

the methods used to quantify the spatial distributions, in Section 4,

we present our results, we provide a discussion in Section 5, and

we conclude in Section 6. We also provide an Appendix (A) to dis-

cuss different methods of normalizing the Cartwright & Whitworth

(2004) Q-parameter.

2 DATA

We use the same data set as Kirk et al. (2016b), namely the James

Clerk Maxwell Telescope Gould Belt Survey data on Orion B,

taken with the SCUBA–2 instrument. This data set comprises a

total of 915 prestellar cores, split into three spatially distinct star-

forming regions, Linds 1622, NGC 2068/NGC 2071, and NGC

2023/NGC 2024. L1622 contains 29 cores, NGC 2068/NGC 2071

contains 322, and NGC 2023/NGC 2024 contains 564 cores. We

follow Kirk et al. (2016b) by adopting the 850-µm flux as a proxy

for the masses of the individual cores. The positions of the individual

cores are shown in Fig. 1.

3 M E T H O D S

In this section, we describe the four diagnostics used to quantify the

spatial distribution of dense cores in the data.

3.1 The Q-parameter

The Q-parameter was introduced by Cartwright & Whitworth

(2004) to distinguish between substructured or self-similar (e.g.

fractal) distributions, and smooth or centrally concentrated (e.g.

clustered) distributions, and has been extensively utilized (e.g.

Schmeja & Klessen 2006; Bastian et al. 2009; Cartwright 2009;

Cartwright & Whitworth 2009; Gutermuth et al. 2009; Sánchez

& Alfaro 2009; Lomax, Whitworth & Cartwright 2011; Parker &

Meyer 2012; Delgado et al. 2013; Parker et al. 2014; Jaffa, Whit-

worth & Lomax 2017; Dib, Schmeja & Parker 2018). It employs

a graph theory approach by constructing a minimum spanning tree

(MST), which connects all of the points in a given distribution via

the shortest possible path with no closed loops. The mean MST edge

length, m̄, is determined, and is then normalized by dividing by the

following factor, which depends on both the number of points, N,

and the area, A:
√

NA

N − 1
. (1)

The area, A, is taken by Cartwright & Whitworth (2004) to be the

area of a circle with radius R, which encompasses the furthest point

from the centre of the distribution. The mean separation length

between all of the points in the distribution, s̄, is then determined

and is normalized to the radius R of the circle.

The normalization means that Q is independent of the extent of

the region under investigation, and enables a comparison to be made

between the spatial properties of different observed and simulated

star-forming regions. Several modifications to the original normal-

ization of Q have been proposed, and we highlight two here. First,

Schmeja & Klessen (2006) replaced the area A with the area of a

convex hull ACH; a closed set of lines that encompass the outermost

points in a distribution. They then normalize s̄ to the radius of a

circle with the area of this convex hull, RCH-circ. Secondly, Kirk

et al. (2016b) also used the convex hull area ACH to normalize m̄,

but then used the distance between the centre of the convex hull

and the most distant point from this centre, RCH-ex to normalize s̄.

In Appendix A, we compare the three normalization methods and

find the full convex hull method adopted by Kirk et al. (2016b) to

be flawed for the determination of Q.

Interpreting the calculated value for the Q-parameter requires a

comparison with synthetic star-forming regions (i.e. distributions

of points). These are usually either centrally concentrated distribu-

tions with a radial density profile of the form n ∝ r−α , with α in

the range 0–3.0, or substructured distributions, with varying levels

of substructure described by a fractal distribution with a notional

fractal dimension, D.

We construct fractals using the box method described in Goodwin

& Whitworth (2004) and Cartwright & Whitworth (2004), where

a first-generation parent is placed at the centre of a cube of side

Ndiv, which then spawns Ndiv subcubes, each with a first-generation

child at its centre. The fractal is then built by determining which
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Figure 1. Map of Orion B, showing the location of cores in the three spatially distinct regions.

of the children themselves become parents, and spawn their own

offspring. This is determined by the fractal dimension, D, where

the probability that the child becomes a parent is given by ND−3
div .

For a lower fractal dimension, fewer children mature and the final

distribution contains more substructure.

We note that the fractal distributions created using the box method

are often not perfectly self-similar, and some deviation in the amount

of substructure from the desired fractal dimension can occur (and

this fractal dimension may also differ from a fractal dimension cal-

culated by an alternative means, such as the perimeter–area method,

e.g. Cartwright, Whitworth & Nutter 2006). For this reason, in the

following analysis we do not assign a fractal dimension to our cal-

culated Q-parameters, and any such fractal dimension would be

purely notional.

Other more complex distributions can be used as a comparison,

but this can lead to an almost infinite amount of parameter space

to consider (Bate, Clarke & McCaughrean 1998; Parker & Meyer

2012; Jaffa, Whitworth & Lomax 2017). We therefore restrict our

comparison to either box fractals as defined by Goodwin & Whit-

worth (2004); Cartwright & Whitworth (2004) or centrally concen-

trated clusters with different radial density profiles (Cartwright &

Whitworth 2004; Cartwright 2009).

3.2 The mass segregation ratio, �MSR

MSTs are often used to quantify the relative spatial distribution of

the most massive stars in a star-forming region (Allison et al. 2009;

Parker & Goodwin 2015), but the method can be applied to any

distribution of points with assigned masses (or indeed any other

scalar property), and we will apply it to the dense cores in Orion B.

For the data set we use in this paper, the ‘mass segregation ratio’

(�MSR) is defined as the ratio between the average MST pathlength

of 10 randomly chosen cores in a star-forming region and that of

the 10 most massive cores:

�MSR =
〈laverage〉

l10

+σ5/6/l10

−σ1/6/l10

. (2)

As described in Allison et al. (2009) and Parker et al. (2011a), we

define the lower (upper) uncertainty as the MST length, which lies

1/6 (5/6) of the way through an ordered list of all the random lengths

(corresponding to a 66 per cent deviation from the median value,

〈laverage〉). This determination prevents a single outlying object from

heavily influencing the uncertainty, which could be an issue if using

the Gaussian dispersion as the uncertainty estimator.

If �MSR > 1, then the most massive cores are more spatially

concentrated than the average cores, and we designate this as sig-

nificant if the lower error bar also exceeds unity (see also Alfaro &

González 2016; González & Alfaro 2017). Parker & Goodwin

(2015) show that �MSR can sometimes be too sensitive in that it

sometimes finds that random fluctuations in low-number distribu-

tions lead to mass segregation according to our definition. Therefore,

if �MSR is calculated to be less than 2, then we also do not consider

this to be a significant deviation from a random distribution.

3.3 The local surface density ratio, �LDR

We calculate the relative local surface density of the most massive

cores compared to lower mass cores using the local surface density

ratio, �LDR (Maschberger & Clarke 2011; Küpper et al. 2011; Parker

MNRAS 476, 617–629 (2018)
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et al. 2014). We first determine the local surface density around each

core, �, as

� =
N − 1

πr2
N

, (3)

where rN is the distance to the Nth nearest neighbour, N (Casertano

& Hut 1985). We adopt N = 10 throughout this work.

We divide the median � for the 10 most massive cores, �̃10, by

the median value for all the cores �̃all to define a ‘local density

ratio’, �LDR (Parker et al. 2014):

�LDR =
�̃10

�̃all

. (4)

If �LDR > 1, then the most massive cores are in areas of higher local

surface density than the average core, the significance of which is

quantified by a Kolmogorov–Smirnov (KS) test on the cumulative

distribution of the cores, ranked by their local surface densities �.

We reject the hypothesis that the two subsets are drawn from the

same underlying distribution if the KS p-value is less than 0.1.

3.4 The potential difference ratio, �PDR

Parker & Dale (2017) used a method analogous to the local

surface density ratio to quantify the difference between the gravita-

tional potential of the most massive cores and the average gravita-

tional potential of all cores. We first determine the local gravitational

potential, �j, for each core in the simulation:

�j = −
∑ mi

rij

, (5)

where mi is the mass of the ith core in the summation, and rij is the

distance to the ith core. In a similar analysis to the surface density–

mass distribution �LDR method (Maschberger & Clarke 2011, see

above), we plot �j against mj for each core.

The potential difference ratio, PDR, is defined as

�PDR =
�̃10

�̃all

, (6)

where �̃10 is the median potential of the 10 most massive cores,

and �̃all is the median potential of the entire region in question. If

�PDR > 1, then the most massive cores sit in deeper local gravita-

tional potentials than the average core, and we quantify the signifi-

cance of this by means of a KS test on the cumulative distribution

of the cores, ranked by their potentials, where we reject the hy-

pothesis that the two subsets are drawn from the same underlying

distribution if the KS p-value is less than 0.1.

4 R ESULTS

In this section, we follow the approach of Kirk et al. (2016b)

and split the Orion B region into its three spatially distinct

(in two dimensions) regions: L1622, NGC 2068/NGC 2071, and

NGC 2023/NGC 2024. We then apply the Q-parameter, �MSR ra-

tio, �LDR technique, and the �PDR technique to the three regions.

4.1 L1622

Using the original Cartwright & Whitworth (2004) method, we

determine a Q-parameter of 0.72, which straddles the boundary

between a substructured and a smooth distribution. In Fig. 2, we

show the Cartwright (2009) m̄–s̄ plot, which further distinguishes

between the substructured and smooth regimes. Whilst L1622 is

Figure 2. The location of L1622 on the Cartwright (2009) m̄–s̄ plot and

compared to synthetic star-forming regions containing the same number of

objects (29) as L1622. We show the results for 10 different geometries, start-

ing with very substructured fractal regions with fractal dimension D = 1.6

(the black ⊕ symbols) and increasing in fractal dimension (corresponding

to increasingly smoother distributions) until the fractals produce a uniform

sphere (D = 3.0, the blue crosses). We then switch regimes to regions that

are smooth and centrally concentrated with a radial density profile n ∝ r−α ,

where α = 0 indicates a uniform density profile, up to α = 2.9 (the purple

squashed squares). We also show the results for Plummer spheres (open

charcoal squares). The boundary between substructured and smooth distri-

butions is shown by the solid black line. We show 100 realizations of each

geometry.

marginally in the substructured regime, the small number of cores

in this region (29) means that any interpretation based on these

values should be treated with caution.

Interestingly, Kirk et al. (2016b) obtain a much higher value

for the Q-parameter (Q = 1.18), which would definitively place

it in the smooth regime. However, we believe there is a flaw

in their method used to normalize both m̄ and s̄ (and there-

fore Q itself), which we discuss in the Appendix of this

paper.

Next, we examine the relative distribution of the most massive

cores (as defined by their 850-µm flux). In Fig. 3(a), we show the

positions of the cores in L1622, highlighting the positions of the 10

cores with the highest flux in red.

We show the evolution of the �MSR mass segregation ratio as a

function of the NMST most massive cores in Fig. 3(b). As with the

determination of the Q-parameter, the low number of cores in this

region precludes the drawing of any strong conclusions, but we note

that the most massive cores do not appear to be significantly more

concentrated than lower mass cores in the region.

The local surface density ratio, �LDR, is marginally above unity

(compare the solid red and dashed blue lines in Fig. 3c), but a KS-

test between the local surface density distribution of the 10 most

massive cores and the full distribution of all 29 cores returns a KS

difference of 0.25 and a p-value of 0.68 that they share the same

underlying distribution.

Finally, the median potential of the most massive cores is slightly

higher than that of the full region, i.e. the most massive cores sit in

slightly deeper potentials than the average core (Fig. 3d). However,
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Figure 3. Spatial distributions of the most massive cores (i.e. those with the highest 850-µm flux) in L1622. In panel (a), we show the location of the most

massive cores (the red points). In panel (b), we show the mass segregation ratio, �MSR as a function of the NMST cores, ordered by decreasing 850-µm flux.

The dashed line indicates �MSR = 1, corresponding to no mass segregation. In panel (c), we show the local surface density � as a function of the individual

850-µm flux of each core. The solid red line indicates the median surface density for the 10 most massive cores, and the blue dashed line indicates the median

� value for the entire L1622 region. Finally, in panel (d), we show the local gravitational potential, �, as a function of the individual 850-µm flux of each core.

The solid red line shows the median � value for the 10 most massive cores, and the purple dashed line shows the median � value for all cores in the region.

the KS-test between the two distributions returns a KS difference

of 0.26 and a p-value of 0.65 that they share the same underlying

distribution.

4.2 NGC 2068/NGC 2071

The Q-parameter for the cores in the NGC 2068 and NGC 2071 re-

gions isQ = 0.65 (using the original normalization from Cartwright

& Whitworth 2004). This indicates a slightly substructured distri-

bution, and is in line with the visual appearance of the region. In

contrast, Kirk et al. (2016b) report a Q = 0.91, although again,

this high value is due to the erroneous convex hull normalization

technique described in the Appendix.

Unlike L1622, the NGC 2068/NGC 2071 region contains enough

cores (322) to constrain its spatial distribution using the Cartwright

(2009) m̄–s̄ plot. If we place NGC 2068/NGC 2071 on the m̄–s̄ plot

(Fig. 4), we see that it resides within the moderately substructured

regime and overlaps with the parameter space of fractal distributions

with fractal dimension D = 2.0. We note that this does not necessar-

ily mean that the distribution of cores in NGC 2068/NGC 2071 is a

fractal distribution, but rather it has the same degree of substructure

as a fractal with D = 2.0.

We show the location of the 10 most massive cores (those with the

highest 850-µm flux) by the large red points in Fig. 5(a). The most

massive cores appear in groups of two or three, and are distributed

over an area that is slightly smaller than the extent of the full region.

We quantify the spatial distribution of the most massive cores in

Fig. 5(b), where we show the �MSR ratio as a function of the NMST

most massive cores. The four most massive cores are consistent

with �MSR = 1, whereas the 10 to 40 most massive cores appear

significantly more concentrated than the average cores (�MSR =
1.95+0.2

−0.4 for the NMST = 10 most massive cores).

MNRAS 476, 617–629 (2018)
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Figure 4. The location of NGC 2068/NGC 2071 on the Cartwright (2009)

m̄–s̄ plot and compared to synthetic star-forming regions containing the

same number of objects (322) as NGC 2068/2071. We show the results

for 10 different geometries, starting with very substructured fractal regions

with fractal dimension D = 1.6 (the black ⊕ symbols) and increasing in

fractal dimension (corresponding to increasingly smoother distributions)

until the fractals produce a uniform sphere (D = 3.0, the blue crosses). We

then switch regimes to regions that are smooth and centrally concentrated

with a radial density profile n ∝ r−α , where α = 0 indicates a uniform

density profile, up to α = 2.9 (the purple squashed squares). We also show

the results for Plummer spheres (open charcoal squares). The boundary

between substructured and smooth distributions is shown by the solid black

line. We show 100 realizations of each geometry.

In Fig. 5(c), we show the local surface density of the cores in the

NGC 2068/NGC 2071 region as a function of their 850-µm flux.

The median surface density of all cores (� = 15 cores pc−2) is

shown by the dashed blue line, and the surface density of the 10

most massive cores (� = 27 cores pc−2) is shown by the solid red

line. A KS test between the 10 most massive cores and the full

region has a KS difference of 0.6 and a p-value of 9 × 10−4 that

they share the same underlying parent distribution.

The local potential around each core is shown as a function of

850-µm flux in Fig. 5(d). The most massive cores sit in a deeper

potential (median � = −3.23) than the average cores in the region

(median � = −3.06). A KS test between the two samples returns a

KS difference of 0.62 with a p-value 5.8 × 10−4 that they share the

same underlying parent distribution.

4.3 NGC 2023/NGC 2024

Finally, we examine the distribution of 564 cores in the NGC 2023

and NGC 2024 regions. The Q-parameter for the cores in these

regions is Q = 0.71, which is close to the boundary between a

substructured and a smooth distribution. As before, our calculated

Q-parameter is lower than that determined by Kirk et al. (2016b) us-

ing the flawed convex hull normalization described in the Appendix

(they find Q = 0.99).

The Q-parameter calculated using the Cartwright & Whitworth

(2004) method cannot be used in isolation to determine the struc-

tural properties of the NGC 2023 and NGC 2024 regions. We show

the Cartwright (2009) m̄–s̄ plot in Fig. 6 for synthetic regions

containing 564 points with a range of different morphologies.

NGC 2023/NGC 2024 has a similar spatial distribution to a frac-

tal region with D = 2.0, but we again emphasize that this does not

mean that NGC 2023/NGC 2024 is a fractal.

We show the locations of the 10 most massive cores (as defined

by their 850-µm flux) by the large red points in Fig. 7(a). It is clear

that the most massive cores are more clustered than the average

cores, and we quantify this using the �MSR ratio as a function of

the NMST most massive cores in Fig. 7(b). In contrast to L1622

and NGC 2068/NGC 2071, the cores in this region are significantly

segregated, with �MSR = 28+13
−10 for the NMST = 4 most massive

cores. The 10 most massive cores also display significant mass

segregation, with �MSR = 3.9+0.5
−0.6.

Interestingly, the median local surface density of the most massive

cores – whilst significantly higher than the median surface density

for all cores – is not as extreme as the mass segregation measured

by �MSR when compared to NGC 2068/NGC 2071. In Fig. 7(c), we

show the local surface density for each core as a function of its 850-

µm flux. The median value for the full region (� = 15 cores pc−2)

is shown by the blue dashed line, and the median value for the most

massive cores (� = 20 cores pc−2) is shown by the solid red line.

A KS test on the two samples returns a KS difference of 0.49 and

a p-value of 1 × 10−2 that they share the same underlying parent

distribution.

The local potential around each core in the NGC 2023/NGC 2024

region is shown as a function of 850-µm flux in Fig. 7(d). The most

massive cores sit in a deeper potential (median � = −3.9) than the

average cores in the region (median � = −3.3). A KS test between

the two samples returns a KS difference of 0.85 with a p-value

2.9 × 10−7 that they share the same underlying parent distribution.

5 D I SCUSSI ON

To summarize our results, we find moderate to low Q-parameters

(Q < 0.8) for all three star-forming regions within Orion B, in-

dicating that these regions are mildly substructured. In L1622,

which hosts only 29 cores, the spatial distributions of the most

massive cores (as defined by their 850-µm flux) are indistin-

guishable from the spatial distributions of all cores. However, in

NGC 2068/NGC 2071 and NGC 2023/NGC 2024, the most mas-

sive cores reside in areas of higher than average surface density,

and sit in deeper potentials than the average core. Interestingly,

NGC 2023/NGC 2024 displays very high levels of mass segrega-

tion from the four most massive cores to the 20 most massive cores,

according to �MSR. The four most massive cores are not mass seg-

regated in the NGC 2068/NGC 2071 region, but the 10–40 most

massive cores are slightly mass segregated.

5.1 Caveats and assumptions

Before discussing these results in the context of star formation

theories, and the spatial distributions of pre-main-sequence stars in

star-forming regions, it is worth highlighting several caveats. First,

a single core is unlikely to produce a single star, but rather several

during subsequent fragmentation process(es) (Goodwin et al. 2007;

Hatchell & Fuller 2008; Lomax et al. 2014). It is unclear whether

the stars produced by a core would necessarily follow the same

spatial distribution as the cores, even if (as proposed by e.g. Alves

et al. 2007) the IMF of stars is a direct mapping of the CMF but at

a reduced efficiency.

Secondly, we have followed the procedure of Kirk et al. (2016b)

and ranked the core masses in terms of their 850-µm flux. If the

relation between flux and core mass is not linear, or breaks down in
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Spatial distribution of dense cores 623

Figure 5. Spatial distributions of the most massive cores (i.e. those with the highest 850-µm flux) in NGC 2068/NGC 2071. In panel (a), we show the location

of the most massive cores (the red points). In panel (b), we show the mass segregation ratio, �MSR, as a function of the NMST cores, ordered by decreasing

850-µm flux. The dashed line indicates �MSR = 1, corresponding to no mass segregation. In panel (c), we show the local surface density � as a function

of the individual 850-µm flux of each core. The solid red line indicates the median surface density for the 10 most massive cores, and the blue dashed line

indicates the median � value for the entire NCG 2068/NGC 2071 region. Finally, in panel (d), we show the local gravitational potential, �, as a function of the

individual 850-µm flux of each core. The solid red line shows the median � value for the 10 most massive cores, and the purple dashed line shows the median

� value for all cores in the region.

certain regimes, then our determination of �MSR, �LDR and �PDR

could change.

Thirdly, we note that all of the techniques we employ to quantify

the spatial distribution of cores (Q, �MSR, �LDR and �PDR) suffer

from the same potential biases as when they are applied to quantify

the distributions of stars in star-forming regions. For example, if

the sample is contaminated by fore- and/or background objects, the

Q parameter will suggest a more homogeneous distribution (Parker

& Meyer 2012), with values tending to Q ∼ 0.8. This bias could

also have the effect of making the brightest or most massive objects

appear more spatially substructured.

Similarly, crowding and extinction in the central regions of star-

forming regions can obscure low-mass/low-flux objects, causing

the more massive objects to appear more centrally concentrated

(Ascenso, Alves & Lago 2009; Parker & Goodwin 2015). However,

in such a scenario we would expect the surface density ratio, �LDR,

to be lowered, as the massive objects would appear to be relatively

isolated if lower mass objects were obscured.

We note that identifying spatially distinct cores can be difficult

in crowded star-forming regions (Kainulainen et al. 2009), where

choices have to be made on setting the physical boundary of indi-

vidual cores. This does not affect our comparison with the results

of Kirk et al. (2016b, see Section 5.2) because we are using the

exact same data, but could affect our determination of all four of

the spatial diagnostics presented in Section 4 and our interpretation

of these distributions, which we discuss in Section 5.3.

Finally, we reiterate our point in Section 3.1 that the box frac-

tal method we use to give our calculated Q-parameters physical
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Figure 6. The location of NGC 2023/NGC 2024 on the Cartwright (2009)

m̄–s̄ plot and compared to synthetic star-forming regions containing the

same number of objects (564) as NGC 2023/2024. We show the results

for 10 different geometries, starting with very substructured fractal regions

with fractal dimension D = 1.6 (the black ⊕ symbols) and increasing in

fractal dimension (corresponding to increasingly smoother distributions)

until the fractals produce a uniform sphere (D = 3.0, the blue crosses). We

then switch regimes to regions that are smooth and centrally concentrated

with a radial density profile n ∝ r−α , where α = 0 indicates a uniform

density profile, up to α = 2.9 (the purple squashed squares). We also show

the results for Plummer spheres (open charcoal squares). The boundary

between substructured and smooth distributions is shown by the solid black

line. We show 100 realizations of each geometry.

meaning does not always fully describe the detailed level of sub-

structure in a star-forming region (Jaffa et al. 2017). Furthermore,

a box fractal with notional fractal dimension D = 1.6 will have

a much higher (local) density than a fractal with D = 3.0 (Bate,

Clarke & McCaughrean 1998; Parker, Goodwin & Allison 2011b)

for the same number of points (see also Lomax et al. 2011; Parker

& Dale 2015). However, given the similar dynamic range in both

the number of cores and local density in Orion B, we do not believe

this will negatively impact our interpretation of our calculated Q

values.

5.2 Comparison with previous work

Very few studies have quantified the spatial distributions of pre-

stellar cores in star-forming regions. The study by Kirk et al. (2016b)

was the first to utilize such a large sample of cores, and in our

study, we have used the same data set as Kirk et al. (2016b), with

the same proxy for core mass (850-µm flux). However, due to

differences in our adopted methods, our results and interpretation

differ significantly.

We find the same behaviour in the surface density–850-µm flux

parameter space. All three regions have a low overall density of

cores, and the cores with the highest flux tend to be in areas of

higher than average surface density.

Our calculated values for the Q-parameter (Q = 0.72 for

L1622, Q = 0.65 for NGC 2068/NGC 2071, and Q = 0.71 for

NGC 2023/NGC 2024) differ significantly from those in Kirk

et al. (2016b, who report Q = 1.18 for L1622, Q = 0.91 for

NGC 2068/NGC 2071 and Q = 0.99 for NGC 2023/NGC 2024),

due to the different normalization methods. As discussed in Ap-

pendix A, we believe the full convex hull normalization method

adopted by Kirk et al. (2016b) to be flawed, and we advise against

using it in future studies. Whereas the Q-parameters determined by

Kirk et al. (2016b) suggest smooth distributions for all three subre-

gions of Orion B, our analysis indicates that they are all spatially

substructured.

Using �MSR, we find that L1622 does not exhibit mass segre-

gation of the cores at any significant level. NGC 2068/NGC 2071

display some moderate mass segregation for the 10–40 most massive

cores (but the four most massive cores are not mass segregated). In

contrast, NGC 2023/NGC 2024 displays high levels of mass segre-

gation for the four most massive cores, with the 10–20 most massive

cores also mass segregated to a high level.

Kirk et al. (2016b) find that all three regions in Orion B are mass

segregated, according to the group segregation method developed

by Kirk & Myers (2011) and Kirk et al. (2014). This method is very

different to conventional methods of defining mass segregation,

such as quantifying the change in the IMF as a function of distance

from the centre of a star-forming region. Instead of considering the

whole star-forming region, the group segregation method divides

the region into groups based on a threshold length between objects.

This threshold length is determined by drawing an MST of the

entire region and then finding a break in the distribution of the

branch lengths of the MST. The method then determines whether

the most massive object in each group is closer to the centre of the

group than the average object, and the group is defined as being

mass segregated if this is the case.

Parker & Goodwin (2015) discuss several issues with the group

segregation method, two of which we briefly reiterate here. First,

the definition of a ‘group’ in this method requires there to be at

least 10 objects within the threshold MST length of each other. The

most massive objects in a region may not even be included in the

determination of mass segregation if they are in a relatively isolated

location. Secondly, by its very construction, the group segregation

method makes a distinction between grouped and ungrouped star

formation. However, something that is hierachically substructured

(like a young star-forming region) has a continuous distribution

over all spatial scales and cannot therefore be split into individual

subgroups.

For these reasons, we cannot make a direct comparison between

these two methods for finding mass segregation in Orion B, but note

that the �MSR method measures mass segregation in the more con-

ventional sense (an overconcentration of the most massive objects),

whereas the group segregation method has major flaws.

5.3 Primordial mass segregation?

If the spatial distribution of the stars that form from the cores in

Orion B follows a similar distribution to the cores, then we would

expect that the stars in NGC 2023/NGC 2024 (and to a lesser extent

NGC 2068/NGC 2071) be mass segregated at very early ages. Given

the low surface density of cores and the presence of substructure

(as measured by the Q-parameter), it is highly unlikely that the

cores have dynamically mass segregated on such short time-scales

(Parker et al. 2014; Domı́nguez et al. 2017). Instead, the observed

mass segregation of cores – subject to the caveats listed above – is

almost certainly primordial, i.e. the outcome of the star formation

process.

The competitive accretion model of star formation (Zinnecker

1982; Bonnell, Bate & Zinnecker 1998; Bonnell et al. 2001; Bon-

nell, Clark & Bate 2008) posits that the most massive stars form from
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Figure 7. Spatial distributions of the most massive cores (i.e. those with the highest 850-µm flux) in NGC 2023/NGC 2024. In panel (a), we show the location

of the most massive cores (the red points). In panel (b), we show the mass segregation ratio, �MSR, as a function of the NMST cores, ordered by decreasing

850-µm flux. The dashed line indicates �MSR = 1, corresponding to no mass segregation. In panel (c), we show the local surface density � as a function

of the individual 850-µm flux of each core. The solid red line indicates the median surface density for the 10 most massive cores, and the blue dashed line

indicates the median � value for the entire NCG 2023/NGC 2024 region. Finally, in panel (d), we show the local gravitational potential, �, as a function of the

individual 850-µm flux of each core. The solid red line shows the median � value for the 10 most massive cores, and the purple dashed line shows the median

� value for all cores in the region.

Jeans-mass seed objects that accrete more gas than their siblings due

to their preferential location in gas-rich areas of the star-forming

region. Initially, this theory predicted that the most massive stars

should be preferentially centrally concentrated, as they are likely to

form in deep potential wells with a large gas reservoir. However,

recent analyses of simulations in which massive stars do form from

competitive accretion show that this process can occur without the

massive stars becoming mass segregated, or residing in areas of

higher than average surface density (Parker et al. 2015; Parker &

Dale 2017).

Parker & Dale (2017) find that massive stars are preferentially

located in deeper potential wells than average stars only if the effects

of feedback from the massive stars are switched off in the simulation.

When photoionizing feedback is switched on, the massive stars do

not assume a different spatial distribution to lower mass stars as

they form.

Pety et al. (2017) point out that NGC 2023/NGC 2024 is in the

immediate vicinity of several OB stars surrounded by H II regions,

indicating photoionization is taking place. Indeed, Pety et al. (2017)

estimate the mean far-ultra violet (FUV) flux in this region to be

45 G0, where G0 = 1.6 × 10−3 erg s−1 cm−2 is the typical FUV

flux in the interstellar medium (Habing 1968). Given this relatively

strong FUV radiation field, it is unlikely that the most massive cores

have been unaffected by this feedback. We therefore argue that the

mass segregation of cores in this region has occurred independently

of any competitive accretion process during the formation of stars.

The role of magnetic fields in the star formation process, and

in particular their influence on the primordial spatial distribution
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of both cores and stars, is poorly understood. Myers et al. (2014)

found high surface density ratios for the most massive stars in their

magnetohydrodynamic simulations of star formation that include

feedback. Their interpretation is that the magnetic fields are respon-

sible for the different spatial distribution of the most massive stars.

Given that the observed cores in the NGC 2023/NGC 2024 region of

Orion B cannot become mass segregated due to dynamics or com-

petitive accretion, further investigation into the role of magnetic

fields in this process would be highly desirable.

6 C O N C L U S I O N S

We quantify the spatial distributions of dense cores in three

subregions of the Orion B star-forming region, namely L1622,

NGC 2068/NGC 2071, and NGC 2023/NGC 2024, using data from

Kirk et al. (2016a). We determine the amount of substructure us-

ing the Cartwright & Whitworth (2004) Q-parameter, the amount

of mass segregation using the Allison et al. (2009) �MSR ratio,

the relative surface density of the most massive cores using the

Maschberger & Clarke (2011) �LDR technique, and the relative

depth of the gravitational potential around the most massive cores,

�PDR (Parker & Dale 2017). Our conclusions are the following:

(i) In contrast to Kirk et al. (2016b), who calculatedQ-parameters

consistent with smooth or centrally concentrated distributions, we

findQ < 0.8 for all three regions, which suggests a substructured or

hierarchical distribution. We attribute the high values found by Kirk

et al. (2016b) to a flaw in their normalization method, which uses a

convex hull area instead of the area of a circle (see Appendix).

(ii) The dense cores in L1622 are not mass segregated, but

the cores in NGC 2068/NGC 2071 are mildly mass segregated

(�MSR ∼ 2 for the 40 most massive cores). NGC 2023/NGC 2024 is

significantly mass segregated (�MSR = 28 for the four most massive

cores, and �MSR = 3.9 for the 10 most massive cores).

(iii) The most massive cores in NGC 2068/NGC 2071 and

NGC 2023/NGC 2024 lie in areas of relatively high local surface

density, as well as sitting in a deeper gravitational potential than the

lower mass stars.

(iv) Given the degree of spatial substructure in all three regions,

the difference in the spatial distributions of the most massive cores

compared to lower mass cores (assuming observational biases are

not wholly responsible) cannot be attributed to dynamical evolution

of the cores. Instead, the observed distributions must reflect the

outcome of the star formation process.

(v) The presence of primordial mass segregation in the dense

cores does not necessarily support the competitive accretion the-

ory of star formation, as hydrodynamical simulations where this

process dominates do not always display differences in the spatial

distributions of the most massive stars, especially in regions with

high external feedback (Parker & Dale 2017), such as Orion B (Pety

et al. 2017).

(vi) Differences in the spatial distributions of massive cores (and

stars) have been attributed to the presence of magnetic fields (e.g.

Myers et al. 2014). This idea warrants further investigation as it

specifically predicts a different spatial distribution for the most

massive cores/stars, even in the presence of strong feedback, which

appears to be the case in Orion B. Simulations that do not include

magnetic fields, but do include feedback, have shown that the most

massive stars do not attain a different spatial distribution to lower

mass objects (Parker et al. 2015).

In future papers, we will investigate the spatial distributions of

pre-stellar cores in other star-forming regions, as well as in hydro-

dynamical simulations of star formation.
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A P P E N D I X A : N O R M A L I S AT I O N O F T H E

Q-PARAMETER

The values of the Q-parameter quoted by Kirk et al. (2016b) for the

three subregions of Orion B are all higher than those calculated in

Section 4. Whereas we calculate low values ofQ, which suggest that

the cores in the subregions follow a substructured distribution, Kirk

et al. (2016b) find values ofQ that are higher and that appear to be in

the regime of Q that would map to smooth, centrally concentrated

distributions.

This discrepancy arises from differences in the methods used to

normalize both the mean MST length m̄ and the mean separation

between stars, s̄. In Fig. A1, we show three synthetic star-forming

regions, each with a different geometry. Panel (a) of Fig. A1 shows a

substructured fractal distribution with D = 1.6, panel (b) of Fig. A1

shows a uniform fractal with D = 3.0, and panel (c) of Fig. A1 shows

a smooth, centrally concentrated distribution with radial profile

n ∝ r−2.9.

In each case, we show the area used to normalize m̄ and the

radius used to normalize s̄ for three different methods. Cartwright &

Whitworth (2004) normalize their Q-parameter to a circle with area

A and radius R (black dashed lines). Kirk et al. (2016b) normalize

Figure A1. Demonstration of the three methods used to normalize the Q-parameter. The original method from Cartwright & Whitworth (2004), where the

distribution is normalized to the area A of a circle with radius R encompassing the most distant point is shown by the black dashed lines. The method from

Kirk et al. (2016b), which uses the area of a convex hull, ACH and a radius equal to the distance of the outermost point in the convex hull from the average

position of the convex hull points, RCH-ex, is shown by the solid red lines. Finally, Schmeja & Klessen (2006) normalize Q by using the area of the convex hull

ACH and drawing a circle with the radius calculated from this area, RCH-circ (the blue dotted lines). For reference, the lengths of each of these radii are shown

in the top left-hand side of each panel. We show three different geometries; a fractal with D = 1.6, a fractal with D = 3.0 and a smooth, centrally concentrated

distribution with radial density profile n ∝ r−2.9.
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Figure A2. The Q-parameter as a function of the number of objects in a distribution. In panel (a), the Q-parameter is normalized to the area of a circle with

a radius equal to the distance of the furthest point from the centre (Cartwright & Whitworth 2004). In panel (b), the Q-parameter is normalized to the area of

a convex hull, and a radius of a circle with an area equal to that of the convex hull (Schmeja & Klessen 2006). In panel (c), the Q-parameter is normalized to

the area of a convex hull, and a ‘radius’ equal to the distance between the furthest point and the centre of the convex hull (Kirk et al. 2016b). From the bottom

to top, the lines represent different morphologies, starting with a highly substructured distribution and becoming progressively smoother and more centrally

concentrated. We show fractal distributions with fractal dimension D = 1.6 (black solid lines), D = 2.0 (red dashed lines), D = 2.6 (green dot–dashed lines),

and D = 3.0 (blue dotted lines), and smooth, centrally concentrated radial density profiles with n ∝ r0 (magenta solid lines), n ∝ r−1.0 (orange dotted lines), n

∝ r−2.0 (grey dot–dashed line), n ∝ r−2.5 (magenta dashed lines), a Plummer sphere (solid charcoal grey lines), and n ∝ r−2.9 (purple solid lines). The error

bars represent the interquartile range of 100 realizations of each distribution.

their Q-parameter to a convex hull area ACH and a ‘radius’ equal

to the extent of the outermost point of the convex hull from the

mean position of the convex hull points, RCH-ex (red solid lines).

Finally, Schmeja & Klessen (2006) use this convex hull area ACH,

but normalize s̄ to the radius of a circle, RCH-circ with an area equal

to that of the convex hull (blue dotted lines).

Irrespective of the geometry of the region, Fig. A1 shows that

the full convex hull normalization from Kirk et al. (2016b) always

produces smaller areas and larger radii than the standard normal-

ization in Cartwright & Whitworth (2004). This, in turn, leads to

high values of Q that cannot be mapped to the same scale as the

standard normalization of the Q-parameter. This is demonstrated in

Fig. A2, where panel (a) shows the Q-parameter as a function of the

number of points in a synthetic distribution. The coloured lines cor-

respond to different geometries, and in panel (a), the lowest (black)

line indicates a very substructured distribution, and the sequentially

higher lines follow a pattern of decreasing substructure/increasingly

smoother and centrally concentrated.

The full convex hull normalization method suffers from the prob-

lem that the normalization of m̄ and s̄ for distributions with a low

(<200) number of points leads to Q values that do not follow this

sequence of regions with the most substructure having lower values

of Q. As an example, consider the solid magenta line in panel (c) of

Fig. A2, which shows the evolution of the Q-parameter for regions

with a smooth distribution and a uniform density profile n ∝ r0. For

regions with fewer than 200 points, the Q-parameter is shown as

being lower than a mildly substructured fractal with D = 2.6.

The normalization adopted by Schmeja & Klessen (2006) pro-

duces almost identical values for Q to the standard version from

Cartwright & Whitworth (2004) – compare panels (a) and (b) in

Fig. A2. This is unsurprising as the radius and area are reduced

proportionally (compare the dotted blue line/circle to the dashed

black line/circle in Fig. A1).

The Schmeja & Klessen (2006) normalization does differ from

the original Cartwright & Whitworth (2004) method in the m̄–s̄ plot

(Cartwright 2009), which can be used as a further diagnostic check

for the amount of substructure present in a region. This method can

help distinguish between regimes where the Q-parameter straddles

the border between smooth and substructure distributions (e.g.

Lomax et al. 2011; Parker & Dale 2015). In Fig. A3, we show the

m̄–s̄ plot for synthetic star-forming regions containing 300 stars.

The boundary between the substructured and smooth regimes for

the Cartwright & Whitworth (2004) normalization is shown by the

solid line.

The difference between geometries is marginally more distinct in

the m̄–s̄ plot if we use the Schmeja & Klessen (2006) normalization

(compare panel b to panel a, which is the original Cartwright &

Whitworth 2004 normalization). However, the problems with the

full convex hull normalization (Kirk et al. 2016b) are apparent in

panel (c) of Fig. A3. Different geometries have more overlap in

this diagram compared to the Cartwright & Whitworth (2004) and

Schmeja & Klessen (2006) methods (note the location of several of

the black ⊕ symbols, which are very substructured fractal distribu-

tions, lying in the same parameter space as smooth, very centrally

concentrated distributions). There is also no clear linear boundary

between the substructured and smooth regimes (and no obvious

alternative location for this boundary).

In summary, the using of full convex hull method to normalize

the Q-parameter is flawed, and is the reason behind the spuriously

high Q values quoted in Kirk et al. (2016b) for the Orion B subre-

gions. We recommend using the original normalization method in

Cartwright & Whitworth (2004) when calculating the Q-parameter.
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Figure A3. The Cartwright (2009) m̄–s̄ plot for synthetic star-forming regions containing 300 points. We show the results for 10 different geometries, starting

with very substructured fractal regions with fractal dimension D = 1.6 (the black ⊕ symbols) and increasing in fractal dimension (corresponding to increasingly

smoother distributions) until the fractals produce a uniform sphere (D = 3.0, the blue crosses). We then switch regimes to regions that are smooth and centrally

concentrated with a radial density profile n ∝ r−α , where α = 0 indicates a uniform density profile, up to α = 2.9 (the purple squashed squares). We also show

the results for Plummer spheres (open charcoal squares). The boundary between substructured and smooth distributions using the normalization technique in

Cartwright & Whitworth (2004) is shown by the solid black line. We show 100 realizations of each geometry. Panel (a) shows the results where m̄ is normalized

to the area of a circle encompassing the outermost point in the distribution and s̄ is normalized to the radius of the circle (Cartwright & Whitworth 2004). Panel

(b) shows results where m̄ is normalized to the area of a convex hull, and s̄ is normalized to the radius of a circle with this area (Schmeja & Klessen 2006).

Finally, panel (c) shows the results where m̄ is normalized to the area of a convex hull, and s̄ is normalized to the extent of the outermost point from the mean

position of all of the points in the convex hull (Kirk et al. 2016b).
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