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We present a multi-scale model of the within-phagocyte, within-host and population-level

infection dynamics of Francisella tularensis, which extends themechanistic one proposed

by Wood et al. (2014). Our multi-scale model incorporates key aspects of the interaction

between host phagocytes and extracellular bacteria, accounts for inter-phagocyte

variability in the number of bacteria released upon phagocyte rupture, and allows one

to compute the probability of response, and mean time until response, of an infected

individual as a function of the initial infection dose. A Bayesian approach is applied to

parameterize both the within-phagocyte and within-host models using infection data.

Finally, we show how dose response probabilities at the individual level can be used

to estimate the airborne propagation of Francisella tularensis in indoor settings (such

as a microbiology laboratory) at the population level, by means of a deterministic zonal

ventilation model.

Keywords: Francisella tularensis, Markov process, multi-scale model, dose response probability, mean response

time, zonal ventilation model

1. INTRODUCTION

Francisella tularensis is a gram-negative, facultative bacteria and the causative agent of tularemia
(Oyston et al., 2004; Oyston, 2008). Due to its high infectivity and ability to cause a debilitating
disease with the inhalation of as few as 10 organisms, F. tularensis has been classified as a category A
bioterrorism agent by the Centers for Disease Control and Prevention (CDC). Following inhalation,
bacteria are deposited in the lungs where, to begin with, they are primarily taken up by alveolar
phagocytes through phagocytosis, as described by Hall et al. (2008). By escaping the Francisella-
containing phagosome (FCP), bacteria enter into the cytosol of the phagocyte. F. tularensis can
resist killing in the cytosol from reactive oxygen species (ROS) and can subsequently undergo
multiple rounds of division within the host cell. Following this intracellular bacterial replication,
the host phagocyte ruptures and dies, releasing its bacterial load back into the extracellular
environment (Cowley and Elkins, 2011). For up to 72 h post-infection, F. tularensis is capable of
preventing immune recognition. Therefore, it is important to understand how an individual may
react to the infection, and when they develop tularemia.

Dose response models have been developed in an attempt to quantify the risk to a population
associated with chemical and biological agents. However, unlike with chemical agents where the
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initial dose is the total amount available to cause a response,
the ability of biological agents to reproduce post-infection
means that the extent of replication within the host must be
taken into account (Huang and Haas, 2009). Furthermore, since
this timescale of infection is in the order of days, and since
the window of opportunity for effective medical treatment is
often limited, a better understanding of the infection timescale
could provide valuable information to guide optimal treatment
strategies. Attempts have therefore been made to incorporate
time into such dose response models. Many of these original
approaches involved adjusting existing dose response models,
such as the classical exponential and beta-Poisson models, or
probit analyses to allow for time dependency of the model
parameters (Chen, 2007; Huang and Haas, 2009). However, by
choosing convenient statistical distributions, the link between the
dose response model and the underlying within-host biological
mechanisms that govern the level of bacterial replication is
tenuous. A stochastic mechanistic model is proposed by Pujol
et al. (2009) for the within-host interaction dynamics between
immune effector cells and pathogens, which takes into account
both the total dose inhaled by the host and the total exposure
period during which this dose is inhaled. It is also worth
mentioning the work by Gillard et al. (2014), where a stochastic
within-host computational model is proposed for the infection
process, in the BALB/c mouse, following inhalational exposure to
Francisella tularensis SCHU S4. By focusing on a compartmental
agent based model, Gillard et al. (2014) consider the intracellular
dynamics of a single infected phagocyte, and model the stages
of bacterial replication and phagocyte rupture as a birth process
with catastrophe, where the number of bacteria released in a
single rupture event follows a geometric distribution. The average
number of bacteria released is then estimated using the mean of
this geometric distribution.

Another recent example is the Markov chain model described
by Wood et al. (2014), which addresses these issues by
considering the key interactions between F. tularensis bacteria
and host (human) phagocytes within the lung space. Using
the Markovian nature of the process, the probability and time
for the total number of bacteria to reach some threshold can
be computed, this threshold being identified as the necessary
amount of bacteria needed for host illness onset. Despite this,
fitting procedures are still used to obtain quantities, such as
the time until a single infected phagocyte ruptures, which are
required to parameterize the model. A particular limitation
suggested by Wood et al. (2014) is the consideration of a
deterministic (constant) time for the time to rupture of each
infected phagocyte. This does not allow for modeling the
experimentally observed variability in this time among different
phagocytes, where in fact a log-normally distributed rupture time
is predicted byWood et al. (2014), but not explicitly incorporated
into the model. Also, by using a deterministic approach to
modeling the intracellular growth of F. tularensis bacteria, Wood
et al. (2014) assume a constant number of bacteria released
on rupture of any infected phagocyte, not accounting for the
existing variability in the number of bacteria released by different
phagocytes.

In this paper, an extension to the model described by
Wood et al. (2014) is proposed. By incorporating a second,
within-phagocyte, model into the existing within-host model,
the stochastic intracellular dynamics of F. tularensis can be
replicated. This can account for the log-normally distributed
rupture time, leading to a rupture size probability distribution
(i.e., number of bacteria released upon phagocyte rupture) which
enables us to account for inter-phagocyte variability at the within-
host level. Thus, the within-phagocyte model can be linked with
the within-host model for the interaction between extracellular
bacteria and susceptible phagocytes by means of the distribution
of the number of bacteria released by a single infected phagocyte,
obtained from analyzing the within-phagocyte model, which
allows for varying phagocyte rupture sizes in the within-host
model. In summary, this multi-scale model allows us to relax
the assumption made by Wood et al. (2014) that a fixed number
of bacteria is released from every single infected phagocyte on
rupture. For both the within-host and within-phagocyte models,
analytical approaches to calculate the summary statistics (dose
response probability and mean time until response) defined
by Wood et al. (2014) are outlined. However, by exploiting
the structure of the resulting Markov processes, more efficient
approaches than the methods proposed by Wood et al. (2014)
are described here. Finally, a zonal ventilation model for the
indoor airborne spread of F. tularensis is presented in order to
illustrate how dose response probabilities at the individual level,
computed from the within-host model, can be used in order to
make predictions at the population level.

2. MATERIALS AND METHODS

In this section, our aim is to develop a multi-scale model for
the infection dynamics of F. tularensis bacterium, by linking a
within-phagocyte, a within-host and a population-level model. In
section 2.1 we develop a stochastic within-phagocyte model for
the infection dynamics of a single phagocyte by F. tularensis. We
show how the log-normally distributed rupture time estimated
by Wood et al. (2014) from experimental data (Lindemann et al.,
2011), can be incorporated into this model, while maintaining
the Markovian nature of the underlying stochastic process, and
how first-step arguments allow one to compute the probability
distribution of the total number of bacteria released by an
infected phagocyte upon rupture. This distribution is used in
section 2.2 to link the within-phagocyte model to the within-
host model for the interaction between extracellular bacteria and
phagocytes within the host. This within-host model accounts for
inter-phagocyte variability in the amount of bacteria released
upon rupture. The aim of the within-host model is to compute
the probability of host response (in terms of the onset of
symptoms), as well as the time to this response. Finally, we
illustrate in section 2.3 how these dose response probabilities
at the individual level might be used for predicting, at the
population level, the number of individuals showing symptoms
upon indoor release and airborne spread of F. tularensis,
by means of a zonal ventilation model and under different
ventilation settings in an hypothetical microbiology laboratory.
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2.1. Within-Phagocyte Model
The first level of the multi-scale model is a within-phagocyte
model, used to replicate the dynamics of an F. tularensis
bacterium after it has been ingested by a host phagocyte, assuming
that the bacterium escapes the FCP, entering into the cytosol and
starting replication. Phagocytosis leading to successful bacterial
killing will be considered in the within-host model, and is not
analyzed here. This includes the replication of bacteria within the
cytosol, and the subsequent rupturing and death of the phagocyte
(Cowley and Elkins, 2011). These stages of the intracellular life-
cycle can be modeled using a continuous-time stochastic process
X = {X(t) : t ≥ 0} that follows the structure of a birth-
and-death process with catastrophe (Karlin and Tavaré, 1982;
Di Crescenzo et al., 2008), where X(t) is the number of bacteria
within the phagocyte at time t ≥ 0. In particular, replication
and death of bacteria within the phagocyte can be modeled as
a stochastic logistic growth process over states in N = {1, 2, . . . },
representing the number of bacteria contained within the cytosol
(see Figure 1A). Birth and death rates for state n ∈ N are
obtained by following arguments by Allen (2003, section 6.8),
where we assume that each bacterium replicates independently
of all others at rate λ, so that:

λn =

{

λ(C−1)
C if n = 1 ,

λn otherwise,
γn =

{

0 if n = 1 ,
λn2

C otherwise .
(1)

We denote by λ [hours−1] the per bacterium birth rate, and
by C [bacteria] the carrying capacity of the population of
intracellular bacteria within a single phagocyte, which represents

limitation of nutrients necessary for replication, such as iron or
tryptophan (Jones et al., 2012). The decision to assume logistic
growth for the intracellular bacteria reflects the competition for
resources within the phagocyte. The rate γ1 is set to zero since
only phagocytes experiencing an effective long-term bacterial
infection (and within-phagocyte replication) are later considered
in the within-host model. The initial state of the process X

corresponds to the number of bacteria taken up by a phagocyte.
Experimental evidence by Golovliov et al. (2003) suggests that
the uptake of F. tularensis is relatively ineffective in monocytic
cells so that, during the initial phase of the infection, on average
only one or two intracellular bacteria per cell were observed.
Thus, we assume that a single phagocyte will take up a single
bacterium, hence the process X will always begin in state
X(0) = 1. Once infected, the possibility of the phagocyte
taking up more bacteria is neglected (Wood et al., 2014), and
an increase in its bacterial load is solely due to the replication
of the bacterium initially ingested. We refer the reader to the
Supplementary Material where the impact of this assumption is
further explored.

The number of bacteria released upon rupture of an infected
phagocyte will depend on the stochastic dynamics of this logistic
growth process, as well as on the actual time when this rupture
takes place. In order to describe this rupture event, we consider
additional transitions to an absorbing (rupture) state, B, from any
of the transient states in N, as shown in Figure 1B. The rate at
which this rupture event occurs is assumed to be independent of
the number of bacteria within the phagocyte. This is based on the
fact that bacterial escape into the cytosol has been shown to be

FIGURE 1 | Within-phagocyte model. (A) Logistic growth process for the within-phagocyte replication of bacteria; (B) logistic growth process with log-normally

distributed phagocyte rupture, moving the process to absorbing state B; (C) approximation of the process in (B) by using a PH(η, T) distribution for the rupture time.
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both essential and sufficient for triggering caspase-3 activation,
which is the mechanism thought to induce cell death (Santic
et al., 2010). In fact, a recent experimental study by Brock and
Parmely (2017) shows that cell death does not require high
bacterial burden, nor does a large number of intracellular bacteria
ensure that phagocyte rupture would result soon. This implies
that X can be thought of as a stochastic birth-and-death process
where t = 0 marks the start of a “clock” that counts up
toward the time of rupture of the phagocyte. At this moment,
X immediately transitions into state B, from whichever of the
transient states this may be, this state accounting for the number
of bacteria released upon rupture (i.e., the rupture size). By fitting
a deterministic model to experimental data, Wood et al. (2014)
found that the time Trupture taken for an infected phagocyte to
rupture is log-normally distributed, Trupture ∼ logN(3.72, 0.385),
so that the average rupture time is E[Trupture] = 44.4 h.
Instead of incorporating this log-normally distributed time in
the within-phagocyte model, Wood et al. (2014) consider a
deterministic logistic growth process for the amount of bacteria
within the phagocyte. Finally, Wood et al. (2014) set the number
of bacteria released to be equal to the amount of bacteria
in this logistic growth process at time Median[Trupture] hours
(i.e., by considering Median[Trupture] and neglecting the actual
distribution of the random variable Trupture), which leads to a
constant and deterministic number of bacteria released for any
infected phagocyte.

If a log-normal distribution of Trupture is used in our
model to compute the probability distribution of the number
of bacteria released upon phagocyte rupture, this leads to
the process described in Figure 1B. However, by considering
a log-normally distributed inter-event time in the stochastic
process, the resulting process X in Figure 1B is no longer
Markovian. In order to address this difficulty, we propose
to approximate this log-normally distributed rupture time
Trupture ∼ logN(3.72, 0.385) by a phase-type (PH) distribution,

Trupture
approx.
∼ PH(η,T), since the family of phase-type

distributions is dense within the family of continuous non-
negative distributions (He, 2014). This leads to the process shown
in Figure 1C. In the Supplementary Material, we explain in
detail how one can approximate this log-normal distribution
by an approximate phase-type distribution, which depends on
parameters η (a vector) and T (a matrix). The resulting estimated
parameters η and T obtained for a PH distribution which
approximates the logN(3.72, 0.385) distribution, as well as a
graphical representation of this approximation, are reported in
Figure 2.

Once the log-normal distribution for the rupture time has
been approximated by a PH distribution, the resulting within-
phagocyte stochastic process X in Figure 1C is Markovian, and
the probability distribution of the number of bacteria R released
upon rupture can be analytically computed (see Supplementary
Material). The probability distribution of R, defined in terms of
the following probabilities

Rk = P(R = k) = probability that the infected phagocyte

releases k bacteria upon rupture, (2)

is used in section 2.2 to incorporate inter-phagocyte variability
(in the amount of bacteria released upon phagocyte rupture) in
the within-host infection dynamics.

2.2. Within-Host Model
The within-host model proposed here is a birth-death-rupture
model that replicates the dynamics of F. tularensis within the
lung, following inhalation of some initial quantity of bacteria
(initial dose), and is largely based on the original model by
Wood et al. (2014). Within the lung, bacteria can be killed
by host immune cells or ingested by host phagocytes. In the
latter case, the phagocyte might kill the corresponding bacterium
(e.g., if the phagocyte is activated), or this bacterium can
escape the FCP and enter into the cytosol, resulting in rapid
proliferation of the bacteria and the subsequent rupture and
death of the phagocyte, as described by the within-phagocyte
model. Three events are therefore included in the within-host
model, as well as their effect on the total population of bacteria
and the number of infected phagocytes, and are detailed as
follows:

• Phagocytosis and bacterial survival (rate α > 0 [hours−1]):
this phagocytosis event refers to the phagocytosis and
intracellular survival of a bacterium; that is, to phagocytosis
resulting in bacterial escape from the FCP, and in the
subsequent events represented by the within-phagocyte
model.

• Extracellular bacterial death (rate µ > 0 [hours−1]):
host defense mechanisms such as the complement system,
antibodies, natural killer cells, activated phagocytes and
antimicrobial peptides directly contribute to the killing of
extracellular bacteria (Jones et al., 2012). These methods of
killing, including phagocytosis with successful intracellular
bacterial killing, are collectively represented in the within-host
model as this single event, with rate µ.

• Rupture of infected phagocytes (rate δ =

Median[Trupture]−1 [hours−1]): following phagocytosis of
bacteria that results in their survival and intracellular
proliferation, infected phagocytes rupture and die. The
distribution of the number of bacteria released, computed
by means of the within-phagocyte model, is incorporated
here in terms of probabilities Rk. This then accounts for
an addition to the original model by Wood et al. (2014),
allowing for inter-phagocyte variability in the rupture
size.

In this way, the within-phagocyte model in section 2.1
allows one to represent the intracellular bacterial dynamics
for bacteria surviving the phagocytosis event, escaping the
FCP and entering into the cytosol, eventually leading to
phagocyte rupture and bacterial release. Phagocytosis leading
to successful bacterial killing is one of the several mechanisms
described above leading to bacterial death at the within-
host level. Furthermore, intracellular bacterial replication is
not explicitly considered in the within-host model, since one
bacterium is considered per infected phagocyte. Once rupture
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FIGURE 2 | Phase-type approximation of the log-normally distributed rupture time. (Left) A depiction of the one-dimensional Markov process W (see Supplementary

Material) associated with the PH(η,T) distribution considered, so that the time to reach state B approximately follows T rupture
approx.

∼ logN(3.72, 0.385). (Right) Plot

showing how accurately the PH(η,T) distribution approximates the desired log-normal distribution.

of an infected phagocyte occurs, the number of bacteria
released to the extracellular environment is given by the
rupture size distribution computed from the within-phagocyte
model. Given that Rk is the probability that an infected
phagocyte, initially infected by a single bacterium, releases k
bacteria on rupture, the rate at which an infected phagocyte
ruptures releasing k bacteria in the within-host model is
then given by δRk. We note that since

∑∞
k=1 Rk = 1, δ

can be interpreted as the total rate of rupture of a single
phagocyte.

The within-host model can be described using a continuous-
time two-dimensional Markov process Y = {Y(t) =

(B(t), P(t)) : t ≥ 0}, where B(t) denotes the total number of
extracellular bacteria and bacteria-containing phagocytes at time
t ≥ 0, and P(t) represents the number of infected phagocytes at
time t ≥ 0, B(t) ≥ P(t) for any time instant t ≥ 0. An initial state
of Y given by Y(0) = (k, 0) represents that k is the number of
bacteria initially inhaled by the individual (initial dose), and there
are 0 infected phagocytes. When the total population of bacteria
reaches a threshold M ∈ N, a response is assumed to occur and
reflects the onset of symptoms in the infected individual (Wood
et al., 2014). This state,M, referred to as the response state, is one
of two absorbing states ofY ; the other is state 0 and represents the
clearance of infection without reaching this response threshold. A
depiction of the model is provided in Figure 3.

Two summary statistics of interest in the within-host model
are the probability of response and the mean response time.
For each of these, an efficient analytic approach for their exact
computation can be found in the Supplementary Material. In
particular, we define π(i,j) as the probability of response given the
initial state Y(0) = (i, j)

π(i,j) = lim
t→+∞

P
(

Y(t) = M |Y(0) = (i, j)
)

, 0 ≤ j ≤ i ≤ M−1 .

(3)
By applying first-step arguments, the following recursive formula
for π(i,j) may be obtained

π(i,j) =
1

(i− j)(α + µ)+ δj



(i− j)
(

απ(i,j+1) + µπ(i−1,j)

)

+ δj





M−i
∑

k=1

Rkπ(i+k−1,j−1) +
∑

k≥M−i+1

Rk







 , (4)

for 0 ≤ j ≤ i ≤ M − 1, with the boundary condition π(0,0) = 0
representing that the probability of response is equal to zero if the
recovery state is reached. A detailed derivation of this expression,
as well as an algorithmic solution to the previous equations, are
provided in the Supplementary Material.

Onemay define themean time until the infected host responds
in terms of the onset of symptoms. This can be done by choosing
a threshold in the total number of extracellular bacteria equal
to M, and considering the time to get to M, T(i,j) = inf {t ≥

0 : B(t) = M | Y(0) = (i, j)}. Since absorption into the
response state M is not certain, there is no guarantee that the
time to response, T(i,j), will be finite (i.e., T(i,j) = +∞ if the
individual recovers without reaching the threshold stateM, while
T(i,j) < +∞ if this threshold is reached, leading to the onset of
symptoms). Thus, onemay compute the restrictedmean response
time, after which the conditioned mean response time can be
obtained. That is, if T(i,j) denotes the time to reach state M
provided that Y(0) = (i, j), then the restricted and conditioned
mean response times are given respectively by

r(i,j) = E
[

T(i,j)1T(i,j)<+∞

]

,

m(i,j) = E
[

T(i,j)|T(i,j)<+∞
]

=
r(i,j)

π(i,j)
0 ≤ j ≤ i ≤ M − 1, (5)

where 1A is equal to 1 if A is satisfied and 0 otherwise. Following
a first-step analysis, a recursive formula for the scalar quantities
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FIGURE 3 | Within-host model with inter-phagocyte variability. A depiction of the extended two-dimensional Markov chain with M = 4. State (i, j) represents i

extracellular bacteria and bacteria-containing phagocytes, and j bacteria containing phagocytes. The rates of rupture, phagocytosis, and death of extracellular

bacteria are δ > 0, α > 0 and µ > 0, respectively. In our model, each rupturing phagocyte releases k bacteria with probability Rk . Solid arrows represent the events

allowed in the original model (Wood et al., 2014), where each rupturing phagocyte always releases G = 3 (for illustrative purposes; G = 358 in the original model by

Wood et al., 2014) bacteria upon rupture. Dashed arrows are an addition in our model, and account for inter-phagocyte variability in the rupture size.

r(i,j) is given by

r(i,j) =
1

(α + µ)(i− j)+ δj



(i− j)(αr(i,j+1) + µr(i−1,j))+ δj

M−i
∑

k=1

Rkr(i+k−1,j−1)

+
(i− j)(απ(i,j+1) + µπ(i−1,j))+ δj

(

∑M−i
k=1

Rkπ(i+k−1,j−1) +
∑

k≥M−i+1 Rk

)

(i− j)(α + µ)+ δj



 ,

(6)

for 0 ≤ j ≤ i ≤ M − 1, with the boundary condition r(0,0) = 0
representing the restricted time to a response if the recovery state
is reached. Similar arguments to those used for computing the
dose response probabilities, and described in the Supplementary
Material, may be used for solving Equation (6) in an algorithmic
and matrix-oriented way.

2.3. Population-Level Model
With a multi-scale model of F. tularensis infection that captures
both the intracellular and within-host dynamics, we can now
formulate a population scale model. At the population level,
outbreaks of tularemia, as a result of infection by F. tularensis,
have been declared in microbiology laboratories (Shapiro and
Schwartz, 2002). This is directly related to the fact that diagnosis
of tularemia requires a high level of suspicion, since the
disease often presents with non-specific symptoms and non-
specific results of routine laboratory tests (Report, 2008). Because
F. tularensis is a risk to laboratory personnel, clinicians are
required to notify the laboratory when tularemia is suspected in a

given patient, and if this is not notified, an outbreak can occur
within the laboratory when manipulating the contaminated
samples, as in the outbreak reported by Shapiro and Schwartz
(2002). In particular, this notification allows for manipulation of
the corresponding samples to be carried out under strict control
measures, such as Biosafety Level 2 (BSL-2) or BSL-3 conditions
(Report, 2008). If proper control measures are not taken when
manipulating these samples, or if an accident occurs, F. tularensis
can be released to the air, triggering its airborne dispersal and
spread. Specific high-risk sample manipulation activities that
have been identified in the literature are centrifuging, grinding
or vigorous shaking (Report, 2008).

Recent work has been carried out for the indoor airborne
spread of pathogens while taking into account the ventilation
regime in place at the facility under analysis, such as the airborne
spread of bacteria in health care facilities (Liao et al., 2005).
For these scenarios, zonal ventilation models that are able to
link the airflow dynamics within the facility and the epidemic
dynamics at the population level are extremely useful (Noakes
and Sleigh, 2009; López-García et al., under review). We consider
here the scenario of a laboratory consisting of two rooms joined
by a corridor, and where a given ventilation setting, in terms of
the airflow dynamics, is in place (see Figure 4). We consider
that a fixed amount of bacteria is released at time t = 0 in a
given room. This could represent some high-risk manipulation
of a contaminated sample or any accident causing airborne
release of F. tularensis bacteria, which we assume here passes
unnoticed for the staff (Shapiro and Schwartz, 2002). Our aim
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FIGURE 4 | Zonal ventilation model for the airborne spread of bacteria within a microbiology laboratory. (Left) A diagram showing the setup of two rooms and a

corridor within a laboratory, split into six ventilation zones. Dotted lines represent the partitions of rooms, arrows between zones show potential airflow, which depends

on the particular ventilation setting v considered, and dashed lines represent potential extract ventilation systems within each zone. Individuals are represented by

circles, and the red and blue squares indicate two potential locations of the initial bacterial release. (Right) The system of ODEs that governs the airborne spread of

bacteria across the ventilation zones, and the inhalation of these bacteria by individuals, for a particular ventilation setting v. Concentration of bacteria at zone j, Cj (t),

increases with flow of air from neighboring zones (rates β
(v)
ij
) and decreases due to inhalation (rate ρ), flow of air to neighboring zones (rates β

(v)
ji
) and extraction (rate

Q
(v)
j
). The cumulative amount of bacteria inhaled by each individual at zone j is denoted by p

(v)
j
(t).

is to estimate, for any given ventilation setting and any possible
spatial position of the release location within the laboratory, the
total number of individuals who would develop symptoms in the
near future.

We propose here to follow the approach introduced byNoakes
and Sleigh (2009), recently extended by López-García et al.,
(under review), where a system of ordinary differential equations
(ODEs) is used to model the concentration of F. tularensis in
the air in the different spatial compartments of the laboratory.
In particular, a ventilation regime is defined by splitting this
laboratory into ventilation zones, where the main assumption
is that the air is well-mixed in each zone, but that airflow
imbalances across the different zones can lead to different
pathogen concentrations in the air at each zone (Noakes and
Sleigh, 2009). Therefore, individuals in the same ventilation
zone are assumed to have equal probability of inhaling the
F. tularensis bacteria. Airflow dynamics could be further refined
by considering a larger amount of ventilation zones. If Ci(t)
[bacteria · m−3] denotes the concentration of bacteria in the
air in zone i at time t, and pi(t) [bacteria] is the total amount
of bacteria inhaled by each individual in this zone up to time
t, then Ci(t) and pi(t) satisfy the system of ODEs given in
Figure 4. Here, Vi [m3] denotes the volume of zone i, Qi

[m3 · min−1] is the rate at which air is extracted from zone
i by the ventilation system, βij [m3 · min−1] is the rate at
which air flows from zone i to zone j, ni is the number of
individuals in zone i, and ρ [m3 · min−1] is the pulmonary rate,
or the rate at which individuals inhale air (Noakes and Sleigh,
2009). We set ni = 2 for i ∈ {1, 2, 4, 5} to represent two
individuals working in each of these zones during the bacterial
release, where the propagation occurs in the timescale of minutes

(see section 3), and ni = 0 for i ∈ {3, 6} (i.e., corridor
areas).

We propose to link the dose response probabilities obtained
from the within-host model with this zonal ventilation model,
by considering that the steady state value of pi(t) is equal to the
total dose that an individual in zone i inhales. Thus, we implicitly
assume that the timescale at which pi(t) reaches equilibrium
(minutes, see section 3), is significantly shorter than the timescale
of the within-host infection dynamics (days, see section 3), so that
limt→+∞pi(t) can be considered as the initial dose for individuals
in zone i. We note that the differential equations in Figure 4

depend on the rates of the ventilation setting under analysis,
and on the initial conditions Ci(0), 1 ≤ i ≤ 6 (related to
where the bacterial release occurs in the first place). In section 3,
we consider different ventilation settings and potential initial
locations of the bacterial release.

3. PARAMETER VALUES

In this section, we discuss how to calibrate our within-phagocyte
and within-host models from data. We also consider different
ventilation settings for the population model, according to values
reported by Noakes and Sleigh (2009) for the airborne spread of
bacteria within a health care facility.

3.1. Within-Phagocyte Model
In order to use the within-phagocyte model described in section 2
to compute the rupture size distribution of any given infected
phagocyte, parameters λ and C must first be estimated for the
logistic growth process in Figure 1 for the within-phagocyte
bacterial replication. We do so, making use of experimental
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data of the number of intracellular bacteria within a phagocyte
(Lindemann et al., 2011). In this experiment, measurements of
the number of intracellular bacteria were only considered for
phagocytes that were still alive and had not ruptured (Lindemann
et al., 2011). Therefore, we obtain estimations for λ and C
by calibrating the logistic growth process in Figure 1A, where
rupture events are neglected.

A sequential Approximate Bayesian Computation (ABC)
method is used to get estimations for these parameters. When
implementing the ABC method, unknown parameter values are
sampled from a prior distribution, and model predictions (e.g.,
number of intracellular bacteria at different time instants) are
obtained for these parameter values. Once these predictions
are in hand, one can compare these model predictions with
experimental data by using a particular distance measure, and
accept or reject these sampled parameter values depending on
this distance being below or above a given threshold ǫ. Accepted
sampled parameter values lead to a posterior distribution for the
corresponding parameters (Kypraios et al., 2017).

We consider as prior distributions for each parameter λ ∼

U(0.01, 1) and C ∼ U(100, 1500), which have been set
according to values previously estimated by Wood et al. (2014).
We sequentially implement the ABC algorithm by considering
successively smaller tolerances, ǫ, to refine the parameter space.
For each pair (λ,C) of parameters sampled from the priors,
the birth-and-death process is simulated using the Gillespie
algorithm to obtain the number of intracellular bacteria as
predicted by the model (Gillespie, 2007). Once this number is
predicted from our model, these values are compared with data
by Lindemann et al. (2011). In particular, if X(t) is the amount of
bacteria predicted by our within-phagocyte model at time t, and
Data(t) is the number of bacteria observed at that time instant
according to data by Lindemann et al. (2011), which are available
for a set of time instants T, we make use of the Euclidean distance

d(Model Prediction,Data) =

(

∑

t∈T

(X(t)− Data(t))2

)
1
2

, (7)

so that each corresponding parameter pair (λ,C) is accepted
only if d(Model Prediction,Data) < ǫ. At first the tolerance
is set to ǫ = 100, so that an estimate of where the true
parameters lie can be found. After this, the prior distributions
are adjusted accordingly and the ABC algorithm is repeated for
tolerances ǫ = 50, 25, 15, to converge around the posterior
distribution (Toni et al., 2009). We note that threshold values
ǫ = 100, 50, 25, 15 were chosen after a preliminary exploration
of the parameter space and the corresponding distance measures
between the model predictions and experimental measurements,
so that a posterior sample of size 105 could be obtained in
around 48 h, by using the high performance computing ARC3
facilities at the University of Leeds. A bivariate histogram
of the sample posterior distribution obtained in this way is
provided in Figure 5, with the median of the sample indicated.
Univariate histograms for each parameter are given on the
corresponding axes.

3.2. Within-Host Model
Estimated parameter values α and µ for the within-host model
proposed by Wood et al. (2014) were obtained using non-linear
least squares to fit their within-host model to experimental data
for the number of extracellular bacteria within the host during
the initial 48 h post infection. Since our within-host model is
part of a multi-scale model which incorporates a variable number
of bacteria released on rupture of any infected phagocyte, new
estimations for these parameter values are now required. Thus,
ABC is used to calibrate the parameters (α,µ) of the within-host
model depicted in Figure 3 by using within-host infection data
(Eigelsbach et al., 1962; White et al., 1964). We note that this
requires the distribution of the number of bacteria released on
rupture. This has been described in the Supplementary Material,
using the posterior median values of λ and C of Figure 5.
This same rupture distribution is used in each iteration of
the ABC algorithm at the within-host level. In keeping with
Wood et al. (2014), and to represent the heterogeneities at the
population level in individual susceptibility, M is not fixed and
is considered instead a random value M ∼ logN(26.2, 6.05),
according to data by Saslaw et al. (1961) and Sawyer et al.
(1966). These data report the amount of bacteria found within
infected individuals at the time of symptoms onset. For small
to moderate values of M, the exact analysis carried out in
the Supplementary Material can be applied to compute the
probability of response and themean response time in the within-
host model. On the other hand, stochastic simulation approaches
need to be implemented for large values of M. We note that
given the potential extremely large values of M, the Gillespie
algorithm is not a viable choice to simulate the within-host
infection dynamics for these values, and an approximate τ -
leaping procedure is used instead, with adaptive step size (Cao
et al., 2006).

Prior distributions assumed for each parameter are α ∼

U(0, 1) and µ ∼ U(0, 25). Because of the shorter intervals
considered in the priors of these parameters compared to those
in section 3.1, we carry out here a standard rejection ABC (i.e.,
not sequential) where 2 × 105 iterations of the ABC algorithm
were performed. Tolerance is set so that an acceptance rate of
1% is obtained, and a sample of size 2 × 103 is obtained for
the posterior distributions. Due to the large orders of magnitude
for the number of extracellular bacteria within the host observed
in the data by Eigelsbach et al. (1962) and White et al. (1964),
we propose here to use the Euclidean distance as for (λ,C) but
over the logarithm of the predicted values and the observed data
by Eigelsbach et al. (1962) and White et al. (1964). That is, we
consider the distance

d(Model Prediction,Data) =

(

∑

t∈T

(logX(t)− logData(t))2

)
1
2

.

(8)
The results of the ABC lead to the posterior bivariate histogram
of Figure 6, which clearly indicates a positive correlation between
parameters α and µ, where most of the learning occurs about
the ratio µ/α. We note that this positive correlation is directly
related to the fact that, intuitively, α and µ rates correspond
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FIGURE 5 | Within-phagocyte parameter estimation. (Left) A bivariate histogram of λ and C accepted values as a result of the ABC method, with median values

marked with a red circle. Values (λ,C) estimated by Wood et al. (2014) are reported with a red triangle. (Right) Number of bacteria within an infected phagocyte

through time, predicted from our model (blue curve) using median posterior values for (λ,C), and compared to the theoretical predictions by Wood et al. (2014) (red

curve), and experimental data by Lindemann et al. (2011) (circles).

FIGURE 6 | Within-host parameter estimation. (Left) A bivariate histogram for the parameters α and µ obtained as a result of the ABC procedure for the within-host

model. The posterior median values are indicated with a red circle, while values (α,µ) = (0.0939, 3) h−1 estimated by Wood et al. (2014) are indicated with a red

triangle. (Right) A posterior histogram for the ratio µ/α.

to within-host events which can be considered as opposite
events in this system (one representing bacterial escape from
the extracellular environment, facilitating disease, and the other
representing bacterial death, preventing disease). Thus, our
within-host model dynamics can replicate the experimental data
by either considering that both events occur, simultaneously,
at a slower or faster pace. However, we point out that since
the (α,µ) joint distribution in Figure 6 (left) does not have
the accepted sampled values homogeneously located all around
the elliptic shape, where more accepted values can be found
around the center of the ellipse than in the corners, one should
consider that these parameter values (near the corresponding
medians, given by the red circle) have larger posterior probability

than the estimated values obtained by Wood et al. (2014) (red
triangle). Final parameter values for the within-phagocyte and
the within-host models are reported in Table 1.

We can compare our within-host model predictions, in terms
of the number of bacteria throughout time, with the data by
Eigelsbach et al. (1962) and White et al. (1964). In Figure 7 we
plot the predictions made by our within-host model and compare
them with the bacterial load data by Eigelsbach et al. (1962) and
White et al. (1964), where the initial conditions are given as the
corresponding data values at time t = 0. Similarly to results
by Wood et al. (2014), our within-host model does better in
predicting the data by White et al. (1964), where larger amounts
of bacteria were measured within the host.
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TABLE 1 | Parameter values for the within-phagocyte and within-host models.

Parameter Event Parameter value

λ Intracellular bacterial

replication

Estimated in Figure 5: 0.2164 h−1

(median)

C Intracellular carrying

capacity

Estimated in Figure 5: 393 bacteria

(median)

µ Extracellular bacterial death Estimated in Figure 6: 8.63 h−1

(median)

α Phagocytosis with bacterial

survival

Estimated in Figure 6: 0.3325 h−1

(median)

M Threshold value for

symptoms onset

Randomly distributed

M ∼ logN(26.2, 6.05)

δ Phagocyte rupture δ = Median[T rupture]−1 = 0.0241

h−1

Rk Probability of rupture with k

bacteria

From within-phagocyte model

(Figure 10)

FIGURE 7 | Predicted values of bacterial load by within-host model.

Within-host model predictions (curves) obtained as mean values throughout

time from Gillespie simulations for different initial bacterial loads (blue and

orange) corresponding to the initial values measured by Eigelsbach et al.

(1962) and White et al. (1964), vs. data points by Eigelsbach et al. (1962) and

White et al. (1964). Median values of α and µ considered as computed in

Figure 6.

3.3. Population-Level Model
Four different scenarios A1, A2, C1, and C2 are considered
depending on two potential bacterial release locations (see
Figure 4). Two potential ventilation regimes (A and C) within
the microbiology laboratory have been chosen, as described
in Table 2: ventilation regime A (scenarios A1 and A2) and
ventilation regime C (scenarios C1 and C2) considered by
Noakes and Sleigh (2009) and López-García et al. (under
review). Regardless of the particular location where it occurs,
it is assumed that 105 bacterial counts are released at time
t = 0. In each scenario it is assumed that Vi = 36m3

for i ∈ {1, 2, 4, 5} and Vi = 12m3 for i ∈ {3, 6}. The
pulmonary rate is set to ρ = 0.01m3 · min−1 (Noakes and
Sleigh, 2009), while the remaining parameters in Figure 4 are
provided in Table 2, along with the steady state values p(k) =

limt→∞

(

p
(k)
1 (t), p

(k)
2 (t), p

(k)
4 (t), p

(k)
5 (t)

)

, k ∈ {A1, A2, C1, C2}. A

graphical representation of scenarios A1, A2, C1 and C2 is given
in Figure 8, and the time course of the variables Ci(t), 1 ≤ i ≤ 6,
and pj(t), j ∈ {1, 2, 4, 5}, are plotted for scenario A1 in Figure 9

for illustrative purposes.

4. RESULTS

The distribution of the number of bacteria released by an
infected phagocyte, for posterior median values of λ and C from
Figure 5, is provided in Figure 10. In order to compare with
results by Wood et al. (2014), let us note that the approach they
use involves evaluating a deterministic logistic growth process
at the median (log-normally distributed) time taken for an
infected phagocyte to rupture. The method here may instead
be interpreted as computing the distribution of the number of
bacteria generated by means of the analogous stochastic logistic
growth process, but when the actual log-normally distributed
rupture time is incorporated into the model (see Figures 1B,C).
Since the deterministic and stochastic processes have both been
parameterized using the same data set, they are comparable,
and the median number of bacteria released from our predicted
distribution in Figure 10 is approximately equal to the fixed
value of 358 bacteria released upon rupture estimated by Wood
et al. (2014), supporting the fact that the median number of
bacteria released had previously been estimated correctly. Despite
this, the method outlined here is more general, since it allows
to incorporate the log-normal distribution of rupture times,
and thus, a more comprehensive analysis of the number of
bacteria released can be conducted, and incorporated into the
within-host dynamics, by considering inter-phagocyte rupture
size variability. Moreover, we note that the mean number of
bacteria released on rupture is predicted to be 288, significantly
lower than the fixed value 358 considered by Wood et al.
(2014). This is directly related to the bimodal shape of our
predicted rupture size distribution, which suggests that some
phagocytes will likely rupture with just a few bacteria, and that
the total number of bacteria released by each single infected
phagocyte was slightly over-estimated by Wood et al. (2014)
on average. We note that our model is able to predict that a
significant amount of phagocytes might rupture releasing few
bacteria, which is something that the deterministic approach
followed by Wood et al. (2014) does not reflect. We also
note that the actual rupture size distribution, to the best
of our knowledge, has not been experimentally measured in
vitro yet, which would allow us to do model selection based
on predictions in Figure 10. However, it has been recently
experimentally observed by single-cell analysis (Brock and
Parmely, 2017) that a significant amount of phagocytes can
die releasing very few bacteria. While the deterministic amount
of bacteria proposed by Wood et al. (2014) cannot account
for this, our model predicts indeed a significant amount of
phagocytes releasing very few bacteria, which is represented
by the first mode in Figure 10. This suggests that this mode
is not an artifact caused by the stochastic within-host model,
but that phagocytes rupturing soon (according to the estimated
log-normally distributed rupture time) would not have enough
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TABLE 2 | Parameter values for four ventilation regimes.

Source

Scenario βij (m
3/min) Qi (m

3/min) room Steady state

A1 β12 = β23 = β36 = β63 Qi = 3, i = 1, .., 6 1 p(A1) = (145, 82, 13, 17)

= β56 = β45 = β21 = β32

= β65 = β54 = 9

A2 β12 = β23 = β36 = β63 Qi = 3, i = 1, .., 6 5 p(A2) = (17, 23, 82, 110)

= β56 = β45 = β21 = β32

= β65 = β54 = 9

C1 β12 = β23 = β36 = β63 Q1 = Q4 = 9 1 p(C1) = (102, 46, 9, 9)

= β56 = β45 = 9 Q2 = Q3

β21 = β32 = β65 = β54 = 18 = Q5 = Q6 = 0

C2 β12 = β23 = β36 = β63 Q1 = Q4 = 9 5 p(C2) = (18, 18, 92, 92)

= β56 = β45 = 9 Q2 = Q3

β21 = β32 = β65 = β54 = 18 = Q5 = Q6 = 0

Airflow parameters for the four scenarios considered, and steady state bacterial intake values representing initial dose for individuals at each zone. Airflow parameters have been chosen

according to those in the ventilation regimes A and C considered by Noakes and Sleigh (2009) and López-García et al. (under review).

FIGURE 8 | Ventilation scenarios considered in the microbiology laboratory.

Four scenarios A1, A2, C1, and C2 corresponding to two potential release

locations (zone 1, scenarios A1 and C1; zone 5, scenarios A2 and C2).

Ventilation regime in scenarios A1 and A2 represents a well-mixed ventilation,

where airflow (arrows, with βik rates given as red numbers) is well balanced

across zones and same extract ventilation (circled values) is considered in all

zones. Ventilation regime in scenarios C1 and C2 represents airflow occurring

from the corridor areas to the opposed side of the rooms, where extract

ventilation is in place.

time for substantial bacterial proliferation, leading to small
rupture sizes predicted by the model and being experimentally
observed.

By using this rupture size distribution, and the within-host
model in section 2.2, the probability of response and mean
response times can be computed for varying initial doses. In
Figure 11 (left), we plot the cumulative probability of response
(i.e., cumulative probability of the process in Figure 3 reaching
state M), as predicted from our model for different initial doses.
We note that the asymptotic values in Figure 11 (left) represent
the probabilities of response for each initial dose. We plot in
Figure 11 (right) the (conditioned) mean time until response
predicted for different initial doses, and compare this with the
predictions by Wood et al. (2014) and with data of the time
until symptoms onset observed in infected individuals (Saslaw
et al., 1961; Sawyer et al., 1966). Our predictions are obtained by
using the posterior median parameter values in Figures 5, 6. We
note that, once parameters (α,µ) are estimated as explained in
section 3.1, results obtained here for the probability of response
and the (conditioned) mean response time are very similar to
those previously found by Wood et al. (2014), indicating that the
multi-scale model is not only capable of reproducing their results,
but also corresponds well with the two experimental data sets by
Saslaw et al. (1961) and Sawyer et al. (1966). However, we note
that our multi-scale model only replicates well these results for
posterior distribution of (α,µ) in Figure 6, where our predicted
median values are far away from those parameters estimated by
Wood et al. (2014). In particular, although these parameters are
highly correlated and determining their individual true values
is difficult, the histogram in Figure 6 suggests that the ratio of
α and µ ranges from 24.69 to 27.54, which is lower than the
ratio of 31.95 found by Wood et al. (2014). Moreover, our results
in Figure 6 suggest that both α and µ were underestimated by
Wood et al. (2014) (see the red circle and triangle in Figure 6).

At the population level, one can use the probability of response
for each individual computed from the within-host model, where
their initial dose is given by the steady state values in Table 2, in
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FIGURE 9 | Predicted airborne spread and inhalation of bacteria in the laboratory. Time course of the variables Ci (t), 1 ≤ i ≤ 6, and pj (t), j ∈ {1, 2, 4, 5}, for scenario A1.

FIGURE 10 | Predicted rupture size distribution. The distribution of the

predicted number of bacteria released by a single phagocyte on rupture, as

computed from the within-phagocyte model, compared to the fixed value

assumed by Wood et al. (2014). The posterior median values for λ and C in

Figure 5 are used to compute this distribution.

order to compute the distribution of the number Z of individuals
within the laboratory showing symptoms after the bacterial
release, for each of the four scenarios considered in Table 2.
These distributions are plotted in Figure 12, together with the
corresponding expected values E[Z]. From this, it can be seen
that scenarios associated with smaller number of responses are
A1 and C1, that is, when the bacteria are released from zone
1 as opposed to zone 5. This might be expected since air can
flow from zone 5 into other areas more easily, whereas it only
flows into one other zone from zone 1. However, an interplay
between the ventilation regime (i.e., airflow dynamics) and the
bacterial release location can be observed, where the ventilation
regime in scenario C1 helps to decrease pathogen concentration
in the release zone (zone 1), due to significant extract ventilation
in place in this zone, while this same ventilation implies in

scenario C2 the airborne spread of pathogen from zone 5
toward zone 4, causing more infections at the population
level.

5. DISCUSSION

In this work, we propose a multi-scale model for the infection
dynamics of F. tularensis which covers the within-phagocyte,
within-host and population scales. The within-host model should
be considered an extension of the model originally proposed
by Wood et al. (2014), where inter-phagocyte rupture size
variability is incorporated in the distribution of the number
of bacteria released upon rupture by any infected phagocyte.
This distribution is computed by means of a stochastic
logistic growth process for the replication of bacteria at the
within-phagocyte level, but where the log-normally distributed
rupture time predicted by Wood et al. (2014) is explicitly
incorporated by means of a PH-type approximation. This
approximation allows us to consider a Markovian stochastic
process for the within-phagocyte infection dynamics. Once the
extended within-host model is set up, we provide analytical
approaches for computing the probability of response (in
terms of the number of extracellular bacteria within the host
to reach some response threshold M), and the mean time
until this response takes place (conditioned on this response
actually occurring). By calibrating the within-phagocyte and
within-host model parameters using experimental infection
data, our multi-scale model predictions are in agreement with
experimental data both at the within-phagocyte and within-host
level.

The main advantages of our multi-scale model are:

• The within-phagocyte model allows us to incorporate
the estimated log-normally distributed rupture time into
the bacterial proliferation dynamics, while keeping the
Markovian nature of the original process. This allows the
exact distribution of the rupture size to be computed.
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FIGURE 11 | Within-host model predictions. (Left) Predicted cumulative probability of response up to time t, vs. t ≥ 0, from our multi-scale model and different initial

doses. (Right) comparison between the conditioned mean time until response predicted by Wood et al. (2014) and by the multi-scale model developed here. Shaded

regions represent 95% quantiles.

FIGURE 12 | Predicted number of individuals showing symptoms in the laboratory. Distribution of the number Z of individuals suffering the infection upon bacterial

release, out of the eight individuals in Figure 8, for scenarios A1, A2, C1, and C2. That is, probabilities P(Z = z), 0 ≤ z ≤ 8.

We believe that our methodology, using phase-type
approximations for incorporating non-Markovian events in
these intracellular processes, as well as the first-step arguments

considered here for computing the rupture size distribution,
is applicable to other intracellular bacterial replication
systems.
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• The rupture size distribution computed by our model and
plotted in Figure 10 is able to capture the fact that a significant
amount of phagocytes might die releasing very few bacteria,
which has been recently experimentally observed (Brock and
Parmely, 2017).

• The stochastic nature of the within-phagocyte model
incorporates inter-phagocyte variability in the rupture size
in the within-host model, relaxing the assumption made
by Wood et al. (2014) that every phagocyte releases a fixed
amount of bacteria. Relaxing this assumption leads to different
predictions in the posterior estimated values of within-host
parameters (α,µ), as shown in Figure 6, with respect to
previous predictions made by Wood et al. (2014). This is
directly related to the fact that different behaviors can be
expected when the within-host model is simulated with the
actual rupture distribution (so that each phagocyte, upon
rupture, can release different numbers of bacteria with
different probabilities) instead of considering that every
phagocyte releases a fixed number of bacteria, even if this fixed
release is set equal to the median value of the distribution in
Figure 10.

• The zonal ventilation model is a simple but flexible way of
representing airborne spread of bacteria, and of linking this
spread with the initial doses infecting each of the individuals
in the laboratory under study. Our results suggest that there
is a clear interplay between the potential release location
and the ventilation in place within the laboratory, where an
appropriate ventilation regime can decrease the number of
individuals developing symptoms.

The original model by Wood et al. (2014), as well as the
extended model proposed here, should be considered as one of
the few and recent attempts to propose mechanistic models for
the computation of dose-response probabilities and the mean
time until individuals showing symptoms following bacterial
infection. Many of the original approaches in the literature
to this aim usually involve adjusting exponential and beta-
Poisson models to data (Chen, 2007; Huang and Haas, 2009).
These models are limited since the real within-host biological
mechanisms at play are not explicitly considered, and the
distributions are selected only due to their ability to approximate
the experimental or clinical data. Moreover, timescales for
the different within-host processes are usually not explicitly
considered in these models, where the final output of the model
is usually limited to the dose-response probability curve. Thus,
recent attempts are being made in order to explicitly consider
the biological mechanisms following bacterial infection, leading
to computational models which can analyse the timescales of
these intracellular and within-host processes, not only for F.
tularensis but also for other pathogens such as anthrax (Day et al.,
2011).

Developing new mathematical and computational models
that can explicitly account for biological mechanisms requires
a significant amount of quantitative experimental data,
and a balance between model complexity and experimental
information must always be struck. For example, in our

within-host model, all the mechanisms leading to extracellular
bacterial death, such as the complement system, antibodies,
natural killer cells, antimicrobial peptides or phagocytosis
leading to bacterial killing are represented as a single event
occurring at rate µ. If one were to distinguish all of these
events in the model, experimental measurements of the specific
contribution of each mechanism would be required, and a
new version of our multi-scale model could be proposed. An
additional limitation of our model, at the within-phagocyte
level, is the fact that the rupture time is modeled as a log-
normally distributed time which is independent of the bacterial
proliferation dynamics simultaneously occurring within the
phagocyte. Ideally, if we had enough experimental knowledge
about the effect that the bacterial load has on the rupture of
the phagocyte, one could consider that the rate of rupture from
any state n in Figure 1 (i.e., n bacteria within the phagocyte at
a given time) is a function δn of this bacterial load. Thus, using
the independent log-normally distributed time estimated by
Wood et al. (2014) should be seen as a compromise between
current experimental knowledge and model complexity, and
is based on the fact that bacterial escape into the cytosol has
been shown to be both essential and sufficient for triggering
caspase-3 activation, which is the mechanism thought to induce
cell death (Santic et al., 2010). This also agrees well with recent
experimental evidence (Brock and Parmely, 2017) showing
that cell death does not require high bacterial burden, nor
does a large number of intracellular bacteria ensure immediate
phagocyte rupture. Finally, at the population-level, we note that
more elaborated fluid dynamics simulations could be considered
for the airborne spread of F. tularensis in the microbiology
laboratory. We propose here a zonal ventilation model as a
simple but flexible way of linking the indoor airflow dynamics
with the initial dose of each individual after a bacterial release.
We note however that the imprecisions inherently caused by the
spatial discretisation in this zonal ventilation approach, where
the indoor setting is split in a number of zones and the air is
assumed to be well-mixed within each zone, can be reduced by
increasing the number of zones under consideration.

The development of a mathematical model of infection
dynamics at different scales is a challenging problem for which
few successful attempts have been made in the literature so far
(Bauer et al., 2009). To the best of our knowledge, this is the
first multi-scale model for F. tularensis trying to account for
the infection dynamics from the intracellular to the population
level. It is conceivable that the future of in silico modeling will
consist of a large number of interconnected models at different
scales, and where one of the main aims will be to predict the
effects that perturbations of model parameters along the different
scales can have in the global infection dynamics. Finally, the
approach presented in this article could also be readily applied
to investigate the potential casualty impacts resulting from a
deliberate bioterrorism or biological warfare attack in civilian
and military scenarios. For instance, our multi-scale model may
be used in conjunction with a larger-scale outdoor dispersion
model that produces F. tularensis concentration estimates over
large areas of terrain.
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