
This is a repository copy of Using Controlled Numbers of Real Faults and Mutants to
Empirically Evaluate Coverage-Based Test Case Prioritization.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/131042/

Version: Accepted Version

Proceedings Paper:
Paterson, D., Kapfhammer, G.M., Gordon, F. et al. (1 more author) (2018) Using
Controlled Numbers of Real Faults and Mutants to Empirically Evaluate Coverage-Based
Test Case Prioritization. In: Proceedings of the International Workshop on Automation of
Software Test (AST 2018). International Workshop on Automation of Software Test (AST
2018), 28-29 May 2018, Gothenburg, Sweden. ACM , New york , pp. 57-63. ISBN 978-1-
4503-5743-2

https://doi.org/10.1145/3194733.3194735

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Using Controlled Numbers of Real Faults and Mutants to
Empirically Evaluate Coverage-Based Test Case Prioritization

David Paterson
University of Sheffield

Gregory M. Kapfhammer
Allegheny College

Gordon Fraser
University of Passau

Phil McMinn
University of Sheffield

ABSTRACT

Used to establish confidence in the correctness of evolving software,

regression testing is an important, yet costly, task. Test case prioriti-

zation enables the rapid detection of faults during regression testing

by reordering the test suite so that effective tests are run as early

as is possible. However, a distinct lack of information about the

regression faults found in complex real-world software forced prior

experimental studies of these methods to use artificial faults called

mutants. Using the Defects4J database of real faults, this paper

presents the results of experiments evaluating the effectiveness of

four representative test prioritization techniques. Since this paper’s

results show that prioritization is susceptible to high amounts of

variance when only one fault is present, our experiments also con-

trol the number of real faults and mutants in the program subject

to regression testing. Our overall findings are that, in comparison

to mutants, real faults are harder for reordered test suites to quickly

detect, suggesting that mutants are not a surrogate for real faults.

ACM Reference Format:

David Paterson, Gregory M. Kapfhammer, Gordon Fraser, and Phil McMinn.

2018. Using Controlled Numbers of Real Faults and Mutants to Empirically

Evaluate Coverage-Based Test Case Prioritization. In Proceedings of Inter-
national Workshop on the Automation of Software Test (AST’18). ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

As shown by a recent study involving software engineering profes-

sionals, 37% of software patches are incorrect, of which, 75% either

do not address the issue or introduce a regression [5]. Even though

it is important to run tests to find regressions, large tests suites are

often too costly to run on a regular basis. For instance, a recent

build of Apache Geode required the tests to run for 14 hours [24].

In order to lessen the cost of effectively testing for regressions, a

family of optimization techniques have been created [32], includ-

ing test case prioritization, which aims to detect faults early by

re-ordering the test cases according to a chosen heuristic. However,

previous experimental evaluations of test case prioritization meth-

ods have relied heavily on the use of artificial faults, using either

seeded faults, deliberately introduced by a human (e.g., [25]), or

mutants, introduced programmatically by a tool (e.g., [9]).

We contend that, while artificial faults may support the empirical

comparison of various prioritization techniques, it is important to

show that, if prioritizers are effective for artificial faults, then they

will also be effective for the real faults found in industry. To this

AST’18, May 28ś29, 2018, Gothenburg, Sweden
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

end, this paper asks RQ1: How does the effectiveness of test

case prioritization compare between a single real fault and a

singlemutant?, answering it by using fiveDefects4J subjects [14]

to study the detection of 200 faults by four prioritization techniques.

This paper shows that, when the program under test contains

one real fault or mutant, the effectiveness of prioritization varies

significantly. Since this is a validity threat, this paper also asks

RQ2: How does the effectiveness of test case prioritization

compare between single faults andmultiple faults? It answers

this question by creating Defects4J program versions that contain

1, 5, and 10 defects, thus comparing prioritization’s effectiveness at

detecting a controlled number of real faults and mutants.

This paper’s experiments find that the type of fault in a program

has a significant influence on the effectiveness of a reordered test

suite, as measured by the well-known average percentage of faults

detected (APFD) metric [18]. This means that, for single faults, on

average up to 659 extra tests need to be executed to detect a real

fault compared to a mutant. The experiments also reveal that the

number of faults in a program impacts the effectiveness of prioriti-

zation. For real faults, prioritization is similarly effective for single

and multiple faults. However, for mutants, prioritization becomes

more effective as their number increases. These results suggest that

mutants are not a surrogate for real faults, demonstrating the need

for subsequent evaluations of test prioritization to use both.

Given the evident need for further work in this area, it is impor-

tant to note from the outset that it is our intention to promote robust

empirical studies of test prioritization. To ensure that external re-

searchers can verify our results, we have released the data collected

from this paper’s experiments and the source code that recreates its

plots and tables [2]. Moreover, to facilitate the reproduction and/or

extension of this paper’s results, we used Defects4J [14] and Kan-

onizo [3], two tools that are available in open-source repositories.

2 BACKGROUND AND MOTIVATION

Test Case Prioritization. Test prioritization aims to reduce the

cost of finding regressions in software by reordering a test suite so

that faults are revealed as early as is possible [18]. Given a program

version V , a test suite T = ⟨t1, . . . , tn⟩, and the set of permutations

P (T) of test suiteT , prioritization aims to findT ′ ∈ P (T) that maxi-

mizes the APFD of the reordered test suite [26]. Since APFD cannot

be calculated without knowing where faults exist in a system, pri-

oritizers have to use surrogates to estimate APFD, including greedy
approaches (e.g., [26]) that use test case coverage information to

place tests within a prioritized test suite. Alternatively, search-based

approaches to test case prioritization, such as genetic algorithms

(e.g., [7, 20]), use a łfitness functionž to assess the impact of small

Table 1: Test case outcomes for three program versions.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

P
ro
g
ra
m

V
er
si
o
n Fixed Version (V1) ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Single-Fault Version (V2) ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Multiple-Fault Version (V3) ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

changes, keeping the modifications that improve fitness. Likewise, a

random search repeatedly produces random orderings, keeping the

best ordering according to the same fitness function. Finally, many

evaluations of test prioritizers use, as an experimental control, a

test suite resulting from a random shuffling [20, 26].

Using Faults to Evaluate Test Prioritization. Since the evalu-

ation of test prioritizers requires programs with test suites and

known faults, and because large software repositories containing

examples of real faults have not been readily available until recently,

many prior studies of test prioritization have relied on artificial

faults (e.g., [25]). Using a mutation testing tool is a common way

to generate artificial faults. Mutation analysis makes many small

syntactic changes to a program’s source that are checked by its

test suite. These syntactic changes, called mutants, are designed

to be small in size, while still representing meaningful behavioral

changes. The fault-detection capability of a test suite is assessed by

checking how well it detects the small changes created by mutation.

Just et al. recently leveraged the Defects4J database of real

faults to determine that mutant detection is positively correlated

with fault detection [15], concluding that mutants are often a valid

substitute for real faults in the evaluation of certain software testing

methods. Yet, it is critical to note that the experiments conducted

by Just et al. did not specifically reveal if mutants can serve as

a surrogate for real faults in the context of evaluating test case

prioritization techniquesÐwhich is the focus of this paper.

Evaluating Test Case Prioritization Techniques. To evaluate

the effectiveness of prioritization, there is a need for a metric

that characterizes the quality of a test suite’s ordering. A well-

established metric for evaluating test case prioritization techniques

is the average percentage of faults detected, which represents the

percentage of faults that have been detected after the execution of

certain numbers of test cases [10]. Given a test suiteT = ⟨t1, . . . , tn⟩,

a set of detectable faults Φ = {ϕ1, . . . ,ϕm }, a program version V

containing a total ofm faults, and the function TF (ϕ j) returning
the number of tests in T that must be executed before detecting ϕ j ,

Equation 1 defines the higher-is-better APFD metric.

APFD = 1 −

∑m
j=1 TF (ϕ j)

nm
+

1

2n
(1)

Table 1 illustrates both why test prioritization may be needed

and how it can improve the APFD of a test suite. In this example,

there are three versions of the same program, namely a łfixedž

version (V1) that does not contain a fault and two łbuggyž versions,

which contain one (V2) and two faults (V3). A trigger test ti ∈ T

detects a fault in a program V when it passes on the fixed version

and fails on the buggy version. It is important to note that trigger

tests are not the same as failing tests Ð in Table 1 t2 fails across all
versions of the program, including the fixed version.

We consider two orderings of the test suiteT : a random ordering

of the test suiteT ′ = ⟨t1, t8, t4, t5, t7, t9, t2, t10, t6, t3⟩ and an ordering

produced by prioritization, T ′′ = ⟨t4, t7, t5, t6, t1, t10, t8, t9, t3, t2⟩. In

this example, the APFD for V2 is 1 − 5
10 +

1
20 = 0.55 for T ′ and

Table 2: Characteristics of the chosen Defects4J projects.

Identifier Name # Versions KLOC Test KLOC Tests

Chart JFreeChart 26 96 50 2,205

Closure ClosureCompiler 133 90 83 7,927

Lang ApacheLang 65 22 6 2,245

Math ApacheMath 106 85 19 3,602

Time JodaTime 27 28 53 4,130

1− 2
10 +

1
20 = 0.85 forT ′′, while theAPFD forV3 is 1−

12
20 +

1
20 = 0.45

for T ′ and 1 − 5
20 +

1
20 = 0.8 for T ′′. This example illustrates how

prioritization can enhance the fault detection rate of test suites,

since for both versions the APFD score is highest for the ordering

produced by a prioritization technique. This example also highlights

the risks associated with not systematically controlling the number

of faults during an experiment: despite T ′′ finding one of the two
faults in V3 faster, it still results in a lower APFD than for V2.

It is important to discuss the alternatives toAPFD, including cost-
cognizant APFD (APFDC) [22] and Normalized APFD (NAPFD) [23].
Since our experiments neither used test case cost (APFDC) nor
removed tests (NAPFD), these alternatives do not differ from APFD.
Impact of Multiple Faults. The APFD of any prioritized test suite

is directly connected to three factors: the position of trigger tests

(i.e.,
∑m
j=1 TF (ϕj)), the number of test cases (i.e., n) and the number

of faults (i.e.,m). The primary focus of test prioritization research

has been to maximize the APFD score, which involves minimizing
∑m
j=1 TF (ϕj). However, since the APFD equation is clearly designed

to handle multiple faults, as evidenced by the inclusion ofm, we

must also consider the impact of different numbers of faults.

When only one fault is present in a program, the APFD is equiv-

alent to the location of the first trigger test. As trigger tests can

occur anywhere within the test suite, a random approximation of

test prioritization would be expected to see an average APFD score

of 0.5 as the number of trials increases, with a high variance since

trigger tests can exist at any suite location. Yet, as the number of

faults increases, the probability of an individual trial producing an

APFD score close to 0.5 increases, assuming an even distribution of

trigger tests. This results in a much lower APFD variance for multi-

ple faults than for single faults. Since APFD score variance is likely

for test prioritization, there is a risk associated with only using

single faults, thereby motivating this paper’s experiment design.

3 METHODOLOGY

Sampling of Real Faults. To obtain real faults, we used De-

fects4J, a repository of five open-source Java projects with 357 real

faults that were mined from version control repositories. As shown

in Table 2, these projects range between 22,000 and 96,000 lines of

code and 2,205 and 7,927 tests. Under development for between five

and 12 years, Defects4J’s projects are mature. Along with contain-

ing a łpre-fixž and łpost-fixž version for each fault, Defects4J has

a developer-written JUnit test suite with at least one trigger test.

Both of the research questions that this paper answers require

the use of the real faults from the Defects4J repository. For RQ1,

we created and used a tool to randomly sample 25 single, real faults

from each of the five projects, while for RQ2 we created a modified

version of Defects4J that supports the combination of real faults.

Sampling of Mutants. Along with real faults, answering this pa-

per’s two research questions required the use of mutants. Since our

experiments aim to evaluate whether prioritization techniques are

2

effective on both real faults and mutants, we make no assumptions

about the location of the mutants, since in practice the location

of faults is not known [32]. To allow us to evaluate how effective

test prioritizers are with mutants, and to eliminate the risk of using

equivalent mutants [17], which are mutants that result in no actual
difference in program execution, we ensured that each mutant is

killed by at least one of the developer-written test cases.

To investigate the hypothesis that real faults and mutants are

roughly equivalent for evaluating prioritization techniques, we

used theMajormutation tool [16] to create and analyze large num-

bers of mutants. To produce the mutant versions of the Defects4J

projects, we applied Major to all classes within the project and

iteratively picked random mutants for mutation analysis, keeping

those that were killed by at least one test until sufficient numbers

had been selected (i.e., 1, 5, or 10). For the Closure project, there

were numerous insurmountable out-of-memory issues, ultimately

resulting in the generation of no mutants for this project.

Test Case Prioritization. To prioritize test suites, we developed

the Kanonizo tool [3], which provides four techniques that reorder

tests based on coverage information. Notably, test cases should, by

nature, be independent of each other, with no test affecting the

behavior of any other [33]. In particular, the version of JUnit used

by Defects4J’s projects does not specify the execution order of the

tests [1], implying no default ordering in which to run the tests.

Moreover, many prior studies of test case prioritization considered

a łno prioritizationž baseline (e.g., [25]). Thus, we used a randomly

shuffled ordering of each project’s test suite as a baseline.

We compared baseline orderings against the following four pri-

oritizers, which we implemented into Kanonizo: Total Statement
reorders test cases based on the number of lines covered by each,

such that those that cover the most lines of code appear first. Ad-
ditional Statement prioritizes test cases based on the number of

unique lines of code covered, such that those that cover the most

lines not covered by other tests appear first. Kanonizo further

implements a Genetic Algorithm (GA) that uses a fitness function
to evolve and evaluate candidate solutions (i.e., test orderings). The

fitness function follows Li et al.’s approach, maximizing the average

percentage of lines covered (APLC), a metric formulated like the

APFD, but based on lines of code covered rather than faults [20].

Finally, we implemented a Random Search method that repeat-

edly re-orders the tests at random, returning the best ordering as

determined by the same fitness function used for the GA (thereby

differing from the random baseline method that returns the first

random ordering produced). Although many other methods exist

(e.g., [7, 31]), we chose these since prior work regularly studied

them (e.g. [10, 20, 25]). To give an appropriate search budget to

the GA and Random Search, we used the maximum runtime of

the deterministic algorithms (i.e., Additional Statement and Total

Statement), thereby ensuring that their search budgets are sensi-

tive to the complexities of each project and thus enabling a fair

comparison across the different test case prioritization techniques.

Statistical Analysis. Any algorithm that makes random choices

during its execution may produce variable results across multi-

ple runs. We therefore repeated the baseline, GA, and Random

Search 30 times. As mentioned in the previous paragraph, the bud-

get for each search-based technique is determined by the runtime

of the Additional Statement and Total Statement prioritizers. Al-

though they are deterministic, we repeated Additional Statement

and Total Statement 10 times to account for any potential execution

time variations due to load fluctuations on the computer cluster.

In addition to accounting for fluctuations caused by the random

choices in algorithms, it is also important to consider the likeli-

hood that any results observed can have occurred as a result of

chance, rather than as a result of an improved algorithm. The Mann-

Whitney U-test determines the probability that two samples have

originated from the same distribution, without assuming sample

normality or requiring identical sample sizes. If the probability p re-
ported by the U-test is less than 0.01, then it is statistically unlikely
that the differences could have occurred by chance.

Like the Mann-Whitney U-test, the Vargha-Delaney effect size,

Â, takes two samples, but instead measures the probability that a

prioritizer r1 yields higher values (i.e., APFD scores) than another

prioritizer r2 [30]. Effect size is often used to gauge łpractical sig-

nificancež [11], since statistical significance has a tendency to yield

smaller p-values as the size of the data sets increase. The Vargha-

Delaney effect size is independent of sample size. For example, an

effect size of 0.7 indicates that a prioritizer r1 achieves higher APFD
scores than r2 70% of the time. Since an Â value is equivalent to

1−Â if r1 and r2 are reversed, the order in which the two prioritizers

are supplied to the Â computation is important. With this in mind,

Vargha and Delaney further quantified and categorized an effect

size as None (|Â − 0.5| < 0.06), Small (0.06 ≤ |Â − 0.5| < 0.14),

Medium (0.14 ≤ |Â − 0.5| < 0.21), or Large (|Â − 0.5| > 0.21).

In Section 4’s plots, the results of both statistical tests are dis-

played at the top of each plot in the following way. For RQ1, we

represent the Mann-Whitney U-test results with a ✓ or a ✗, and

the Â with łN/S/M/Lž: these values represent whether the APFD
distribution for mutants was significantly higher than the APFD
distribution for real faults. For RQ2, we use the same notation

to indicate whether the APFD for 5 or 10 faults, respectively, was

significantly higher than the APFD score for a single fault.

Threats to Validity. Before discussing this paper’s validity threats,

it is important to note that all experimentation artifacts are publicly

available [2, 3, 14], thus allowing external researchers to confirm

that we correctly ran the experiments and analyzed the results.

While the subjects in Defects4J vary in terms of their total lines

of code, total number of tests, and number of years under devel-

opment, we cannot guarantee that the results observed for these

subjects will generalize to, for instance, programs and tests with

different characteristics. Thus, we intend to replicate this paper’s

experiments with additional subjects that are more complex and

contain long-running tests that detect real faults with varying de-

grees of severity. Finally, since the sampling of Defects4J’s defects

may lead to variance in results when experiments are repeated, in

future work we will run experiments with more sampled defects.

This paper’s experiments consider four test case prioritization

methods, which we judge to be representative of previous work due

to the frequency with which others have studied them (e.g., [25]).

However, many other prioritizers exist, such as those employing

alternative genetic algorithms (e.g., [20]), clustering algorithms

(e.g., [6]), or other static code-based approaches (e.g., [29]). Thus,

the results of this paper’s experiments may have been different

if other algorithms had been used. Since the Kanonizo tool is

3

S L M S S
✓ ✓ ✓ ✓ ✓

M L M M M
✓ ✓ ✓ ✓ ✓

N L N S S
✓ ✓ ✗ ✓ ✓

M L M L L
✓ ✓ ✓ ✓ ✓

Math Time

Chart Lang

Baselin
e

Additio
nal S

tatement

Total S
tatement

Genetic
 Algorith

m

Random Search

Baselin
e

Additio
nal S

tatement

Total S
tatement

Genetic
 Algorith

m

Random Search

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
P

F
D

Fault Type Real Mutant

Figure 1: APFD scores for programs containing one real fault

(white) and one mutant fault (gray). See Section 3 for an ex-

planation of the symbols (e.g., the ✓ and ✗) in the legend.

extensible, we will control this validity threat by implementing new

algorithms and experimentally evaluating them in future work.

This paper empirically compares prioritization methods that

use statement coverage. Yet, it is also possible to prioritize tests

by analyzing how well they cover program branches [25] or kill

mutants [9]. Importantly, Kanonizo supports prioritization with

reports about branch coverage or mutant killing. Thus, although

testers often use statement coverage [32], we will control this threat

by later studying methods that use other test quality measurements.

Like many past studies of test prioritization (e.g., [31]), this paper

assumes that tests are independent, meaning that their reordering

will not influence test outcomes [18]. While this assumption does

not always hold true in practice [33], Defects4J’s programs come

with JUnit test suites that we found to be independent.

The final validity threat for this paper’s results is defects in the

tools used to run the experiments. We mitigated this threat by im-

plementing JUnit tests when developing Kanonizo and by hand

checking the empirical results to ensure correctness. It is also pos-

sible that problems with Defects4J compromised the results. Yet,

this well-tested database has been used in prior studies (e.g., [14])

without any concerns. We also handled defects in the statistical

analysis and graphing routines by extensive testing and checking.

4 EXPERIMENTAL RESULTS

RQ1: How does the effectiveness of test case prioritization

compare between a single real fault and a single mutant?

Figure 1 presents boxplots of the APFD scores observed from the

experiments involving single faults and single mutants. The figure

reveals a clear difference between the effectiveness of test case

prioritization with single real faults and mutants, with significant

differences in all but one case. Effect sizes range from small to

large. Large effect sizes are obtained for the Additional Statement

prioritizer for every project. For only one case (i.e., the Lang project

and Total Statement) is the median APFD for real faults below that

for mutants, yet investigation of the means (not shown in the figure)

indicated the reverse, and overall there is no significant difference.

Furthermore, Table 3 gives the number of extra tests required to

detect a real fault compared to a single mutant. For all projects, at

Table 3: Mean number of test cases required to detect each

type of fault, and differences relative to test suite size.

Project Real Mutant Test Cases Difference

Chart 703.4 498.5 1826.0 11.2%

Lang 818.9 611.4 1960.8 10.6%

Math 1461.7 815.8 3566.9 18.1%

Time 1341.9 683.4 3929.1 16.8%

Table 4: Effect sizes for different fault types. Significant val-

ues are bold and effect sizes are labelled as given in Section 3.

Additional Statement Total Statement Genetic Algorithm Random Search

Real Mutant Real Mutant Real Mutant Real Mutant

Chart (N) 0.46 (L) 0.75 (N) 0.44 (N) 0.53 (N) 0.51 (N) 0.52 (N) 0.49 (N) 0.53

Lang (S) 0.37 (L) 0.77 (N) 0.53 (N) 0.50 (N) 0.50 (N) 0.55 (N) 0.51 (N) 0.53

Math (S) 0.58 (L) 0.80 (N) 0.53 (S) 0.57 (N) 0.50 (N) 0.54 (N) 0.49 (N) 0.54

Time (N) 0.55 (M) 0.66 (S) 0.61 (S) 0.59 (N) 0.51 (N) 0.54 (N) 0.50 (N) 0.54

least 10% more test cases must be executed in order to detect real

faults, a phenomenon that we investigate further in Section 5.

Overall, these results indicate that the use of mutants may over-

estimate the possible improvements achievable with test case pri-

oritization compared to the use of real faults. Although this over

inflation of effectiveness may set wrong expectations about the

possible benefits of using test case prioritization in practice, it is

not necessarily an issue prohibiting the use of mutants for test

case prioritization experiments. That is, as long as the inflation is

consistent across software projects and prioritizers and does not

change the decision as to whether test case prioritization achieves

a benefit or not, mutants could still be used for comparative studies

of test case prioritization. However, our experiments do not suggest

that this is the case. We checked whether the different test priori-

tizers improve over the baseline of a random ordering of tests, and

whether this is consistent between mutants and real faults.

Table 4 shows the effect sizes comparing different prioritizers

with the baseline; values increasingly over 0.5 indicates the priori-

tizer is more likely to return a higher APFD than the single random

ordering, while values decreasingly below 0.5 means that the ran-

dom ordering is more likely to be better. The table clearly shows

that effect sizes are not consistent between the two types of faults.

For mutants, all effect sizes are greater than (or equal to) 0.5, and

more than half of the cases are statistically significant, suggesting

that test prioritization was beneficial. For real faults, however, most

cases show no statistical difference, with an effect size generally

close to 0.5 (i.e., no practical difference). In fact, there are several

cases where the random ordering is (significantly) better than the

prioritized tests, with an effect size less than 0.5. In Section 5, we

discuss reasons for why prioritization may be better for mutants,

also investigating cases where it works well for real faults.

Conclusion: Single real faults vs single mutants. These results

show that APFD scores are inflated when prioritization is run with

one mutant, compared to one real fault. If this inflation were pre-

dictable, mutants could still usefully substitute for real faults. But,

our results indicate that it is not. When compared to the baseline,

the difference in APFD scores depends on the test case prioritizer

and the project. In Section 5, we further discuss the differences

between real faults from Defects4J and mutants, showing some of

the syntactic and semantic differences between the two fault types.

4

N S N N N
✗ ✓ ✗ ✗ ✗

N S S N S
✗ ✓ ✓ ✗ ✓

S N M S S
✓ ✗ ✓ ✓ ✗

N N L S S
✗ ✗ ✓ ✗ ✗

N N S N N
✗ ✗ ✓ ✗ ✗

N S S N N
✗ ✗ ✗ ✗ ✗

S S N N N
✓ ✓ ✗ ✓ ✓

S L N S S
✓ ✓ ✗ ✓ ✓

Math Time

Chart Lang

Baselin
e

Additio
nal S

tatement

Total S
tatement

Genetic
 Algorith

m

Random Search

Baselin
e

Additio
nal S

tatement

Total S
tatement

Genetic
 Algorith

m

Random Search

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
P

F
D

Num Faults 1 5 10

(a) Real Faults

S L S S S
✓ ✓ ✓ ✓ ✓

S L N S S
✓ ✓ ✗ ✓ ✓

S M S N N
✓ ✓ ✓ ✓ ✓

S L S N N
✓ ✓ ✓ ✗ ✗

S M N S S
✓ ✓ ✗ ✓ ✓

N M N S S
✓ ✓ ✗ ✓ ✓

M M L M M
✓ ✓ ✓ ✓ ✓

M M L M M
✓ ✓ ✓ ✓ ✓

Math Time

Chart Lang

Baselin
e

Additio
nal S

tatement

Total S
tatement

Genetic
 Algorith

m

Random Search

Baselin
e

Additio
nal S

tatement

Total S
tatement

Genetic
 Algorith

m

Random Search

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

A
P

F
D

Num Faults 1 5 10

(b) Mutant Faults

Figure 2: Distribution of APFD scores for different numbers of faults. See Section 3 for an explanation of the legend.

RQ2: How does the effectiveness of test case prioritization

compare between single faults and multiple faults? Figure 2

shows the boxplots of the APFD scores obtained from running the

experiments with different numbers of real faults and mutants,

respectively. For one real or mutant fault, the variance in APFD
scores is relatively high, reducing for five faults, and then further

reducing for ten. This is to be expected, as discussed in Section 2.

Figure 2a shows that, in general, median APFD scores decrease

for 5 and 10 faults compared to 1 fault. Yet, these decreases are not

always accompanied by statistical significance. Effect sizes tend to

be negligible or small, with the exception being Time-Additional

Statement and the distributions for 1 and 10 real faults. The distri-

butions for Math-Total Statement and 1ś5 and 1ś10 faults are also

medium or large, but for these project-prioritizer configurations

the median APFD score increases, rather than decreasing.

Figure 2b plots the distributions of APFD scores for mutants.

Again, the median APFD scores decrease. In contrast to real faults,

however, we found that the reduction is significant for 35 out of 40

project-prioritizer pairings. These results tend to be accompanied

by non-negligible effect sizes. Additional Statement is the most

successful test prioritizer for mutants, achieving the highest median

APFD scores across all projects. For this prioritizer, increasing the

number of mutants always results in a decrease of the medianAPFD,
a result that is always significant and accompanied by a medium or

large effect size. These results for Additional Statement and mutants

are contrasted with those evident when this prioritizer handles real

faults: Figure 2a shows that those scores are often not significantly

different and the effect sizes are normally negligible or small.

While the evidence for decreases in APFD values as the number

of faults increases is stronger for mutants compared to real faults,

the use ofmutants over real faults is not necessarily prohibited if test

case prioritization techniques see consistent decreases in the APFD
scores when their test suite orderings are compared to the baseline

random ordering. That is, if the decreases are consistent across

software projects and test prioritization methods, then mutants

could still be used as surrogates for real faults. As such, we checked

whether the different prioritizers improve over the random baseline.

Table 5 shows the effect sizes of multiple real faults and mutants

for each prioritizer, compared to the random ordering baseline for

the same number and type of fault. From Table 5a, for real faults, it

is clear that there are only a few cases where test prioritization is

practically better for 5 and 10 faults than for single faults. In most

cases the Â values are similar and do not significantly increase

as more faults are introduced. However, in Table 5b, for mutants,

all but one of the Â values increase when moving from single

to multiple faults. Therefore, as for RQ1, we conclude that there

is an inconsistent difference between real faults and mutants as

more of a fault type is introduced. That is, one fault type cannot

be reliably substituted for the other. In comparison to the results

for single faults, this contrast is greater when comparing test case

prioritization with multiple faults to the random baseline.

Conclusion: Single vs multiple faults. From the evidence presented

in this empirical evaluation, we conclude that the use of multiple

faults can aid evaluations of test case prioritization techniques by

reducing variance caused by randomness. MedianAPFD scores tend

to decrease for both fault types as the number of faults increases.

However, the effects are inconsistent when we compare prioritiza-

tion with real faults and mutants against the random baseline. Prior-

itization with mutants is more likely to significantly outperform the

baseline with a non-negligible effect size, while prioritization with

real faults tends to show little difference. The contrast observed

between real faults and mutants and the baseline is more marked

than for single faults, as observed in RQ1. Considering the answers

to both research questions, we conclude that future studies of test

prioritization’s effectiveness should, whenever possible, use real

faults in conjunction with, or as a substitute for, mutants.

5 DISCUSSION

Real Faults vs. Mutants in Test Prioritization.While Section 4

reveals that there are clear differences between real faults and

mutants when it comes to how effective test prioritization is, these

results do not develop an understanding concerning the syntactic

and semantic differences between fault types that may be the root

cause. For the 125 real faults used in this study, we found that on

average 7.2 lines were removed (max. removed lines 49) and 1.98

lines were added (max. added lines 22) to fix a real fault. When

generating mutants, the code change always involved a maximum

of one new line of code and at most one removed statement.

The relatively high volume of code changes that are required to

fix a real fault outline the complexity associated with themÐthere

are domain- and context-specific changes required to fix the fault.

5

Table 5: Effect sizes for controlled numbers of faults. Significant values are bold and effect sizes are labelled as in Section 3.

(a) Real Faults

Additional Statement Total Statement GA Random

1 5 10 1 5 10 1 5 10 1 5 10

Chart (N) 0.46 (S) 0.60 (N) 0.52 (N) 0.44 (M) 0.33 (M) 0.30 (N) 0.51 (N) 0.51 (N) 0.49 (N) 0.49 (N) 0.50 (N) 0.51

Lang (S) 0.37 (N) 0.53 (S) 0.36 (N) 0.53 (M) 0.70 (M) 0.69 (N) 0.50 (N) 0.53 (S) 0.58 (N) 0.51 (N) 0.55 (S) 0.58

Math (S) 0.58 (S) 0.60 (M) 0.69 (N) 0.53 (S) 0.57 (L) 0.72 (N) 0.50 (N) 0.55 (N) 0.53 (N) 0.49 (N) 0.52 (N) 0.51

Time (N) 0.55 (N) 0.50 (S) 0.56 (S) 0.61 (L) 0.75 (L) 0.74 (N) 0.51 (N) 0.51 (N) 0.54 (N) 0.50 (N) 0.51 (N) 0.51

(b) Mutant Faults

Additional Statement Total Statement GA Random

1 5 10 1 5 10 1 5 10 1 5 10

Chart (L) 0.75 (L) 0.86 (L) 0.85 (N) 0.53 (M) 0.65 (L) 0.76 (N) 0.52 (S) 0.57 (S) 0.59 (N) 0.53 (S) 0.56 (N) 0.55

Lang (L) 0.77 (L) 0.90 (L) 0.96 (N) 0.50 (S) 0.60 (S) 0.59 (N) 0.55 (S) 0.58 (S) 0.61 (N) 0.53 (S) 0.56 (S) 0.57

Math (L) 0.80 (L) 0.89 (L) 0.92 (S) 0.57 (S) 0.63 (M) 0.66 (N) 0.54 (S) 0.64 (M) 0.66 (N) 0.54 (S) 0.60 (S) 0.62

Time (M) 0.66 (L) 0.81 (L) 0.94 (S) 0.59 (N) 0.46 (S) 0.44 (N) 0.54 (S) 0.58 (S) 0.61 (N) 0.54 (S) 0.56 (S) 0.59

In contrast, mutants are independent of domain and context. This

indicates that real faults require more targeted tests than mutants,

since they not only need to execute the line, but also create the

correct system state in order to verify that the fault no longer occurs.

This phenomenon can also be observed in the relative number of

trigger tests, where we observed an average of 3.18 trigger tests

for single real faults, compared to 57.38 for single mutants. The

implication that mutants are easier to find than real faults suggests

the need for future work in creating more realistic mutants.

Where Prioritization was Successful with Real Faults. While

the results in Section 4 indicate that test case prioritization was, on

the whole, not successful at improving the fault detection rates for

test suites finding real faults, we found a small number of exceptions

to this where it led to noteworthy increases in fault detection. We

inspected the ten versions from the single real fault experiments

where the highest APFD scores were achieved. In five of these

cases, the APFD is within .005 of 1, indicating that the prioritizer

placed a trigger test prominently within the prioritized suite. In

most of these circumstances, the trigger tests executed many more

program source code lines than expected, with 9 of the 10 trigger

tests executing more than 2% of the total program lines.
There is, however, a notable exception to this in Lang v51, for

which only 0.35% of the total lines in the version are executed by the

trigger test. This example exhibits one of the greatest differences

between the Total Statement and Additional Statement prioritizers,

which achieved APFD scores of 0.68 and 0.97, respectively. This

result indicates that, despite the trigger test having a lower overall

coverage, it is still possible for it to contribute to a test suite with

a high APFD score. This is an example of a situation where the

Total Statement prioritizer leads to a low-quality test ordering, thus

further confirming that the maximization of test coverage is often

not correlated with improved fault detection [12, 13].

While it is possible for prioritization techniques to produce test

orderings that improve fault detection, in many cases this is, in

fact, indicative of poor unit test design. For Math v74, the trigger

test covers a total of 1069 lines of code, which may partly be due

to it testing a small method that uses a lot of core code during its

execution. Yet, for this project, this behavior is likely symptomatic

of a test that is going beyond the purpose of unit testing as it checks,

for instance, sequences of complex method interactions.

Results With the Genetic Algorithm. One of the more promi-

nent trends in Section 4 was that Random Search and the GA had

poor performance for both real faults and mutants, barely outper-

forming the baseline random orderings in many cases. Given that

the GA is initialized with a population of random orderings and

only makes changes that result in an increased coverage score for

the test suite, it seems unlikely that the baseline’s test suites would

outperform the GA’s orderings. Notably, the fitness function used

by the GA was APLC, also adopted by Li et al. [20] and designed to

maximize line coverage. Yet, Hao et al. conducted a study in which

they discovered that, in most cases, the Additional Statement priori-

tizer results in optimal or near-optimal levels of code coverage [12].

Thus, in its current configuration, even if the GA was given an

extended search budget, its final test ordering would likely not be

capable of outperforming the ones created by Additional Statement.

Additionally, calculating APLC in the GA evaluates the entire

test suite even when only two test cases change position. This

fitness calculation is both frequently called and expensive, partic-

ularly when there are large programs and/or test suites involved.

As a result, the GA only makes a small number of changes to the

population of test orderings before exhausting its search budget,

thereby limiting its exploration of the search space. Future work

should investigate potentially more competitive GAs (e.g., [7, 31]).

6 RELATED WORK

This paper’s primary purpose is to use a controlled number of real

faults and mutants to compare coverage-based test prioritization

techniques. Complementing this paper’s goal, several prior studies

broadly compared fault types within the field of software testing.

For instance, Andrews et al. investigated the use of mutants in soft-

ware testing experiments [4] and Just et al. examined the differences

between mutants and real faults [15]. In the context of regression

testing, Luo et al. studied the effectiveness of prioritization methods

at detecting mutants [21] and Do and Rothermel evaluated test pri-

oritization with both mutants and seeded faults [9]. Finally, there

are two papers that, like this one, useDefects4J to empirically eval-

uate test case prioritization. Yet, Lu et al. only furnish a preliminary

study of one Defects4J program [21] and Shin et al. concentrate

on a prioritization type different from this paper’s methods [27].

Like this paper, Leon and Podgurski also studied test case priori-

tization using real faults [19]. Yet, they did not empirically compare

prioritization with both mutants and real faults. Several other pa-

pers studied test case prioritization with real faults in industrial

systems. For instance, Srivastava and Thiagarajan assessed whether

or not prioritization methods could detect real faults in Microsoft

6

software [28] and Di Nardo et al. studied how well coverage-based

techniques detect the real faults in another industrial system [8].

While these aforementioned papers add to the body of knowledge

about the effectiveness of test prioritization, they also present stud-

ies that are difficult for external researchers to replicate. To better

support future studies, this paper provides its supporting code and

data [2, 3], leveraging Defects4J, a public database of real faults.

Finally, there is an extensive literature on test prioritization. For

instance, Rothermel et al. introduced coverage- and mutation-based

test case prioritization methods [25] and Elbaum et al. showed how

to reorder tests based on the likelihood of faults occurring in certain

code regions [10]. For an overview of other approaches, we refer

the reader to Yoo and Harman’s survey of regression testing [32].

7 CONCLUSIONS AND FUTUREWORK

Regression testing is important since software engineering profes-

sionals often introduce defects when they modify software [5]. By

reordering a test suite so that the faults in a program can be detected

as early as is possible, test case prioritization may lessen the cost of

testing for regressions [32]. However, since many previous studies

of prioritization’s effectiveness often used seeded faults or mutants

there is limited evidence that the method works for real faults. To

ascertain whether or not the effectiveness of prioritization differs

when programs contain either a real fault or a mutant, this paper

uses five Defects4J subjects [14] to study the detection of 125 real

faults by four representative test case prioritization techniques.

This paper’s results suggest that, in comparison to mutants, the

real faults in Defects4J are harder for prioritized test suites to

detect. Moreover, mutants lead to APFD scores that are inflated in

unpredictable ways. Given the usefulness of these results, we will

incorporate more of Defects4J’s faults and new subjects in future

experiments. We will also add more test case prioritizers (e.g., [29])

to Kanonizo. Furthermore, future work should develop new op-

erators for generating mutants that better mirror the behavior of

real faults. The combination of this paper’s contributions and the

suggested future work will yield a comprehensive framework for

studying prioritization methods with both real faults and mutants.

REFERENCES
[1] 2017. JUnit test execution order. (2017). Retrieved 02/03/2018 from https:

//github.com/junit-team/junit4/wiki/Test-execution-order
[2] 2018. Experimental data from this paper’s evaluation. (2018). https://www.

bitbucket.com/testprioritisation/ast2018_data
[3] 2018. Kanonizo. (2018). https://github.com/kanonizo/kanonizo
[4] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate

Tool for Testing Experiments?. In Proceedings of the 27th International Conference
on Software Engineering.

[5] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the Bug and How is It Fixed?
An Experiment with Practitioners. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering.

[6] Ryan Carlson, Hyunsook Do, and Anne Denton. 2011. A Clustering Approach to
Improving Test Case Prioritization: An Industrial Case Study. In Proceedings of
the 27th International Conference on Software Maintenance.

[7] Alexander P. Conrad, Robert S. Roos, and Gregory M. Kapfhammer. 2010. Em-
pirically studying the role of selection operators during search-based test suite
prioritization. In Proceedings of the 12th International Conference on Genetic and
Evolutionary Computation.

[8] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2015.
Coverage-based regression test case selection, minimization and prioritization: a
case study on an industrial system. Journal of Software Testing, Verification and
Reliability 25, 4 (2015).

[9] Hyunsook Do and Gregg Rothermel. 2006. On the Use of Mutation Faults in
Empirical Assessments of Test Case Prioritization Techniques. Transactions on

Software Engineering 32, 9 (2006).
[10] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Pri-

oritizing Test Cases for Regression Testing. In Proceedings of the International
Symposium on Software Testing and Analysis.

[11] S. M. Ellis and H. S. Steyn. 2003. Practical significance (effect sizes) versus or in
combination with statistical significance (p-values). Management Dynamics 12, 4
(2003).

[12] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie. 2016. To Be Optimal
or Not in Test-Case Prioritization. Transactions on Software Engineering 42, 5
(2016).

[13] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering.

[14] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the International Symposium on Software Testing and Analysis.

[15] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd International Symposium on Foundations of
Software Engineering.

[16] René Just, Gregory M. Kapfhammer, and Franz Schweiggert. 2012. Using non-
redundant mutation operators and test suite prioritization to achieve efficient and
scalable mutation analysis. In Proceedings of the 23rd International Symposium on
Software Reliability Engineering.

[17] Gregory M. Kapfhammer. 2004. Software testing. In The Computer Science
Handbook.

[18] Gregory M. Kapfhammer. 2010. Regression testing. In The Encyclopedia of
Software Engineering.

[19] David Leon and Andy Podgurski. 2003. A Comparison of Coverage-Based and
Distribution-Based Techniques for Filtering and Prioritizing Test Cases. In Pro-
ceedings of the 14th International Symposium on Software Reliability Engineering.

[20] Z. Li, M. Harman, and R. M. Hierons. 2007. Search Algorithms for Regression
Test Case Prioritization. Transactions on Software Engineering 33, 4 (2007).

[21] Qi Luo, KevinMoran, and Denys Poshyvanyk. 2016. A Large-scale Empirical Com-
parison of Static and Dynamic Test Case Prioritization Techniques. In Proceedings
of the 24th International Symposium on Foundations of Software Engineering.

[22] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel, and Sebastian
Elbaum. 2006. Cost-cognizant test case prioritization. Technical Report TR-UNL-
CSE-2006-0004. Department of Computer Science and Engineering, University
of Nebraska, Lincoln, Nebraska, USA.

[23] X. Qu, M. B. Cohen, and K. M. Woolf. 2007. Combinatorial Interaction Regression
Testing: A Study of Test Case Generation and Prioritization. In Proceedings of the
23rd International Conference on Software Maintenance.

[24] Apache Geode Nightly Test Report. 2018. Apache Geode Nightly Test Re-
port. (2018). https://builds.apache.org/view/E-G/view/Geode/job/Geode-release/
lastCompletedBuild/testReport/

[25] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. 1999. Test case
prioritization: an empirical study. In International Conference on Software Mainte-
nance.

[26] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. 2001. Prioritizing
test cases for regression testing. Transactions on Software Engineering 27, 10
(2001).

[27] D. Shin, S. Yoo, M. Papadakis, and D.-H. Bae. 2017. Empirical Evalua-
tion of Mutation-based Test Prioritization Techniques. ArXiv e-prints (2017).
arXiv:cs.SE/1709.04631

[28] Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing Tests in
Development Environment. In Proceedings of the International Symposium on
Software Testing and Analysis.

[29] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein. 2014. Static test case
prioritization using topic models. Journal of Empirical Software Engineering 19(1)
(2014).

[30] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Education and Behavioral Statistics 25, 2 (2000).

[31] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S. Roos.
2006. Time-aware Test Suite Prioritization. In Proceedings of the International
Symposium on Software Testing and Analysis.

[32] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012).

[33] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically Revisiting the Test Independence
Assumption. In Proceedings of the International Symposium on Software Testing
and Analysis.

7

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Methodology
	4 Experimental Results
	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

