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ABSTRACT In this article, we develop a comprehensive statistical framework to characterize and model

large scale unmanned aerial vehicle (UAV) enabled post-disaster recovery cellular networks. In the case

of natural or man-made disasters, the cellular network is vulnerable to destruction resulting in coverage

voids or coverage holes. Drone-based small cellular networks (DSCNs) can be rapidly deployed to fill

such coverage voids. Due to capacity and back-hauling limitations on drone small cells (DSCs) each

coverage hole requires a multitude of DSCs to meet the shortfall coverage at a desired quality-of-service

(QoS). Moreover, ground users also tend to cluster in hot-spots in a post-disaster scenario. Motivated by

this fact, we consider clustered deployment of DSCs around the site of a destroyed BS. Joint consideration

partially operating BSs and deployed DSCs yields a unique topology for such public safety networks.

Borrowing tools from stochastic geometry, we develop a statistical framework to quantify the down-link

performance of a DSCN. Our proposed clustering mechanism extends the traditional Matern and Thomas

cluster processes to a more general case where cluster size is dependent upon the size of the coverage

hole. We then employ the newly developed framework to find closed-form expressions (later verified by

Monte-Carlo simulations) to quantify the coverage probability, area spectral efficiency (ASE) and the

energy efficiency (EE) for the down-link mobile user. Finally, we explore several design parameters (for

both of the adopted cluster processes) that address optimal deployment of the network (i.e., number of

drones per cluster, drone altitudes and transmit power ratio between the traditional surviving base stations

and the drone base stations).

INDEX TERMS Drones, Stochastic geometry, Unmanned aerial vehicles, Coverage probability, Poisson

cluster processes.

A. MOTIVATION

I
N the recent past, we have envisioned an exponential pro-

liferation of low-cost embedded systems. These low-cost

hardware platforms naturally complement a new breed of

software systems provisioned via mobile cloud computing.

Effectively, these developments have transformed the land-

scape for the design and development of low-cost internet-

of-everything including robotics and autonomous systems.

Specifically, cheap aerial robotic platforms have witnessed

tremendous proliferation over past five years. According

to recent figures from the retail research firm the NPD

Group, sales of drones have more than tripled over the last
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year. With the lower adaptation barrier, drone or so-called

unmanned aerial vehicles (UAVs) have attracted significant

interest for various applications in the context of smart city

solutions. Public safety communication networks are one

such application. Rapid on-demand deployment of UAVs

furnished with cellular radio platforms is ideal for realizing

disaster recovery networks, especially in both rural and

urban areas. Consequently, several recent research investiga-

tions [1]–[7] have examined the design of a comprehensive

framework for the optimal deployment and commissioning

of UAVs to enable resilience in public safety networks.

From a communication networks perspective, resilience

translates into obliviousness under various failures or asym-

metric resource distributions. Specifically, in the context

of cellular networks, base station failures can be caused

by either a natural or a man-made phenomenon. Natural

phenomena such as earthquakes or flooding can result in

either destruction of communication hardware or disruption

of energy supply to base stations (BSs). Man-made destruc-

tion can be either due to a certain sub-system failure or

alternatively due to vandalism. In such cases, there is a

UAV enabled cellular deployment to present a mechanism

through which capacity short-fall can be met in a rapid

manner. Drone empowered small cellular networks (DSCNs)

present an attractive solution as they can be swiftly deployed

for provisioning public safety networks. The ability to self-

organize, either in stand-alone or via remote configuration

in an on-demand manner, makes the flying cellular network

a key enabler for resilient communication networks.

Despite several recent efforts [3], [8]–[11], the design and

deployment of flying cells as a disaster recovery network

has not been extensively investigated in the literature. The

key difficulty is the absence of accurate models for post-

disaster operational cellular infrastructure and user distribu-

tion. Nevertheless, some specific attributes of post-disaster

systems such as surviving user clustering are well known in

the existing literature [12]. These attributes can be accom-

modated in a stochastic geometric framework to provide

system level understanding of DSCNs empowered public

safety networks. To this end, we present cluster processes

based on stochastic geometric framework for exploring the

design space of DSCNs. Noticing that the classical cluster

processes do not cater for randomness in the cluster size

(which is a key attribute of post-disaster cellular networks),

we develop a novel Steinen cell [13], [14] based cluster

process model. The model is employed to investigate the

design space of DSCNs and several important insights are

presented. To the best of the authors’ knowledge, this is the

first study to employ the proposed random clustering model

to evaluate the design space for future DSCN deployments.

B. RELATED WORK

In the recent past, public safety networking has received

significant attention within the third generation partnership

project (3GPP) standardization. 3GPP is currently in the

process of standardizing proximity services (ProSe) via

Device-to-Device (D2D) communication. The central idea

behind ProSe is to form an ad-hoc network where certain

nodes of the network (which may still have access to an

operational cellular infrastructure in a post-disaster situa-

tion) can act as gateways to extend network coverage to

isolated nodes. While D2D communication is a promising

solution for public safety networks, there are several design

challenges which need to be addressed to realize practical

deployment with optimal design parameters. In particular,

in multi-hop D2D communication networks, those nodes

which are connected to the cellular network may become

traffic-forwarding hot-spots. Due to limited battery capacity

of mobile user equipment, traffic hot-spots may reduce the

operational life-time of the entire network. Moreover, the

network in its essence is ad-hoc and thus guaranteeing

reliable connectivity is not possible. That is, a network

operator controlled solution is the best approach to optimally

deploy such networks.

Despite the growing popularity of the aforementioned,

DSCNs present an attractive alternative and complementary

deployment option. That is, drones can offer many posi-

tives to overcome the typical ad-hoc networks problems:

(i) they present fast and resilient deployment, (ii) they

can be controlled via a centralized network operator to

increase compatibility and interoperability, and (iii) the

propagation conditions are much more favourable and can

be further optimized by exploiting controlled mobility of

the drones. Consequently, it is envisioned that both D2D

and DSCNs will complement the legacy private/professional

mobile radio (PMR) (e.g., trans- European trunked radio

(TETRA) and project 25 (P25)) for enabling next generation

public safety networks [15]–[17]. In the recent past, many

researchers are trying to define an optimal deployment

framework for such networks. Indeed, there are two main

approaches. The first is the one focusing on constructing

an analytical framework to build the optimal network even

by counting the intrinsic randomness or assuming a fixed

network structure [18]–[20]. The second approach deal with

building optimal algorithms to define the deployment geom-

etry parameters in an efficient manner [21]–[25]. However,

within these two direction, we will focus on building an

analytical statistical framework to study the randomness of

the network by harnessing stochastic geometry tools in a

user-centric fashion in contrast to the popular whole network

performance coverage averaging studies.

Relying on the results of link budget and path-loss model,

the DSCNs can be designed and optimized in the same

way as in the 5G heterogeneous networks. However, the

differences are in the capabilities of the drone base stations

(DBSs) in terms of capacity and airtime etc. To this end,

some studies were conducted to measure the prospective

performance enhancement and to identify the design imple-

mentation conditions and elements of operation. Here, many

researchers tried to find the optimal drone 3D placement

which secures the maximum coverage for single or multiple

drones working in a recovery constrained area [2], [19].
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In our previous work in [19], we studied the coverage

probability for a constrained recovery area where the de-

struction is assumed to be in a small circular region of the

space. However, this is not the case for a whole network

performance short-fall recovery. Hence, we introduce the

cluster based recovery network structure.

The new structure of DSCNs leads to several new deploy-

ment topologies. For instance, cluster based fixed ground

IoT networks have been addressed in [25]. In this study,

an optimal clustering given the limited capacity for every

UAV is investigated. Essentially, the optimal deployment

of DSCNs is an application dependent problem. That is,

for IoT and WSN applications, we need to define how

many clusters we need to deploy while assuming that one

UAV is only needed to serve each cluster. However, for

a post-disaster scenario where a cellular BS is destroyed,

demands for clustered users cannot be satisfied through a

single UAV. The optimal network dimensioning considering

the number of drones deployed per cluster thus becomes a

design question. To this end, we will introduce the user-

centric deployment geometry where each cluster is served

by multiple UAVs. Our stochastic framework is built on

following key attributes.

BS station destruction model: To model a post-disaster

cellular network, we consider that BSs are independently

destroyed with a certain probability. Consequently, employ-

ing the widely used Poisson point process (PPP) model

for the original cellular network implies that a post-disaster

network can be modeled via a thinned point process. The

independent thinning model for post-disaster networks is

widely adopted as in [3], [9]–[11]. Extension of this model

to a scenario where BS destruction probability incorporates

spatial correlation is more involved and may obscure some

design insights. This aspect will be tackled in a future work.

Cluster based user and UAV deployment model: In or-

der to model clustering between users in a post-disaster

scenario, we extend the traditional Neyman-Scott cluster

processes [26]. In [27]–[31] cluster processes have been

employed to model user-centric heterogeneous cellular net-

works. In particular, Poisson cluster processes (PCP) such as

the Matern’s cluster process (MCP) and the Thomas cluster

process (TCP) are employed to model locations of small

cellular networks. Nevertheless, our analysis significantly

differs from these existing works in two aspects; (i) in

the existing literature, cluster processes which model small

cellular networks are considered along with the PPP which

models the underlying macro cellular network. However, in

the context of disaster recovery networks the clusters are

only created on dead spots (i.e., destroyed BSs). Conse-

quently, this will result into a mixture model where (ii)

the cluster size for a small cellular network is a design

parameter. However, for a disaster recovery network, the

cluster size is related to the coverage area of the desired de-

stroyed cell site. Therefore, the cluster size itself is a random

variable. These two factors are explicitly accommodated in

our analysis. A mathematical analysis is presented in Section

II.

Cluster size model: As mentioned before, one of the key

features of the resultant topology for a DSCN based public

safety network is that there exists a one-to-one mapping

between the coverage area of destroyed the BS and the size

of a cluster of UAV small cells deployed to meet the short-

fall. Considering the strongest average received power based

association cellular networks, association regions form a

Voronoi tessellation. Consequently, for a post-disaster sce-

nario, a Voronoi cell of a destroyed BS needs to be replaced

with a cluster of UAVs. The cluster size is a function of the

area of the Voronoi cell which itself is a random quantity.

Also, the geometrical approximation of area for mapping is

intricate. In this regards, [13], [14] have shown that the area

of the Stienen cell, i.e. a circular inscribing-disc formed at

the location of the destroyed BS with respect to its distance

to the nearest neighbour, is an adequate proxy for the size

of the Voronoi cell. Consequently, we consider clusters have

random radii where the radius distribution corresponds to the

Stienen cell [13], [14]. Vertical back-hauling/front-hauling:

In order to complete the design of the recovery network,

we need to highlight the back-haul design1. Generally, the

back-haul literature can be classified into two parts. The first

type of studies, focus on the 3D placement for a back-haul

aware drone based communication network while the other

studies explore enabling technologies for back-hauling such

as mmWave, FSO etc. The 3D placement of the back-haul

aware networks is studied in [22]. Authors in [22] addressed

the network design and limiting factors for user-centric and

network-centric topologies. Nevertheless, analytical model

for performance quantification has not been developed as

the study was geared towards back-haul design. The work

also highlights the key limitations for adopting various back-

haul technologies. The enabling technologies for the vertical

back-hauling/front-hauling have been addressed in several

papers in the literature. In [7], the authors presented the

use of free space optics (FSO) as a promising technology

enabler in future 5G+ wireless networks. Authors in [7]

demonstrated that FSO is capable to deliver data rates higher

than the baseline wireless and wired alternatives. However,

FSO is highly sensitive to weather conditions and the back-

haul capacity may dramatically decrease in foggy weather.

The proposed solution to this drawback is developed via

in-band backhauling. That is, using the current LTE, WiFi

or even the HSPA radio frequency microwave links can

be considered as good solutions for faster interoperability

and cost effectiveness. However, this will result in more

degradation of the quality of service (QoS) due to the extra

interference from aggressive frequency reuse. Finally, the

design of the network back-haul is totally dependent on

the type of service that operator aims to deliver. In many

scenarios, especially in post disasters, coverage is the main

1Here, we only highlight some of the advances made on back-hauling
without discussing in detail. The details for a cluster-based back-haul aware
network will be addressed in future work and it is out of the scope of this
paper.
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key performance metric and hence high data rates may not

be the aim of the network operator. In this case, multi-hop

relaying for coverage extension can be the fastest and a cost

effective solution [32].

C. CONTRIBUTION & ORGANIZATION

To summarize, the key contributions and organization of this

paper are as follows:

1) We develop a comprehensive statistical model for

quantifying the coverage, area spectral efficiency, and

energy efficiency of DSCNs for post disaster recovery.

To the best of our knowledge, the underlying topology

yields a point process which has not been considered

before even in the stochastic geometric literature.

2) Borrowing tools from stochastic geometry, we present

a statistical framework for quantifying the perfor-

mance of large scale DSCNs deployment considering

two types of cluster networks with different scenar-

ios for the deployment geometry. Also, the analyti-

cal framework is subsequently employed for design

optimization answering the following questions (see

section III):

a) Is there an optimal cluster size to achieve an

optimal coverage and throughput performance?

b) Considering the optimal cluster size chosen, is

there any optimal location for the drone small-

cells and the number of drones in every cluster

in a way to maximize the performance metrics?

c) How does the variable cluster size change com-

pared to fixing the size of all the clusters?

d) How does changing the power ratios change

the energy efficiency performance of the whole

network? (see section IV).

3) Finally, some critical design issues are explored and

possible future developments are summarized (see

section VII).

D. NOTATION.

Throughout this paper, we employ the following mathe-

matical notations. The counting measure of a point process

Φ(B) provides a count of points inside the compact closed

subset B ∈ R
2 (i.e., bounded area). The probability density

function (PDF) for a random variable X is represented

as fX(x) with the cumulative density function written as

FX(x). The exclusion symbol \ represents the exclusion

of a subset from a superset. The expectation of a function

g(X) of a random variable X is represented as EX [g(X)].
The bold-face lower case letters (e.g., x) are employed to

denote a vector in R
2 and ‖x‖ is its Euclidean norm. The

Laplace transform (LT) of any random variable Z is LZ(s)
(i.e., LT of the PDF of the random variable).

I. NETWORK AND PROPAGATION MODEL

A. DEPLOYMENT GEOMETRY

Spatial Model for a Post-disaster Cellular Network: Similar

to [19], [27], [33], we consider a large scale macro-cellular

network where the locations of the BSs are modelled by a

homogeneous PPP (HPPP) (Φ) such that

Φ = {x0, x1, ..., x∞, ∀ xi ∈ R
2} with intensity λ. (1)

Coverage holes in post-disaster result from the destruction

of the cellular infrastructure. These coverage holes are mod-

elled by location independent thinning of Φ with probability

of thinning po 2. Hence, the survived macro base stations

(MBSs) will be modeled by a thinned HPPP [34] such that

ΦS = {x ∈ Φ : 1(x) = 1} with intensity λS = psλ, (2)

where 1(.) denotes a Bernoulli random variable3. Notice

that the thinning process results in a new HPPP ΦS which

has intensity λS such that λS = (1 − po)λ = psλ, where

ps is the BS survival probability. Consequently, the HPPP

of destroyed BSs is given by

ΦD = Φ \ ΦS , (3)

which has an intensity of λD = poλ. The point process

ΦD, which preserves the number and the location of the

holes, will then be used to model the location and number

of points around which the DSCs are deployed to fill the

coverage hole.

Network Model for DSCN: In order to fill the coverage

holes after the thinning process, it is assumed that Nd DSCs,

also called daughter points, are deployed as replacements

for each destroyed BS in ΦS . The key motivation behind

deployment of multiple DBSs to fill the coverage hole

created by a destroyed MBS pertains to the limitation on

the capacity of the DBSs as well as the difference in

transmission power and radio prorogation conditions as

compared to the MBSs. Consequently, the resulting network

geometry is modelled with two collocated point process,

the former for the operational survival MBSs (denoted by

ΦS) while the later is for the DBSs (denoted by ΦD). The

location of DCSs can be modelled by a general Neyman-

Scott process [26]. This type of Poisson clustered process is

formed by simply distributing a finite number of daughter

points (Nd) around the parent point x ∈ ΦD. The resulting

point process is then the union of all the daughter points by

preserving their locations around the parent points without

including the parent points themselves. The union of all the

DSCs in the space around the parent point process ΦD (i.e.,

destroyed BSs) will form a clustered process which can be

defined as

ΦC
∆
=

⋃

i∈{0,1,...,n−1}

{ΦCi
+ xi}, ∀xi ∈ ΦD, (4)

where ΦCi
is a cluster with Nd DCSs such that ΦCi

=
{y1, ..., yNd

, ∀ yi ∈ R
2}, n is the number of the parent

2We adopted the uniform independent thinning for the sack of simplicity
and the lack of any actual physical model for the destruction resulting from
natural or man-made occurrences.

3Note that the Bernoulli random variable 1(x) is independent of the
location x. However, x is only used as a location preserving parameter to
preserve the original location of the holes.
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(a) (b) (c)

FIGURE 1: (a) Traditional cellular network where some MBSs are destroyed with probability po = 0.3. (b) Four DBSs are

distributed uniformly in the two dimensional space around the center of every destroyed MBS according to a MCP model

as in (5). (c) Four DBSs are distributed normally in the two dimensional space around the center of every destroyed MBS

according to a TCP model as in (7). Blue circles, red squares and red stars are the retained MBSs, destroyed MBSs and the

deployed DBS, respectively. A dashed circle is the radius of the deployment recovery area around the destroyed MBS.

points in ΦD and xi is the location of the ith point in

R
2. Also, the clusters in ΦC , without loss of generality,

are divided into two sets of clusters: (i) the one called

the representative cluster contains the set of all points

around x0 (a typical destroyed BS) and is defined by

ΦCin

∆
= ΦC0

, and (ii) the set of all cluster process points

except the points in the representative cluster and is defined

by ΦCout

∆
= ΦC \ ΦC0

4.

The distribution of the daughter points around the cluster

center defines the type of the cluster process (see Figure 1).

Accordingly, we will study two types of cluster process

where the DBSs are spatially distributed as follows:

1) Matern’s Cluster Process (MCP): In a Matern’s

cluster process (MCP), a fixed number Nd points are

distributed uniformly in the two dimensional space

according to the density function

fM (x) =
1

πσ2
M

, ‖x‖ ≤ σM , (5)

where σM is the radius of the cluster. Then, the PDF

of the distance R from any point in the cluster to the

parent point follows the uniform distribution

fM
R (r) =

2r

σ2
M

. (6)

2) Thomas Cluster Process (TCP): In a Thomas cluster

process the set of cluster points (DBSs) are normally

4We also denote ΦCx
= ΦCi

to denote the cluster around the parent
point xi ∈ ΦD . Moreover, wherever M or T subscripts or superscripts
appear, this means that the symbol is related to Matern’s and Thomas
cluster processes, respectively (as defined in subsequent discussion).

distributed in the two dimensional space R
2 according

to the density function

fT (x) =
1

2πσ2
T

exp

(

−
‖x‖

2

2σ2
T

)

, (7)

where σT is the standard deviation and represents the

scattering distance around the origin of the axis. Thus,

the PDF of the distance R from any point in the cluster

to the parent point follows the Rayleigh distribution 5

fT
R (r) =

r

σ2
T

exp

(

−
r2

2σ2
T

)

. (8)

In this paper, we assume that the typical drone mobile

user (DMU) is located in the destruction zone and is always

associated to the nearest DBS6. We also assume that, the

probability of being associated to a MBS is very low since

the distance to the nearest DBS is absolutely lower than the

distance to the nearest MBS (i.e., the nearest DBS provides

the highest average signal strength). Here, the assumption is

accurate due to the adoption of cluster based distributions of

the users and DBSs. Similarly, the authors in [28] show that

this assumption is accurate even for the “maximum power

association” scheme which is more sensitive for fading and

network tier transmit power ratios. Clearly, the user is more

likely to be served by its cluster centre if the distribution

is more dense around the cluster centre. In our model, this

is more likely to be accurate since we are using the nearest

5This follows from the joint transformation of fx=(X,Y )(x, y) to

f(R,Θ)(r, θ) and then taking the marginal distribution of the distance R.
6With slight abuse of notations, we use DMU to denote to a typical user

which is served by a flying drone base station.
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base station association. In addition, the large scale model

for the sky to ground channel is much favourable as regards

providing line of sight links with higher received SIR at the

user antenna.

Spatial Model for DMUs: It is assumed that the distri-

bution of the users around the center of the clusters is the

same as the DBSs with the same density. This follows from

the fact that every DBS is associated to only one user in the

same channel resource block. Hence, we map ΦC 7→ ΦDMU
C

for the set of the users around cluster centers with density

λC 7→ Ndλ
DMU
C .

B. PROPAGATION MODEL

Large Scale fading Model: In order to accurately capture

the propagation conditions in a DSCN, we employ the path-

loss model presented in [3]. The employed path-loss model

adequately captures line of sight (LoS) and non line of sight

(NLoS) contributions for drone-to-ground communication as

follows:

lLoS(h, r) = K−1
LoS

(

r2 + h2
)−α

2

, (9)

lNLoS(h, r) = K−1
NLoS

(

r2 + h2
)−α

2

, (10)

where h is the height of the drone in meters, r is the two

dimensional projection separation between the drone and

the DMU, KLoS and KNLoS are environment and frequency

dependent parameters such that Ki = ζi
(
c/(4πfMHz)

)−1
,

ζi is the excess path-loss for i ∈ {LoS,NLoS} with typical

values for urban areas (ζLoS = 1 dB, ζNLoS = 20 dB) and

α = 2 is the path-loss exponent for free space path-loss (see

[3] for details). The probability of having a LoS link from

the DSC for the desired DMU is as follows:

PLoS(θ) =
1

1 + a1 e−b1η θ+b1 a1
, (11a)

PNLoS(θ) = 1− PLoS(θ), (11b)

where a1, b1, c1 are environment dependent constants, η =
180/π and θ is the elevation angle in degrees. Consequently,

we define the total average excess path-loss as

κ̄(r) = KNLoS +
K∆

1 + a1 e−b1η tan−1(h

r
)+b1 a1

, (12)

where K∆ = KLoS−KNLoS , and r = h/ tan(θ). Note that,

the average path-loss from the DBS to the desired DMU can

be quantified from the above equations as

l̄d(r) = κ̄−1(r)(r2 + h2)−1. (13)

The large scale path-loss for the down-link of the cellular

network is modelled by the well-known power law path-loss

function

lS(r) = K−1r−α. (14)

where α, the path-loss exponent has typical values between

2 and 4. K is the excess path-loss and has typical values

between 100 dB and 150 dB (see [35], [36] for details).

This simple power law path-loss model is widely adopted

in literature for analysis of large scale cellular networks and

has been used here to simplify the analysis as we are only

studying the link for the DSC associated DMU. To conclude,

the large scale path-loss for the sky-to-ground channels is

modelled by a single slope model with different values for

the excess path-loss for the LoS and NLoS with path-loss

exponent α = 2. For the ground-to-ground channels we use

a single model for both LoS and NLoS with the path-loss

exponent α = 3.5. This is due to the fact that the surviving

base stations are all seen as interferers and are more likely

to be in NLoS with the user which is assumed to be served

by the nearest DBS.

Small scale Fading: It is assumed that large-scale path-

loss for both of the traditional cellular-link and the DCSs

is complemented with small-scale Rayleigh fading such that

|g|
2
∼ Exp(1). Also, it is assumed that the network is operat-

ing in an interference limited regime (i.e., performance of all

links is dependent upon co-channel interference and thermal

noise at the receiver front-end is negligible). The assumption

of a Rayleigh fading model is due to simplicity of analysis.

This assumption will not compromise our results, since

Rayleigh fading implicitly gives a worst-case analysis of

the Nakagami-m fading channel where (i.e., m = 1 no

LoS component). However, the effect of LoS and NLoS

components is incorporated in the large scale fading model

given by (12).

C. TRANSMISSION MODEL

In this paper, we assume that the DMU is associated to

nearest DBS (i.e., the BS which maximizes the average

received signal to interference ratio (SIR)) and transmitters

on the same frequency are considered as co-channel inter-

ferers. These out-of-cell interferers can be classified into

three categories: (i) the interference received from MBSs

working on the same channel as the serving DBSs, (ii)

the interference from the set of DBSs located inside the

representative cluster and called “intra-cluster interferers”,

and (iii) the interferers from out of the representative cluster

and called “inter-cluster interferers”.

Remark 1. To complete the transmission model, we assume

that the average number N̄d of co-channel active DBSs

inside any of the clusters has a Poisson distribution which is

also related to the number of channel resources used (Nc)

such that N̄d = Nd

Nc
.

II. DISTANCE DISTRIBUTIONS

In this section, we characterize link distance distributions

which are required to quantify the large scale path-loss

given by (13). These distributions are employed to quantify

coverage probability in section III.
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A. DISTRIBUTION OF THE RADIUS OF THE RECOVERY

AREA

In order to tackle the way of distributing the DSCs in the

network we will study two types of cluster processes: (i) the

traditional cluster process, where the standard deviation σi

is fixed for all of the clusters and (ii) the modified Stienen’s

cell model. In the later process, the standard deviation (i.e.,

the recovery cell radius) is considered to be the same as the

radius of the Stienen’s cell. This comes from the fact that

the destroyed base stations will act as holes as defined in

(3). Here, the Stenien’s cells are considered the most loaded

cells and hence the circular modeling of the recovery area

is a good approximation. Note, that for high-dense micro-

cellular networks, as within cities, the approximation will

be more accurate.

In the light of the above discussion, a good approximation

of the recovery cell size can be built around the Steinen’s

model with cells of radius σi ∀ i ∈ {M,T}. Thus, the

distribution of the cluster spread in which the DBSs will

be deployed is considered to be the distribution of the

generalized Stienen’s cell radius, i.e.,

fσi
(σi) = 2πλτσi exp

(

−πλτ2σ2
i

)

, ∀i ∈ {M,T}. (15)

Here, setting the value of τ = 2 gives the distribution of the

radius of the maximum inscribed circle, centered on the the

destroyed MBS location and is equal to half of the distance

to the nearest neighbour in the original tessellation which is

well known as the Stienen’s cell radius. Tunning the value

of τ will tune the radius of the recovery area where the

DBSs will be distributed.

B. DISTANCE DISTRIBUTIONS FOR MCP

We now consider the distance distributions assuming that

DBSs and DMUs are uniformly distributed around the

centers of the destroyed MBSs according to a MCP.

As shown in Figure 2, we consider a typical user at

location Vo = ‖x‖ from the center of the representative

cluster and served by the link to the nearest DBS with a

distance R1 = ‖x− y1‖ where y1 represents the location

of the nearest DBS. Then to evaluate the distribution of

the distance R1, we need to make a random variable

transformation and then apply order statistics rules on the

well-known distribution of the DBSs distance R to the

cluster center which has the PDF:

fM
R (r) =

2r

σ2
M

, 0 ≤ r ≤ σM , (16)

and CDF FM
R (r) = r2

σ2
M

, 0 ≤ r ≤ σM . We also assume

that the distance Vo from the DMU to the cluster center is

a random variable with the PDF,

fM
Vo
(vo) =

2vo
σ2
M

, 0 ≤ vo ≤ σM . (17)

Then, by performing a joint random variable transfor-

mation of fM
R (r) such that the distance D(R, Vo) =

√

V 2
o +R2 − 2VoR cos(θ) is the distance from the DMU

at Vo and any arbitrary DBS at distance R from the center

of the cluster and θ is the angle between the lines R and Vo

with the PDF fΘ(θ) =
1
2π , 0 ≤ θ ≤ 2π, then the distribution

of the distance R conditioned that DMU is at location Vo

will have the PDF (18) with the CDF as in (19) [37].

Next, the distribution of the distance R1 from the typical

DMU and the nearest DBS can be evaluated as in the next

proposition.

Proposition 1. The distribution of the distance R1 from the

typical DMU at Vo and the nearest DBS can be evaluated

for MCP as in (20) (on the next page).

Proof. Let, Nd BSs be distributed uniformly inside a circle

of radius σM , Then the derivation of the nearest neigh-

bour distribution amongst the Nd DBSs follows the order

statistics using the fact that for general Nd i.i.d. random

variables Zi ∈ {Z1, Z2, ..., ZNd
} ordered in ascending order

with PDFs fZi
(z). Then the PDF of Z1 = min

i
(Zi) can

be written as fZ1
(z) = N

(
1− FZi

(z)
)N−1

fZi
(z) [38].

Then, by applying this to (18), we can write the PDF of the

distance R1 as

fM
R1

(r1|vo, σM ) =






fM

R
(1)
1

(r1|vo, σM ), 0 ≤ r1 ≤ σM − vo,

fM

R
(2)
1

(r1|vo, σM ), σM − vo < r1 ≤ σM + vo

(21)

where

f
M

R
(1)
1

(r1|vo, σM ) = Nd(1− F
M

R(1)(r1|vo))
Nd−1

f
M

R(1)(r1|vo)(22)

f
M

R
(2)
1

(r1|vo, σM ) = Nd(1− F
M

R(2)(r|vo))
Nd−1

f
M

R(2)(r1|vo).(23)

From the previous proposition, fM
R1

(r1|vo, σM ) can be

easily integrated in (20) to get the CDF of the nearest

neighbour distance distribution as

FM
R1

(r1|vo, σM )

=

{

(1− FM
R(1)(r1|vo, σM ))Nd , 0 ≤ r ≤ σM − vo

(1− FM
R(2)(r1|vo, σM ))Nd , σM − vo < r ≤ σM + vo

(24)

Proposition 2. The distribution of distance Rx from the

in-cluster DBSs interferers to the typical user located at

distance Vo from the cluster center (conditioned that the

nearest neighbour DBS is at distance R1 with the distribu-

tion in (20)) can be written as in (25).

Proof. The proof of this is simple. Following from the fact

that the distance to the nearest interferer is larger than

the serving distance R1, then the area of circle formed by

the distance from the typical user and the serving DBS is
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f
M
R (r|vo, σM ) =







fM

R(1)(r|vo, σM ) = 2r
σ2
M

, 0 ≤ r ≤ σM − vo,

fM

R(2)(r|vo, σM ) = 2r
πσ2

M

arccos

(

r2+v2
o
−σ2

M

2vor

)

, σM − vo < r ≤ σM + vo
(18)

with the CDF as follows:

F
M
R (r|vo) =







FM

R(1)(r|vo) =
r2

σ2
M

, 0 ≤ r ≤ σM − vo,

FM

R(2)(r|vo) =
r2

π σ2
M

(
θ1 −

1
2
sin (2 θ1)

)
+ 1

π

(
θ2 −

1
2
sin (2 θ2)

)
, σM − vo < r ≤ σM + vo

(19)

with θ1 = arccos

(

r2−σ2
M

+vo

2vor

)

and θ2 = arccos

(

−r2+σ2
M

+vo

2voσM

)

.

θσi

R1

R

Vo

Rx

DMU

FIGURE 2: Spatial distribution of network elements. Brown

square for the DMU. Red circles for DBSs. Red dashed

circle is the recovery area. Blue diamond is the center of

the Voronoi cell (i.e., Destroyed BS).

truncated from the whole area. Therefore, we can write the

conditional distribution of this event as follows:

fM
Rx

(rx|vo, σM , r1) = fM
R (rx|vo, σM ), R > r1

=
fM
R (rx|vo, σM )

∫∞

r1
fM
R (r|vo, σM )dr

=
fM
R (rx|vo, σM )

1− FM
R (r1|vo, σM )

. (26)

Hence, by substituting fM
R (rx|vo, σM ) and FM

R (r1|vo, σM )
into (25) we complete the proof.

Following from the above proposition, we can easily show

that the distribution of distances from the DMU at Vo to the

out-of-cluster interferers can be evaluated for a MCP as in

the next proposition.

Proposition 3. The PDF of the distance distribution from

the typical user at distance Vo from the cluster center to the

interfering DBSs from out of the representative cluster can

be written for MCP as

fM
Ro

(ro|u, σM ) = fM
R (ro|u, σM ). (27)

Proof. The proof of this follows the same steps to evaluate

(19) by doing the joint transformation for the uniformly

chosen DBS - see also [27].

In the previous proposition, we assumed that the relative

distances from the cluster DBSs to any typical DMU inside

the cluster is independently identical amongst all the clus-

ters. Hence, we will use shifted versions of (27) to complete

the coverage probability analysis (see(40)) [26].

C. DISTANCE DISTRIBUTIONS FOR TCP

Conditioning on the typical user located at distance Vo =
‖x‖ from the cluster center we can write the PDF of the

distribution of distance from any arbitrary chosen drone to

the typical user at vo for TCP as [27]:

fT
R (r|vo, σT ) =

r

σ2
T

exp
(

−
r2 + v2o
2σ2

T

)

Io

(

rvo
σ2
T

)

, (28)

and the CDF as:

FT
R (r|vo, σT ) = 1−Q1

(
vo
σT

,
r

σT

)

. (29)

The distance Vo from the DMU to the cluster center is also

a random variable with the PDF,

fT
Vo
(vo) =

1

σ2
T

exp

(

−
v2o
2σ2

T

)

. (30)

The nearest neighbour DBS to the typical user located at

distance Vo from the center of the cluster can be evaluated

as follows in the next proposition.

Proposition 4. The PDF of the distance R1 from the typical

user at a distance Vo from the cluster center to the nearest

DBSs for TCP can be evaluated as

fT
R1

(r1|vo, σT ) =
Ndr1
σ2
T

exp
(

−
r21 + v2o
2σ2

T

)

Io

(

r1vo
σ2
T

)

×

(

Q1

(
vo
σT

,
r1
σT

))Nd−1

(31)

where Q1

(
vo

σT
, r
σT

)

is the Marcum Q-function, and

Io

(
rvo
σ2
T

)

is the first kind Bessel function .
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fM
R1

(r1|vo, σM ) =







fM

R
(1)
1

(r1|vo, σM ) = 2Ndr1
σ2
M

(

1−
r21
σ2
M

)Nd−1

, 0 ≤ r1 ≤ σM − vo,

fM

R
(2)
1

(r1|vo, σM ) = 2Ndr1
πσ2

M

arccos
(

r21+v2
o
−σ2

M

2vor1

)

×

(

1−

(

r21
π σ2

M

(

θ11 −
1
2 sin

(
2 θ11

))

+ 1
π

(

θ12 −
1
2 sin

(
2 θ12

))
))Nd−1

, σM − vo < r1 ≤ σM + vo

(20)

with θ11 = arccos
(

r1
2−σ2

M
+vo

2vor1

)

and θ12 = arccos
(

−r1
2+σ2

M
+vo

2voσM

)

.

fM
Rx

(rx|vo, σM , r1) =







2rx
σ2
M

−r21
, 0 ≤ rx ≤ σM − vo,

2rx
πσ2

M

arccos

(

r
2
x
+v

2
o
−σ

2
M

2vorx

)

1−
r21

π σ2
M

(

θ1
1−

1
2 sin(2 θ1

1)
)

− 1
π

(

θ1
2−

1
2 sin(2 θ1

2)
) , σM − vo < rx ≤ σM + vo.

(25)

Proof. This can be evaluated by assuming that the number

of drones (Nd) per cluster is fixed and using the ordered

statistics of the distance distribution of the cluster DBSs

points to the typical user located at distance Vo from the

center of the cluster.

In the next proposition we show the distribution of the

distance from the in-cluster interferers and the typical DMU.

Proposition 5. The distribution of distance Rx from the

in-cluster DBSs interferers to the typical user located at

distance Vo from the cluster center (conditioned that the

nearest neighbour DBS is at distance R1 with the distribu-

tion in (31)) can be written as

fT
Rx

(r|vo, σT , r1) =

rx
σ2
T

exp
(

−
r2
x
+v2

o

2σ2
T

)

Io

(
rxvo

σ2
T

)

Q1

(
vo
σT

, r1
σT

) .(32)

Proof. The proof follows the same steps as in (26)

Following the above proposition, we can easily show that

the distribution of distances from the typical user at Vo to

the out-of-cluster interferers can be evaluated for TCP as in

the next proposition.

Proposition 6. The PDF of the distance distribution Ro

from the typical user at distance vo from the cluster center

to the interfering DBSs out of the representative cluster can

be written for TCP as

fT
Ro

(ro|u, σT ) =
ro
σ2
T

exp
(

−
r2o + u2

2σ2
T

)

Io

(

rou

σ2
T

)

.(33)

Proof. Proof follows the same steps as in Proposition 3.

III. COVERAGE PROBABILITY

In order to characterize the link level performance of

DSCNs, we employ coverage probability as a metric. The

coverage probability of an arbitrary user is defined as the

probability at which the received signal-to-interference-ratio

(SIRi) is larger than a pre-defined threshold β such that 7

P i
c = Pr{SIRi ≥ β}, i ∈ {M,T}. (34)

Then, considering that both of the DBS and the MBS

networks are sharing the same channel resources, the SIRi

can be quantified as:

SIRi =
PD |g|

2
l̄d(r1)

IΦi

Cin

+ IΦi

Cout

+ IΦS

=
PD |g|

2
l̄d(r1)

Iitot
, i ∈ {M,T}.

(35)

where

IΦi

Cin

=
∑

y∈Φi

Cin

PD |g|
2

(

h2 +‖x0 + y‖
2
)−1

κ̄
(
‖x0 + y‖

)

︸ ︷︷ ︸

In-cluster interference

IΦi

Cout

=
∑

x∈Φi

D
\x0

∑

y∈Φi

Cx

PD |g|
2

(

h2 +‖x+ y‖
2
)−1

κ̄
(
‖x+ y‖

)

︸ ︷︷ ︸

Out-of-cluster intereference

IΦS
=

∑

x∈ΦS

PS |g|
2
lS(‖x‖)

︸ ︷︷ ︸

Interference from survival BSs

. (36)

Here r1 represents the distance from the DMU to the

nearest DBS; |g|
2

is the channel power gain coefficient and it

is assumed to be the same for all the links; IΦi

Cin

represents

the received interference from the DBSs in the representative

cluster; IΦi

C out
represents the received interference from

the co-channel DBSs concurrently transmitting with the

7The network is assumed to be operating in an interference limited
regime, i.e., performance of all links is dependent upon co-channel in-
terference and thermal noise at the receiver front-end is negligible.
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considered representative link from out of the cluster; IΦS

is the interference received from the retained MBSs; and

PS and PD are the transmit power for the MBS and DBS

respectively.

Consequently, the coverage probability can be evaluated

as

P is
c = Pr{SIRis ≥ β},

= Pr{|g|
2
≥ Iitotβκ̄(r1)

(

r21 + h2
)

/PD},

(a)
= Er1,σi

[

EIi
tot

[

exp
(

−sIitot

) ]]

,

(b)
= Er1,σi

[

LI
Φi
Cin

(s|r1, σi)LI
Φi
Cout

(s|r1, σi)LIΦS
(s)

]

(37)

where s = β
(
r21 + h2

)
κ̄(r1)/PD, (a) is obtained by

averaging over the channel coefficient and (b) is obtained

by applying the definition of the Laplace transform then

using the addition property of the Laplace transformation

of independent random variables.

Next, we introduce the coverage probability for DMU

under the two deployment topologies rendered via MCP and

TCP.

A. COVERAGE PROBABILITY FOR MCP

To complete the analysis of the coverage probability, we

need to quantify the Laplace transformations for the interfer-

ence at the typical DMU. In the next lemma, we introduce

the Laplace transform of the distribution of the in-cluster

interference for the MCP.

Lemma 1. The Laplace transform of the interference at the

DMU from the in-cluster DBSs for MCP can be evaluated

as

LI
ΦM
Cin

(s|r1, σM ) =

Nd∑

i=1





∫ ∞

r1

fM
Rx

(rx|vo, σM )

1 + sPD

κ̄(rx)(h2+r2
x
)

drx





i−1

×ξ(i, Nd), (38)

where

ξ(i, Nd) =
N̄ i

d exp(−N̄d)

i!ΣNd

k=1
N̄k

d
exp(−N̄d)

k!

. (39)

Proof. Please refer to Appendix A.

In order to complete the analysis of the coverage proba-

bility, we also need to derive the Laplace transform of the

interference from out-of-cluster DBSs (see Lemma 2).

Lemma 2. The Laplace transform of the interference distri-

bution at the DMU from out-of-cluster DBSs for MCP can

be evaluated as in (40).

Proof. Please refer to Appendix B.

B. COVERAGE PROBABILITY FOR TCP

For the sake of comparative analysis, the Laplace transform

of the distribution of the in-cluster interference for TCP, can

be obtained in the following Lemma.

Lemma 3. The Laplace transform of the interference at the
DMU from the in-cluster DBSs for TCP can be evaluated
as:

LI
ΦT
Cin

(s|r1, σT ) =

Nd∑

i=1





∫ ∞

r1

fT
Rx

(rx|vo, σT )

1 + sPD

κ̄(rx)(h2+r2
x
)

drx





i−1

×ξ(i, Nd). (41)

Proof. Please refer to Appendix C.

Lemma 4. The Laplace transform of the interference dis-

tribution at the DMU from out-of-cluster DBSs for TCP can

be evaluated as in (42)

Proof. Please refer to Appendix D.

The Laplace transform of the interference from the re-

tained MBSs is calculated in Lemma 5. In this Lemma,

we will relax the dependency of the drone network parent

points and the location of the retained base stations. In other

words, we will relax the dependency of location between

the retained MBSs and the typical DMU. This relaxation is

compulsory; since the distribution of the distance between

the retained MBSs and the desired DMU is not known

for correlated BSs and DMUs locations. Moreover, this

assumption is assumed to be close to the true value since

we are averaging over the random user location at Vo which

will average to a location at the location of the parent point

(i.e., the destroyed BS), and this is valid for both the MCP

and TCP topologies. An insight into the accuracy of this

assumption is shown in Figure 3. The figure shows the CDF

of a distance D from the typical DMU at Vo to the nearest

neighbour retained MBS.

Lemma 5. The Laplace transform of the interference distri-

bution at the drone typical user from the retained MBSs with

density λS = (1− po)λ can be approximated as follows:

LIΦ
S

(s) = exp
(

− π
λS

Nc

s−
2
αP

− 2
α

S

sinc
(
2
α

)

)

(43)

where s = β
(
r21 + h2

)
κ̄(r1)/PD.

Proof. The proof of this is straight forward from the Laplace

transform of the PPP and can be illustrated as follows:

LIΦ
S

(s) = E(exp(−sIΦS
)),

= E(exp(−s
∑

x∈ΦS

PS |g|
2
lS(‖x‖))),

= EΦS

( ∏

x∈ΦS

E|g|2

(

exp
(

−s |g|
2
lS(‖x‖)

)))

,

(a)
= exp

(

− 2πλS

∫ ∞

0

sPSK
−1
S r−α+1

1 + sPSK
−1
S r−α

dr
)

,
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LI
ΦM
Cout

(s|σM ) = exp
(

−2πλD

∫ ∞

0

(

1− exp
(

−
Nd

Nc

∫ ∞

0

(

1−
1

1 + sPDκ̄(u)(h2 + u2)

)

fM
Ro

(u|v, σM )du
))

vdv
)

. (40)

LI
ΦT
Cout

(s|σT ) = exp
(

− 2πλD

∫ ∞

0

(

1− exp
(

−
Nd

Nc

∫ ∞

0

(

1−
1

1 + sPDκ̄(u)(h2 + u2)

)

fT
Ro

(u|v, σT )du
))

vdv
)

. (42)

d
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FIGURE 3: Nearest MBS distribution CDF for TCP. λ =
1 × 10−6. Dashed line for Monte-Carlo simulation. Solid

line for the relaxed distance distribution FD(d) = 1 −
exp(−πλSd

2).

(b)
= exp

(

− 2π
λS

Nc

s−
2
αP

− 2
α

S

sinc
(
2
α

)

)

(44)

where (a) is obtained by applying the expectation over the

fading channel coefficient assuming i.i.d. Rayleigh channels

followed by the probability generating functional (PGFL)

of the PPP of the Rayleigh distribution and then followed

by Cartesian to polar transformation and then solving the

integration to get (b) which completes the proof.

Theorem 1. The coverage probability of a typical DMU

with fixed recovery cell radius σi can be respectively eval-

uated for Matern’s and Thomas cluster processes as

P
M
c (σM ) =

∞∫

0

∞∫

0

LI
ΦM
Cout

(s|r1, σM )LI
ΦM
Cin

(s|r1, σM )LIΦS
(s)

×f
M
R1

(r1)f
M
Vo

(vo) dr1 dvo, (45)

and

P
T
c (σT ) =

∞∫

0

∞∫

0

LI
ΦT
Cout

(s|r1, σT )LI
ΦT
Cin

(s|r1, σT )LIΦS
(s)

×f
T
R1

(r1)f
T
Vo
(vo) dr1 dvo. (46)

Theorem 2. The coverage probability of a typical DMU

with variable recovery area cell radius σi can be respec-

tively evaluated for Matern’s and Thomas cluster processes

as.

PMs

c =

∞∫

0

PM
c (σM )fσM

(σM ) dσM , (47)

and

PTs

c =

∞∫

0

PT
c (σT )fσT

(σT ) dσT , (48)

where the superscript s denotes to the fact that the

coverage probability will be averaged over the Stienen’s cell

radius. Next, we will use the coverage probability results

above to quantify area spectral and energy efficiencies.

IV. AREA SPECTRAL EFFICIENCY AND ENERGY

EFFICIENCY

Until now, we have studied the coverage probability for

the two assumed system models. To study the network

level performance, we need to quantify the Area Spectral

Efficiency (ASE) of the network given that a channel reuse

is assumed. In this section we show analysis of ASE for

both the MCP and the TCP.

Proposition 7. Given the coverage probabilities in (47) and

(48), the ASE of the network for MCP can be evaluated as

ASEM = λDNdNcP
Ms

c log2 (1 + β) , (49)

and for TCP as

ASET = λDNdNcP
Ts

c log2 (1 + β) . (50)

In order for comprehensive study of the network, we also
make use of the term energy efficiency (Eeff ). The Eeff

(in general) can be evaluated as [39]:

Eeff =
Area Spectral Efficiency

Average Network Power Consumption
=

ASE

λDNdPD

. (51)

Given the ASE in (49) and (50), we can evaluate Eeff for

MCP as

EM
eff =

NcP
Ms

c log2 (1 + β)

PD

, b/J/Hz (52)

and for TCP as

ET
eff =

NcP
Ts

c log2 (1 + β)

PD

. b/J/Hz (53)
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TABLE 1: Simulation parameters.

Parameter Value Description

ζLoS , ζNLoS 1,20 dB Excess path-loss
fMHz 900 MHz Carrier frequency

α 3.5 Path loss exponent
K 132 dB Excess path-loss for macro cells

a1, b1 9.6, 0.28 Environment dependent constants

λ 1× 10−6 Base stations density
Nc 2, 1 Available number of channels
PD 1 dBW Drone cell transmission power
PS 10 dBW MBS cell transmission power

V. RESULTS AND DISCUSSION

In this section, we show numerical results for the coverage

probabilities (i.e., PMs

c and PTs

c ) and energy efficiency (i.e.,

EM
eff and ET

eff ) of drone-based communication recovery

network deployment. Furthermore, we assume that the DBSs

are operating in an urban environment with the parameters

shown in Table 1.

Figure 4 shows the coverage probability of a random uni-

formly chosen user inside the recovery area for both MCP

and TCP with fixed cluster size (see (45) and (46)). The

coverage probability is plotted against both the cluster radius

(σi) and the DBSs altitude (h). An interesting observation

here is that the drone-based clustered recovery network

can achieve a significant enhancement of the coverage

probability when the cluster radius is around a certain value

and the optimal point changes by changing the height of

the drones and vice versa. That is, we will have a unique

optimal drone height for every chosen cluster radius σi. We

can notice also that a significant coverage probability can

be achieved inside of the clusters with coverage figures up

to 0.85 by only utilizing Nd = 3 drones with one channel.

It is worth also to keep in mind that the proposed system is

considering a user centric distribution where the location

of the drones is coupled with the location of the users

where the capacity needs to be extended. This means that

these coverage probabilities can be achieved only inside of

the circular shaped coverage areas of the recovery cells.

Moreover, choosing between MCP and TCP as a framework

for the network performance analysis does actually depend

on the distribution of the users in the targeted recovery

areas (e.g., uniformly for rural areas and normally for high-

dense urban areas). This due to the fact that the cellular

infrastructure is actually being built towards the user and

hence the distribution of the users will define which type of

cluster process is more suitable for the recovery network.

Remark 2. For the case of λ = 1 × 10−6, the average

optimal cell size is close to 250m which is approximately

the same as the Stenien’s cell average radius. That is, the

variable cell radius is more realistic and gives an implicit

optimal selection of the recovery cell radius.

Figure 5 depicts the coverage probability against the

altitude of the drones for both of the MCP and TCP where

the Stenien’s cell size is deployed (see (47) and (48)). The

P
M c
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0.6
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500 0
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200
400600
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0.8
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0.65

0.7

0.75

0.8

0.85

(a) Coverage probability for MCP.

P
T c

0.4
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300

σT
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0.6

0500

Drone altitude (h) in m

200
400600 600

0.8

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(b) Coverage probability for TCP.

FIGURE 4: Coverage probability for arbitrary chosen typi-

cal user for fixed value of recovery cell radius σi. Nc = 1,

po = 0.2, λ = 1 × 10−6, Nd = 3, α = 3.5, PD/PS = 0.2
and β = −5 dB.

coverage probability shows that for a thinning probability

of 0.1, with 5 drones deployed in every cluster, the optimal

drone altitude will slightly change as increasing the number

of channels and this will intuitively increase the coverage

probability. For example, for TCP, there is an optimal

altitude difference of 30m when increasing the number of

channels from 2 to 3. This existence of an optimal drone

altitude which maximizes the coverage probability is due to

the adoption of LoS/NLoS model for the large scale path-

loss model which is widely addressed in the literature of

stochastic geometry [2], [33], [40].

Figure 6 shows the coverage probability plotted against

the number of drones per cluster for multiple configuration
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(a) Coverage probability for MCP.
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(b) Coverage probability for TCP.

FIGURE 5: Coverage probability for an arbitrarily chosen

DMU for Stenien’s recovery for MCP and TCP (see (47) and

(48)). Original MBS and DMU densities is λ = 1 × 10−6.

The destruction probability po = 0.1. α = 3.5. Nd = 5. and

PD/PS = 0.2. Blue solid lines for the exact solution and

the red dots for the Monte-Carlo simulation.

of transmit power ratios for both of MCP and TCP where

the Stenien’s cell size is deployed (see (47) and (48)). The

coverage probability curves show that, for a fixed transmit

power ratio, there is an optimal number of drones at which

the higher densification of the clusters will not increase

the coverage probability. For example, for the configuration

where the ratio PD/PS = 1%, we need only 3 drones to

achieve the optimal coverage. This is an interesting result

which is contrary to the idea of densification of the heteroge-

neous networks. The main reason for this phenomenon is the

adoption of the LoS/NLoS 3D model for large scale fading.

This can be further justified as illustrated in [41]. In this

paper, the authors showed that the densification under the

3GPP path-loss models with variable base station elevation

will change the behaviour of the network performance

metrics with regard to the change of the density of the

deployed base stations. That is, for any chosen network

density of base stations, there is an optimal density of base

stations that gives the optimal coverage probability as well

2 4 6 8 10
0.6

0.7

0.8

0.9

(a) Coverage probability for MCP.

2 4 6 8 10
0.6

0.65

0.7

0.75

0.8

(b) Coverage probability for TCP.

FIGURE 6: Original MBSs density is λ = 1 × 10−6. The

destruction probability po = 0.1. α = 3.5 and PD/PS =
{1, 2, 3, 4} × 10−2.

as the optimal ASE. In addition, the base stations density

which maximizes the achievable coverage probability will

differ from the one which maximizes the ASE.

Figure 7 shows Eeff plotted against the number of drones

per cluster for multiple configuration of transmit power

ratios for both the MCP and TCP where the Stenien’s

cell size is deployed (see (52) and (53)). No value of an

optimal number of drones can be seen for the case of energy

efficiency. That is, as we increase the number of the drones

we increase the network throughput. Moreover, the trend

of the energy efficiency is to increase as we increase the

transmit power ratio.

VI. FUTURE WORK

In this work, for the sake of simplifying the analysis, we

assumed that the thinning process of the cellular network is

applied in the two dimensional infinite space of the PPP.

Therefore, the DBSs are distributed in the same infinite

space of the thinned PPP. However, in post-disaster sce-

narios, the infrastructure destruction will be in bounded

geographical regions and the number of drones needed for

the recovery will be countable. Hence, in order for an
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FIGURE 7: Energy efficiency vs. the number of drones

per cluster. Original MBSs density is λ = 1 × 10−6.

The destruction probability po = 0.1. α = 3.5. and

PD/PS = {1, 2, 3, 4} × 10−2.

effective distribution of the drones, an estimation of the

location of the users and the number of hot-spots required

is necessary. This will lead to an estimation problem of

the optimal number of drones to be used and the location

of clusters (i.e., hot-spots) where the drones need to be

distributed. A good solution for an efficient estimation of

the number and location of clusters, is to utilize a real-

time k-mean clustering relying on a drone enabled users’

localization scheme.

In this work, we assumed independent thinning of BSs.

Actually, this assumption is sufficient for the sake of sim-

plifying the analysis. However, this might be non-realistic

for urban areas of the city. In some post disaster scenarios

(e.g., earthquakes or human made destruction), the thinning

process might be dependent on the geographical location of

the BS. Hence, a comprehensive mathematical modelling of

the thinning process can be more accurate and give a better

performance insight.

Lastly, the developed framework can also be extended to

incorporate Massive MIMO base station. From interference

management perspective this will present completely new

dynamics.

VII. CONCLUSION

In this paper, we introduced a statistical and analytical

framework for evaluating the coverage probability and en-

ergy efficiency performance metrics for cluster based drones

enabled recovery networks. Results show that there are a

number of parameters which influence optimal deployment

of the recovery network: (i) number of drones in a cluster,

(ii) drone altitudes, (iii) transmission power ratio between

drone base stations and traditional base stations, and (iv)

the recovery area radius. Furthermore, it is also shown that

by optimizing these parameters the coverage probability and

the energy efficiency of a ground user can be significantly

enhanced in a post-disaster situation.

APPENDIX A PROOF OF LEMMA 1

The Laplace transform of the interference from in-cluster
DBSs at a typical DMU can be evaluated for a MCP as

LI
ΦM
Cin

(s|r1, σM )
(a)
=

E

[

exp
(

− s
∑

y∈ΦM

Cin

PD |g|2

(

h2 +‖x0 + y‖2
)−1

κ̄
(
‖x0 + y‖

)

)]

(b)
= E

[ ∏

y∈ΦM

Cin

1

1 + sPD
1

κ̄(‖x0+y‖)(h2+‖x0+y‖2)

]

(c)
=

Nd∑

i=1





∫ ∞

r1

1

1 + sPD

κ̄(‖x0+y‖)(h2+‖x0+y‖2)

f
M (y) dy





i−1

×
N̄ i

d exp(−N̄d)

i!Σ
Nd

k=1

N̄k

d
exp(−N̄d)

k!
︸ ︷︷ ︸

ξ(i,Nd)

(d)
=

Nd∑

i=1





∫ ∞

r1

1

1 + sPD

κ̄(rx)(h2+r2
x
)

f
M
Rx

(rx|vo, σM ) drx





i−1

×ξ(i, Nd). (54)

where (a) is obtained by applying the definition of the

Laplace transform, (b) is obtained by taking the expectation

over the Rayleigh fading channel coefficient |g|
2
, (c) is

obtained by applying the PGFL and conditioning that the

number of co-channel operating drones K = k is Poisson

distributed. We include the fact that the total number of

co-working drones is less than Nd and, (d) is obtained by

a simple change of variables ‖x0 + y‖ → ro and then by

transformation from Cartesian to polar coordinates.

APPENDIX B PROOF OF LEMMA 2

The Laplace transform of the interference from out-of-
cluster DBSs at a typical DMU can be evaluated for a MCP
as

LI
ΦM
Cout

(s|r1, σM )
(a)
=

E

[

exp
(

− s
∑

x∈ΦD\x0

∑

y∈ΦM

Cx

PD |g|2

(

h2 +‖x+ y‖2
)−1

κ̄
(
‖x+ y‖

)

)]

(b)
= EΦD

[ ∏

x∈ΦD\x0

EΦM

Cx

[ ∏

y∈ΦM

Cx

1

1 + sPD
(h2+‖x+y‖2)−1

κ̄(‖x+y‖)

]]

(c)
= EΦD

[ ∏

x∈ΦD\x0

exp
(

−
Nd

Nc

×

∫ ∞

0

(

1−
1

1 + sPD
1

κ̄(ro)(h2+r2
o
)

)

f
M
Ro

(ro|v, σM ) dro
)]

(d)
= exp

(

− 2πλD

∫ ∞

0

(

1− exp
(

−
Nd

Nc

∫ ∞

0

×
(

1−
1

1 + sPD
1

κ̄(ro)(h2+r2
o
)

)

f
M
Ro

(ro|u, σM ) dro
))

u du
)

(55)
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where (a) is obtained by applying the definition of the

Laplace transform, (b) is obtained by taking the expectation

over the Rayleigh fading channel coefficient |g|
2

assuming

i.i.d. fading channels, (c) is obtained by applying the PGFL

with change of variables ‖x+ y‖ → ro and then by

transformation from Cartesian to polar coordinates, and (d)
is obtained by applying the PGFL of the PPP.

APPENDIX C PROOF OF LEMMA 3
The Laplace transform of the interference from in-cluster
DBSs at a typical DMU can be evaluated for TCP as

LI
ΦT
Cin

(s|r1, σT )
(a)
=

E

[

exp
(

− s
∑

y∈ΦT

Cin

PD |g|2

(

h2 +‖x0 + y‖2
)−1

κ̄
(
‖x0 + y‖

)

)]

(b)
= E

[ ∏

y∈ΦT

Cin

1

1 + sPD
1

κ̄(‖x0+y‖)(h2+‖x0+y‖2)

]

(c)
=

Nd∑

i=1





∫ ∞

r1

1

1 + sPD

κ̄(‖x0+y‖)(h2+‖x0+y‖2)

f
T (y) dy





i−1

×
N̄ i

d exp(−N̄d)

i!Σ
Nd

k=1

N̄k

d
exp(−N̄d)

k!
︸ ︷︷ ︸

ξ(i,Nd)

(d)
=

Nd∑

i=1





∫ ∞

r1

1

1 + sPD

κ̄(rx)(h2+r2
x
)

f
T
Rx

(rx|vo, σT ) drx





i−1

×ξ(i, Nd) (56)

where (a) is obtained by applying the definition of the

Laplace transform, (b) is obtained by taking the expectation

over the Rayleigh fading channel coefficient |g|
2

and, (c)
is obtained by applying the PGFL and conditioning that the

number of co-channel operating drones K = k is Poisson

distributed and, (d) is obtained by a simple change of

variables ‖x0 + y‖ → ro and then by transformation from

Cartesian to polar.

APPENDIX D PROOF OF LEMMA 4
The Laplace transform of the interference from out-of-
cluster DBSs at a typical DMU can be evaluated for TCP
as

LI
ΦT
Cout

(s|r1, σT )
(a)
=

E

[

exp
(

− s
∑

x∈ΦD\x0

∑

y∈ΦT

Cx

PD |g|2

(

h2 +‖x+ y‖2
)−1

κ̄
(
‖x+ y‖

)

)]

(b)
= EΦD

[ ∏

x∈ΦD\x0

EΦT

Cx

[ ∏

y∈ΦT

Cx

1

1 + sPD
(h2+‖x+y‖2)−1

κ̄(‖x+y‖)

]]

(c)
= EΦD

[ ∏

x∈ΦD\x0

exp
(

−
Nd

Nc

×

∫ ∞

0

(

1−
1

1 + sPD
1

κ̄(ro)(h2+r2
o
)

)

f
T
Ro

(ro|v, σT ) dro
)]

(d)
= exp

(

− 2πλD

∫ ∞

0

(

1− exp
(

−
Nd

Nc

∫ ∞

0

×
(

1−
1

1 + sPD
1

κ̄(ro)(h2+r2
o
)

)

f
T
R (ro|u, σT ) dro

))

u du
)

(57)

where (a) is obtained by applying the definition of the

Laplace transform, (b) is obtained by taking the expectation

over the Rayleigh fading channel coefficient G assuming

i.i.d. fading channels, (c) is obtained by applying the PGFL

with change of variables ‖x+ y‖ → ro and then by

transformation from Cartesian to polar coordinates and, (d)
is obtained by applying the PGFL of the PPP.
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