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In this paper, we compare and contrast basis set sampling techniques recently developed for use in the
ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest
approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that
simultaneous use of basis set cloning and basis function trains can produce results which are converged
to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations
of quantum dynamics in the spin boson model with a broad range of parameters and compare the
results to accurate benchmarks. Published by AIP Publishing. https://doi.org/10.1063/1.5020567

I. INTRODUCTION

Direct Dynamics (DD) methods have become a valuable
tool for computational chemistry. They use trajectories to
guide the motion of nuclei and quantum ab initio electronic
structure methods to calculate potential energies of electronic
states, forces, and nonadiabatic coupling matrix elements. The
advantage of DD methods is that they can be used without
any fit to the potential energy surface (PES) and without any
preconditions. As a result, new regions of strong nonadia-
batic coupling, for example, which determine new mechanisms
of photochemical reactions, can be found from DD numeri-
cal experiments. Recently Quantum Direct Dynamics (QDD)
techniques have been developed, which quantum mechani-
cally treat not only the electrons but also the nuclei. QDD
methods include Ab Initio Multiple Spawning (AIMS),1,2

Variational Multiconfigurational Gaussians (vMCG),3,4 and
Ab Initio Multiple Cloning (AIMC), an ab initio DD ver-
sion of the multiconfigurational Ehrenfest method.5 Quan-
tum DD methods rely not on a single trajectory but on an
ensemble of trajectories which serve to guide a basis set of
Gaussian coherent states required for the nuclear wave packet
propagation. In principle, quantum direct dynamics meth-
ods represent a “chemical theory of everything,” describing
chemical dynamics solely with the help of the time depen-
dent Schrödinger equation; however, in practice, it is difficult
to achieve good convergence for systems with many nuclear
degrees of freedom. Convergence to the exact quantum result
relies on having a good sampling of the Gaussian coherent
state basis. Recently we have developed a number of such sam-
pling techniques within the framework of the Ab Initio Mul-
tiple Cloning-Multiconfigurational Ehrenfest (AIMC-MCE)
approach.5

The Multiconfigurational Ehrenfest (MCE) method has
been shown to be capable of simulating various systems,
from calculating the Franck-Condon spectrum of pyrazine6

to simulating the photodissociation of pyrrole.7 When

using this method, the wavefunction is projected onto a
basis of nuclear coherent states |zk〉 and orthogonal elec-
tronic states |ϕr〉, coupled through a set of amplitudes. The
use of coherent states allows the trajectories to be calculated
easily as the classical energy of a point in phase space is
always known. The propagation equations for the wavefunc-
tion parameters are found by use of the variational method
and by substitution into the time dependent Schrödinger equa-
tion. As such, MCE represents a fully quantum method with
no approximations other than the use of a finite basis set
which can, in principle, converge to the exact result. When
first introduced, the MCE method was tested using the spin
boson model,8 a paradigmatic model which describes two
coupled high dimensional potential energy surfaces, which
correspond to two different electronic states. The first ver-
sion of the multiconfigurational Ehrenfest method intro-
duced in the original paper,8 which will be referred as
MCEv1, used an ansatz to describe the wavefunction given
by

|Ψ〉 =
∑

k

��φk
〉
=

∑
k

*
,

∑
r

(ark |ϕr〉)|zk〉+
-
, (1)

where r are the indices of the electronic states |ϕr〉 of the
system, |zk〉 are the nuclear coherent states which are related
to the positions and momenta of the nuclear trajectories, and
the ark are the quantum amplitudes of electron-nuclear basis
states |ϕrzk〉. In MCEv1, ��φk

〉
=

∑
r(ark |ϕr〉)|zk〉 represents

an Ehrenfest configuration, which is the key building block of
MCE, and includes the Ehrenfest trajectories |zk(t)〉 and the
electronic state amplitudes ark which are coupled by quan-
tum close coupling equations. As a result of the coupling of
these amplitudes in MCEv1, the Ehrenfest trajectories are not
independent in this approach. It should also be noted that in
MCEv1, normalization is carried out only on the level of the
whole wavefunction (1), not on the level of the individual
Ehrenfest configurations.
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Later another version of the multiconfigurational Ehren-
fest method, referred to as MCEv2, was suggested. MCEv2
uses a different ansatz,6 given by

|Ψ〉 =
∑

k

Dk
��φk

〉
=

∑
k

Dk
*
,

∑
r

(ark |ϕr〉)|zk〉+
-
, (2)

where an additional amplitude Dk is introduced. Unlike with
MCEv1, in MCEv2, the amplitudes ark of different coherent
states (i.e., those which have different index k) are not coupled.
This has the benefit of each Ehrenfest trajectory |zk(t)〉 being
independent of other trajectories. The equations for the ampli-
tudes Dk then serve to couple the independent basis Ehrenfest
configurations ��φk

〉
. With MCEv2 being based on independent

Ehrenfest trajectories, it is much more suitable for ab initio
quantum direct dynamics than MCEv1 as the trajectories of
basis configurations can be run one-by-one thus representing
a significant improvement to the method. MCEv2 has been
implemented and used for simulating the dynamics of small
organic molecules.7,9 It is however known that independent
Ehrenfest trajectories do not always reproduce the splitting of
the wavefunction between two electronic states and therefore
they can misguide the basis set. This can become particu-
larly important for dynamics beyond very short time scales.
To address this problem and to adapt the basis to the dynamics
better, the multiple cloning procedure and the use of train basis
sets were introduced.10,11

Despite their earlier use in the simulation of small organic
molecules, these sampling techniques have not yet been tested
against an exact benchmark. In the paper in which MCEv2 was
introduced,6 the MCEv2 approach was tested against bench-
mark calculations of a 24D model of pyrazine, yielding a well
converged spectrum. The dynamics of pyrazine considered
however were on very short time scales. In this paper, therefore,
we use the spin boson model to gain a better understanding of
convergence with the MCEv2 method. The parameters of the
spin boson model can be varied to describe several regimes of
nonadiabatic coupling and intramolecular energy exchange.
Some cases require longer time dynamics than was needed for
pyrazine and, as will be shown in this paper, need more sophis-
ticated sampling techniques. Unlike ab initio DD methods
where the vast majority of time is spent on electronic structure
calculations, the spin boson model relies on a simple analytical
form of the potential and the convergence of MCE quantum
dynamics to the exact quantum benchmark can be analysed
relatively easily. We will also compare MCEv2 with MCEv1,
showing that it is a lot harder to converge MCEv2 than MCEv1
and therefore that MCEv2 is not a viable technique for treating
analytical models like the spin boson model, where MCEv1
should be used. It will be demonstrated however that the sam-
pling techniques used in the domain of ab initio direct dynam-
ics allow accurate and well converged results to be obtained for
the spin boson model with a broad range of parameters using
the MCEv2 method, providing additional validation of our
ab initio direct dynamics approach. The main cost of our direct
dynamics approach comes from ab initio electronic structure
calculations, and the cost of MCEv2 simulations, while high
in comparison with MCEv1, is still negligible in compari-
son with that of the electronic structure. As cloning, the main
sampling technique used with MCEv2, is very similar to the

procedure used in multiple spawning and train basis sets (also
called time displaced basis sets) can be used in AIMS2 the
results of this paper can perhaps be transferred to AIMS as
well.

II. THEORY
A. The multi-configurational Ehrenfest method

The wavefunction for the MCE method is propagated
through the equations of motion for the amplitudes and the
centres of the Gaussians which are found by the variational
method.12 A full derivation of the equations of motion is given
elsewhere (see, for example, Refs. 6 and 8), and so only a brief
outline will be given here. Throughout this section, indices
will be represented such that j, k refer to configurations, m
will refer to degrees of freedom, r, s will refer to poten-
tial energy surfaces, and n will refer to the total number of
potential energy surfaces. Furthermore, it should be assumed
that ~ = 1.

1. The coherent state equations

In this paper, we will use the |z〉 notation to denote the
Gaussian coherent state which in coordinate representation is
given by a Gaussian wave packet, where

〈x | z〉 =
(
γ

π

) 1
4

exp

[
−
γ

2
(x − q)2 + ip(x − q) +

ipq
2

]
. (3)

It is characterised by its position and momentum and in chem-
istry is often denoted as |q, p〉 (further information about the
correspondence between the two systems of notation can be
found in Ref. 13). It is a defining property of coherent states
that the |z〉 state is an eigenstate of the annihilation operator
with eigenvalues z. In the representation used here, the creation
and annihilation operators can be given by

â =
(
γ

2

) 1
2
q̂ + i

(
1

2γ

) 1
2

p̂,

â† =
(
γ

2

) 1
2
q̂ − i

(
1

2γ

) 1
2

p̂,

(4)

and so for a single dimension

z(m) =

(
γ(m)

2

) 1
2

q(m) + i

(
1

2γ(m)

) 1
2

p(m),

z∗(m) =

(
γ(m)

2

) 1
2

q(m) − i

(
1

2γ(m)

) 1
2

p(m),

(5)

which allows z and z∗ to be used as the variables of prop-
agation in place of q and p. The above equations are the
one-dimensional versions, representing a point in phase space,
and can be easily transformed to the multidimensional versions
by way of

|z(t)〉 =
M∏

m=1

���z
(m)

〉
(6)

for a system of M dimensions. An ensemble of such coherent
states can serve as a basis set for the description of nuclear
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motion. Using this notation, a matrix element of the Hamilto-
nian (or any other operator) on a coherent states basis can be
found by integration as〈

zj(t)ϕr
���Ĥ

���ϕszk(t)
〉
=

〈
zj(t)| zk(t)

〉
H (r,s)

ord

(
z∗j (t), zk(t)

)
, (7)

with H (r,s)
ord (z∗j (t), zk(t)) being the classical analog of the ordered

Hamiltonian Ĥord(â†, â) for the electronic states |ϕr〉 and |ϕs〉.
As a basis of coherent states is non-orthogonal, the overlap〈
zj(t)

��� zk(t)〉 is non-zero and can be found by

〈
zj

��� zk〉 = exp

z∗j zk −

z∗j zj

2
−

z∗kzk

2



=

M∏
m=1

exp


z∗(m)

j z(m)
k −

z∗(m)
j z(m)

j

2
−

z∗(m)
k z(m)

k

2


. (8)

2. Determination of the initial conditions of the system

Typically it is assumed that the wavepacket starts entirely
on a given electronic state. For MCEv2, as the electronic states
of the quantum system are orthonormal, the initial values for
the amplitudes arj in the MCEv2 anzatz (2) are simply arj = 1
on the initial PES and arj = 0 otherwise. The initial values for
the amplitudes Dj arise from the identity formula

I =
∑

j,k=1,N

���φj(t)
〉
Ω−1

jk
〈
φk(t)��, (9)

where Ω−1
jk is the inverse of the overlap matrix

Ωjk =
〈
φj(t)

���φk(t)
〉
. By applying this identity to the initial

wavefunction |Ψ(0)〉,

|Ψ(0)〉 =
∑

j=1,N

Dj
���φj(t)

〉
= I|Ψ(0)〉

=
∑

j,k=1,N

���φj(t)
〉
Ω−1

jk
〈
φk(t)��Ψ(0)〉, (10)

the values for Dj can be found from the resulting system of
linear equations. The initial conditions for MCEv1 are identi-
cal to those for MCEv2 if the amplitudes are combined, and
as such Eq. (10) can be used to find the initial value for arj in
Eq. (1) on the initial PES, while the amplitude remains equal
to zero on any other PESs.

3. Time propagation of the wavefunction

In the MCEv2 method, the orthonormal number states
make up the quantum (electronic) system states and the bath
(nuclear) states are supplied by the set of |zk(t)〉 in the ansatz.
The wavefunction therefore is described by a linear combina-
tion of several configurations ��φk(t)

〉
, and the propagation of

the wavefunction is carried out by way of the simultaneous
propagation of |zk(t)〉, ark(t), and Dk(t). The time depen-
dence for |zk(t)〉 and the ark(t) amplitudes are found through
applying a variational principle to the single configuration
Lagrangian of the system, and the time dependence for Dk(t) is
given through application to the time dependent Schrödinger
equation. Through this, and by formulating the amplitude

of the electronic states in terms of the action and a smooth
pre-exponential factor such that

ark = drkeiSrk , (11)

it can be found that for the MCEv2 method

ḋrk = −i
∑
s,r

〈
zk(t)ϕr

���Ĥ
���ϕszk(t)

〉
dskei(Ssk−Srk ), (12)

where the classical action is given by

Srk =

∫ [
i
żkz∗k − zk ż∗k

2
− 〈zk(t)ϕr |H |ϕrzk(t)〉

]
dt. (13)

The time evolution of the coherent basis is carried out
through applying the variational principle for z∗, resulting in
Hamilton’s equations in the z-notation,

iżk =
∂HEhr

k

∂z∗k
, (14)

where

HEhr
k =

〈
φk(t)���Ĥ

���φk(t)
〉

∑n
r

(
a∗rkark

) =

∑n
r,s

〈
zk(t)ϕr

���Ĥ
���ϕszk(t)

〉
a∗rkask∑n

r

(
a∗rkark

) .

(15)
Derivation of the time evolution of the quantum amplitude Dk

yields the equation∑
k=1,N

dDk(t)
dt

〈
φj(t)

���φk(t)
〉
= −i

∑
k=1,N

∆
2〈H〉jkDk(t), (16)

where

∆
2〈H〉jk =

〈
φj(t)

���Ĥ
���φk(t)

〉
−

〈
zj(t)

���zk(t)
〉
Hjk

− i
〈
φj(t)

���φk(t)
〉((

z∗j (t) − z∗k(t)
)
żk(t)

)
, (17)

〈
φj(t)

���Ĥ
���φk(t)

〉
=

n∑
r,s

[
a∗rj

〈
zj(t)ϕr

���Ĥ
���ϕszk(t)

〉
ask

]
, (18)

and

Hjk =

n∑
r,s

[
a∗rj

〈
zk(t)ϕr

���Ĥ
���ϕszk(t)

〉
ask

]
. (19)

As such, Eqs. (12)–(14) and (16) make up the propagation
scheme for the wavefunction in the MCEv2 method.

The equations for the MCEv1 method differ from these
equations as the cross-configurational coupling is in the drk

equations of motion rather than Dk . This results in the time
propagation being determined by Eqs. (13) and (14) and the
MCEv1 equation for ḋrk , given by∑

k=1,N

iḋrkeiSrk
〈
zj(t)

���zk(t)
〉

=
∑

k=1,N

〈
zj(t)

���zk(t)
〉
δ2H ′(r,r)(z

∗
j , zk)drkeiSrk

+
∑

k=1,N



n∑
s,r

〈
zj(t)ϕr

���Ĥ
���ϕszk(t)

〉
dskeiSsk


, (20)

where the δ2H ′(r,r) term is given by
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δ2H ′(r,r)(z
∗
j , zk) =

[〈
zj(t)ϕr

���Ĥ
���ϕrzk(t)

〉
−

〈
zk(t)ϕr

���Ĥ
���ϕrzk(t)

〉
− i(z∗j − z∗k)żk

]
. (21)

B. Basis function sampling and cloning

Through applying different sampling techniques in the
MCE method, convergence can be greatly improved, and so
proper construction of the basis set is extremely important. The
most straightforward way to construct the basis of coherent
state-based Ehrenfest configurations is to create a “swarm” of
coherent states covering the initial wavefunction14 which is
constructed from a Gaussian distribution biased to the initial
wavefunction |Ψ0〉 = |z0〉,

F(zk) ∝ e−αc |zk−z0 |
2
, (22)

where αc is the compression parameter, an inverse of the
width of the Gaussian swarm. This parameter determines the
area of phase space covered by the initial wavefunction, with
higher compression parameters resulting in a denser basis set.
The values of αc are dependent on the size and dimension-
ality of the basis set, with larger basis sets requiring com-
pression parameters in the region of a few hundred up to a
couple of thousand, and smaller basis sets with lower dimen-
sionality requiring compression parameters in the range of
tens up to a couple of hundreds. The compression param-
eter is determined automatically so as to best describe the
wavefunction with a finite number of basis functions through
examination of the initial norm and recursive adjustment of
αc and resampling of the basis set until a value of αc is
found which gives a norm close enough to unity. While
this swarm is suitable in many situations, there have been
various improvements of the sampling in the MCE method
which can be used. The first involves using coherent state
“trains” for initial sampling14 which applies a “smoothing”
to the propagation of the wavefunction. Another improve-
ment involves basis set cloning10 which grows the basis set
when intersections are encountered. Also an operator or the
wavefunction itself can be split into a superposition of sets
of Gaussian coherent states so that each of these sets can be
propagated separately, termed “bit-by-bit” propagation. In this
section, all three of these options are described and discussed
briefly, with more comprehensive descriptions in Refs. 10, 11,
and 14.

1. Use of basis function trains to improve MCEv2

Coherent state trains, also known as time displaced
basis sets,2 were used in the context of coupled coherent
states in 200814 as a way of inserting some “regularity” into
a random swarm. The argument is that a random swarm,
while improving scalability, necessitates a sacrifice in con-
vergence. At the other end of the scale, a regular grid allows
extremely fast convergence but scales exponentially, resulting
in high numerical expense for all but the smallest of sys-
tems. The ideal compromise lies somewhere between these two
extremes, with not total regularity but not a true random swarm
either.

In a coherent state train, a small compressed random
swarm is generated, and for each of the basis functions in
this swarm a line of basis functions is formed in phase space

along the path of propagation. This allows the basis set to
cover a larger area in phase space than is covered by just a
compressed random swarm. Due to the structure of the trains,
the process of constructing the initial basis set is somewhat
different to that described earlier. As with the construction of
a random swarm, the initial wave packet |z0〉 is calculated first,
and a small random swarm is constructed around this initial
wave packet using Eq. (22). Following this, a parameter δtrn

is set which is defined to be the time displacement between
two adjacent basis function “carriages.” The swarm is then
propagated backwards and forwards in time, while the config-
uration is saved after every t = δtrn such that a set of coherent
states with single configuration amplitudes are obtained, all
of which follow the same path in phase space, hence the
term “trains.” The set of cross configuration amplitudes Dk

is then calculated over all the single configuration basis func-
tion “carriages” and so the wavefunction is spread out over the
length of the train. This procedure differs from that reported
in Refs. 10 and 11 as the simulation of this model system does
not benefit from the separation of the calculation of the trajec-
tories from the calculation of the cross configuration ampli-
tudes and so the entire wavefunction is propagated as a whole
throughout.

2. Use of basis function cloning to improve MCEv2

Multiple cloning is a recent inclusion to the MCE method,
having been introduced in a coupled coherent state context
in two papers published by Makhov et al.10,11 It takes inspi-
ration from the multiple spawning method of Martı́nez and
Ben-Nun15–21 and may be viewed simply as a straightforward
and convenient way of performing spawning.

Like other methods based on Ehrenfest dynamics, the mul-
tiple cloning MCE method propagates the wavefunction not
along the potential energy surface classically but on a quan-
tum average of the potential. It is a problem inherent to all
methods based on Ehrenfest dynamics however that in a region
of nonadiabatic coupling where the population of an Ehren-
fest trajectory is split almost equally across multiple potential
energy surfaces with different forces, this average is not a faith-
ful representation of the system, propagating the wavefunction
subject to a force which is an average of different forces on
each electronic state. To remedy this, when a basis function
meets these conditions, that basis function is cloned, with one
instance projected onto the first potential energy surface and
the other projected onto the second potential energy surface
(assuming a two-state system).

If, before a cloning event, a single basis function for a
two-state system is given by

|ψk(t)〉 = Dk

(
d1keiS1k |ϕ1〉 + d2keiS2k |ϕ2〉

)
|zk(t)〉, (23)

then after cloning two basis functions will exist, given by

���ψ
′
k(t)

〉
= (Dk |d1k |)

(
d1k

|d1k |
eiS1k |ϕ1〉 + 0eiS2k |ϕ2〉

)
|zk(t)〉,

���ψ
′′
k (t)

〉
=

(
Dk

√
1 − |d1k |

)
×

(
0eiS1k |ϕ1〉 +

d2k
√

1 − |d1k |
eiS2k |ϕ2〉

)
|zk(t)〉. (24)
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The determination of when to clone a basis set is dependent
upon the force between the potential energy surfaces, as given
by

Fbr
1,k = −Fbr

2,k = |a1ka2k |
2∇(V1 − V2). (25)

In the spin boson model, the differential of the poten-
tial is a constant, and as such the maximum of the breaking
force can be determined to be where the single configurational
amplitudes are equal for both potential energy surfaces. As
such, an appropriate condition for cloning would be when
|a1ka2k |

2 > 0.249. A further necessary condition would be the
limiting of cloning events on the same configuration within
an appropriate number of time steps, allowing the basis func-
tion to move away from the intersection of the two potential
energy surfaces, thus preventing multiple cloning events being
applied to a single basis function due to the same intersec-
tion. As the basis set increases in size, this means that the
wavefunction can be better described in phase space, and
in addition to this the wavefunction no longer becomes ill-
defined in the region immediately after passing through an
intersection.

3. Bit-by-bit propagation of an operator

A final sampling procedure used is that of the so-called
“bit-by-bit” propagation, whereby the effect of using a very
large basis set can be approximated by running a large number
of repeat propagations with smaller basis sets with differing
initial conditions, thus splitting the propagation into smaller
tasks. This is implemented for the spin boson model through
the values for the initial coherent state |z0〉, which are found
from the density operator of the bath coherent states. This
operator is given as a product of 1D density operators such
that

ρ̂ =

∫
|z0〉ρ(z0)〈z0 |

d2z0

πM
=

∏
m=1,M

∫
|z0〉ρ(z0)〈z0 |

d2z0

π
, (26)

where the 1D density operator is given by

ρ̂(z(m)
0 ) = σ(m)e−σ

(m)���z
(m)
0

���. (27)

In practice, this means that the M values for the z(m)
0 coordi-

nates are sampled from a normally distributed random swarm
centred at (q, p) = (0, 0) with width σ(m), where

σ(m) = eβω
(m)
− 1, (28)

where the thermal parameter β = 1/(kBT ). Through this pro-
cedure, the populations of system states can be obtained by a
simple averaging over a number of repeat propagations N rpt

with different initial coherent states |z0〉.8,22

C. The spin boson model

The spin boson model23 is a paradigmatic physical model
which at its most basic consists of a two-state (spin 1/2) sys-
tem linearly coupled to a bosonic bath, and is the most simple
model to describe the effect of an environment on construc-
tive and destructive quantum interference, also allowing the

investigation of decoherence and dampening on the quantum
system.24

In the spin boson model, the two-state system (with dia-
batic donor and acceptor states |ϕ1〉 and |ϕ2〉) and harmonic
bath use the Hamiltonian

Ĥ =


HB + HC + ε ∆

∆ HB − HC − ε


, (29)

where HB and HC are the bath and coupling Hamiltonians,
respectively, and where the bias detuning parameter ε and the
tunneling amplitude between states ∆ can both be taken to
be constant. It can be reasonably assumed that the latter of
these parameters is approximately independent of the vibra-
tional degrees of freedom.25 The partial Hamiltonians HB and
HC can be expressed in terms of the creation and annihilation
operators8,26 as

HB =
∑

m

ω(m)
(
â†â +

1
2

)
,

HC =
∑

m

C(m)

√
2ω(m)

(
â† + â

)
,

(30)

and by consideration of Eq. (7) the bath and coupling Hamil-
tonians for the spin boson model become〈

zj(t)
���ĤB

���zk(t)
〉
=

〈
zj(t)

���zk(t)
〉∑

m

ω(m)
(
z∗(m)

j z(m)
k +

1
2

)
(31)

and〈
zj(t)

���ĤC
���zk(t)

〉
=

〈
zj(t)

���zk(t)
〉∑

m

C(m)

√
2ω(m)

(
z∗(m)

j + z(m)
k

)
.

(32)
In the above equations, the strength of the coupling between
the bath and the two-state system is given by the parameter
C(m). Information about the harmonic bath is encapsulated in
the spectral density

J(ω) =
π

2

∑
m

C(m)2

2ω(m)2
δ(ω − ω(m)), (33)

which can be chosen to model various physical systems such
as a solvent, phonons of a solid, or other condensed phase envi-
ronments.27 A widely used special case is that of the Ohmic
spectral density with an exponential cutoff which has a charac-
teristic low-frequency behavior J(ω) ∝ω and peaks at a cutoff
frequency ωc, which defines the time-scale distribution of the
bath dynamics,28 such that

JO(ω) =
π

2
αKωe(−ω/ωc), (34)

where αK is the Kondo parameter. In this case, the quantum
system is damped equally at all frequencies, which is the case
for many physical systems.24

An important consideration when applying trajectory-
based methods to the spin boson model is the scheme used
to discretise the harmonic bath. In this case, the continuous
bath spectral density given in Eq. (34) is discretised to the
form of Eq. (33) by way of the relation29
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C(m)2 =
2
π
ω(m) JO(ω(m))

ρ(ω(m))
, (35)

where ρ(ω) is a density of frequencies satisfying

ω(m)∫
0

dωρ(ω) = m, m = 1, . . . , M. (36)

It is determined in Ref. 29 and elsewhere that the precise
functional form of ρ(ω) does not affect the final answer, pro-
vided a large enough total number of bath modes M is used;
however, it can affect the total number of bath modes needed
to correctly represent the continuum. In this case, ρ(ω) is taken
to be

ρ(ω) = ξ
JO(ω)
ω

, (37)

where

ξ =
M

ωmax

∫
0

dω JO(ω)
ω

=
2
π

M
αKωc

1
1 − e−ωmax/ωc

, (38)

where ωmax is the largest frequency of the bath modes con-
sidered, taken to be ωmax = 5ωc. Using this discretisation, the
equation for the coupling coefficient between the system and
the bath C(m) can be found as

C(m) = ω(m)

√
2
πξ

, (39)

and the frequencies of the bath can be found as

ω(m) = −ωc ln
[
1 −

m
M

(
1 − e−ωmax/ωc

)]
. (40)

The variation of the parameters ωc, αK , ε and the thermal
parameter β therefore allows a range of different systems to
be modelled, each requiring different numbers of degrees of
freedom and basis set sizes.

III. RESULTS
A. Using trains, cloning, and bit-by-bit propagation
to converge MCEv2
1. Comparison of the MCEv1 and MCEv2 methods

While the MCEv1 method has shown itself to be capa-
ble of simulating high-dimensional model systems and the
MCEv2 method has been successful at simulating small
organic molecules,6,7,9,30 there has never been a test on a model
system with high dimensionality comparing the two methods
on an even footing.

To this end, such a comparison was made using the spin
boson model looking initially at a pair of low temperature
symmetric wells [Fig. 1(a)] and at a pair of low temperature
asymmetric wells [Fig. 1(b)] with initial basis sets sampled
from compressed random swarms with average compression
parameters of αc = 209 for the symmetric wells and αc = 69
for the asymmetric wells. The results are also compared to
exact benchmark data calculated using the Multiconfiguration
Time Dependent Hartree (MCTDH) method. Using the tun-
neling energy ∆ as the unit of energy, the symmetric well had
parameters ωc/∆ = 2.5, αK = 0.09, β∆ = 5.0, and ε /∆ = 0 with

FIG. 1. Comparisons of the MCEv1 and MCEv2 population differences for
the spin boson model with symmetric wells (a) using parameters ωc/∆ = 2.5,
αK = 0.09, β∆= 5.0, and ε /∆= 0 with M = 50 degrees of freedom, Nbf = 50
basis functions, and an average compression parameter of αc = 209, and
asymmetric wells (b) using parameters ωc/∆ = 7.5, αK = 0.1, β∆ = 5.0, and
ε /∆ = 1.0 with M = 50 degrees of freedom, Nbf = 200 basis functions, and
an average compression parameter of αc = 69. Results are averaged over
Nrpt = 256 repetitions and compared against the numerically exact MCTDH
result from Ref. 31.

M = 50 degrees of freedom and Nbf = 50 basis functions, and
the asymmetric wells had parameters ωc/∆ = 7.5, αK = 0.10,
β∆ = 5.0, and ε /∆ = 1.0 with M = 50 degrees of freedom
and Nbf = 200 basis functions, with both results averaged over
N rpt = 256 repetitions. It can be immediately seen that there is
a great disparity between the two results, with the oscillations
for the MCEv2 result overemphasised in both cases, while the
MCEv1 result follows the MCTDH benchmark almost exactly.
Furthermore, it was found that a further increase in the size of
the basis set or the number of repetitions did not improve the
agreement for the MCEv2 result. When discovered, this result
was very surprising as numerically the wavefunctions should
be identical and it was thought that the dynamics of the system
should not have been affected by the MCEv2 equations.

It is a cause of further surprise that if the simula-
tion is run using a large number of repeat calculations of
single Ehrenfest configurations, thus effectively running a
simulation using an ensemble of uncoupled basis functions
guided by Ehrenfest dynamics, it can be seen that for the
symmetric case the MCEv2 population difference is identical
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[Fig. 2(a)] and for the asymmetric case the MCEv2 population
difference matches for the first few oscillations [Fig. 2(b)]. This
would seem to indicate either that the basis set is behaving as
an ensemble of independent non-interacting basis functions
due to a loss of coupling or that the basis is behaving as a set
of basis functions guided by trajectories which are too similar
to each other, thus behaving almost as a single larger basis
function. The loss of coupling between the basis functions
would, in most cases, indicate the loss of overlap between
the coherent states; however, if the guiding trajectories are
too similar, this would most likely result in a higher over-
lap. As such, a comparison of the normalised absolute average
overlap, i.e., an average over the absolute values of all ele-
ments of the overlap matrix Ωjk , was prepared. As is seen in
Fig. 3, the overlap for the MCEv2 simulation is higher than
that of the MCEv1 simulation, decaying much slower and not
as smoothly. This means that the basis set does not spread
to cover as much of an area of phase space when using the
MCEv2 equations. It can be seen from this plot that while
both methods have the same starting point, the wavefunction
spreads out more for the MCEv1 simulation. This is confirmed
in Fig. 4 which shows how the basis functions spread in phase
space over the course of propagation for both formulations
of the MCE method, both starting with the same initial basis

FIG. 2. Comparisons of the population difference from MCEv2 calcula-
tions against single configuration Ehrenfest calculations for the spin boson
model with symmetric wells and Nrpt = 8000 (a), and asymmetric wells with
Nrpt = 5600 (b).

FIG. 3. Comparison of the normalised average overlap between the coherent
states for both formulations of the MCE equations for the asymmetric case of
the spin boson model using the parameters given for Fig. 1(b).

set. It is clear by comparing the plots that for MCEv1 the
wavefuntion spreads out over the course of propagation, as
is indicated by the reduction in the relative density of basis
functions at the centre of the initial wavefunction, whereas for
MCEv2 the relative density of the basis functions at the centre
of the wavefunction is still high, having only dropped down
to 71% of the initial maximum, compared to a drop to 54%
for MCEv1. This effect can be understood by considering that
the time propagation equations for the coherent states use the
Ehrenfest Hamiltonian HEhr, which has a dependency on the
amplitudes dkr . For the MCEv1 equations, the interconfigura-
tional coupling is contained within these amplitudes and so the
coherent states will effectively “push” on each other, spreading
the basis functions out to cover a larger area in phase space.
As this is not the case for the MCEv2 equations, the coher-
ent states become less spread out and so the basis set cannot
adequately describe a sufficient area of phase space to fully
account for the quantum mechanics of the system.

2. Basis set refinements and improvements
for the MCEv2 method

In light of the differences between the results given by
MCEv1 and MCEv2, modifications to the sampling and prop-
agation must be considered. The first modification was to use
coherent state trains. An important consideration is that of the
spacing between the basis functions in a particular train, δtrn.
The train spacing parameter determines the degree to which
the initial basis functions overlap. Too large a spacing would
result in a loss of coupling between the basis functions, as this
coupling is dependent upon the overlap matrix. As such, care
must be taken in choosing the correct spacing between the basis
functions and it should be remembered that the optimum spac-
ing parameter will be dependent upon the system being sim-
ulated. In some systems, the basis functions may move faster
through phase space than in others, resulting in a more rapid
reduction of the coupling. It should also be noted that the num-
ber of basis functions in the ensemble is of great importance,
as the combination of a small δtrn value and a small number of
basis functions will result in trains which do not have sufficient
size in phase space to properly describe the wavefunction.
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FIG. 4. Comparison of the density of basis functions in phase space for both formulations of the MCE equations for the asymmetric case of the spin boson
model using the parameters given for Fig. 1(b).
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The determination of the best value for δtrn is carried
out through a set of preliminary calculations in which the
conservation of the norm over the course of propagation is
examined. As only the norm is examined, there is no need
for comparison against benchmark results at this stage. It was
found through this process that for the symmetric wells a train
spacing of δtrn = 0.25∆�1 was sufficient to construct the trains,
and an arrangement of 10 trains, each of the 10 basis func-
tions in length totalling Nbf = 100 gave the wavefunction a
large enough area in phase space. For the asymmetric wells,
a smaller train spacing of δtrn = 0.15∆�1 was needed as larger
spacings caused the wavefunction to lose coupling. This is
counteracted by an increase in the length of the trains to 20
basis functions in length. The wavefunction uses 10 of these
trains for a total of Nbf = 200 basis functions.

In Fig. 5(a), it can be seen that the oscillations in the
population difference for the symmetric case are reduced in
size and the result is much closer to the MCTDH benchmark
result with only a slight increase in the size of the oscilla-
tions compared to the benchmark. The degree to which the

FIG. 5. Effect of the use of coherent state trains on MCEv2 simulations of the
spin boson model with symmetric and asymmetric wells. Results are averaged
over Nrpt = 256 repetitions and are compared to the unmodified MCEv2 result
and the numerically exact MCTDH results from Ref. 31. Symmetric wells (a)
use Nbf = 100 basis functions arranged into 10 trains, each 10 basis functions
in length with δtrn = 0.25∆�1. Asymmetric wells (b) use Nbf = 200 basis
functions arranged into 10 trains, each of the 20 basis functions in length
with δtrn = 0.15∆�1.

population differences agree at this stage is unsurprising as
the symmetric case is considered to be one of the easiest cases
of the spin boson model to simulate. Unfortunately, the same
cannot be said for the asymmetric case shown in Fig. 5(b),
in which the result only follows the MCTDH benchmark
for the first oscillation before the oscillations are over-damped
and misguided such that the population difference seems off-
set from the MCTDH benchmark and thus will decay more
slowly onto the second electronic state.

Clearly trains alone are not sufficient to fully overcome
the differences between the MCEv1 and MCEv2 results. As
such, we consider the effect of applying cloning. As the cloning
procedure increases the basis set size greatly, this can cause
problems with the system requirements of the simulation. As
the calculations needed for the propagation of the basis set
parameters are dominated by matrix-vector operations, the
amount of computational resources required scale with the
number of basis functions on the order of (Nbf )2. As such,
while a simulation using a swarm of Nbf = 50 basis functions
will take usually less than an hour to complete normally, when
cloning is included this can increase the size of the basis set
by a factor of up to 2Ncln for Ncln cloning events over the
course of the simulation, increasing the runtime to a matter
of days, and furthermore causing the memory requirements
to increase from the range of tens of MB to a few GB. As
such, limits must be put on the amount of cloning allowed.
Obviously a larger Ncln is better as too few cloning events
will mean that the simulation cannot benefit properly from
the procedure. In symmetric cases of the spin boson model
where ε = 0, we set Ncln = 4, as in this case exponential growth
of the basis set is encountered. For asymmetric cases where
ε , 0, the situation is slightly different, as for this system the
wavefunction as a whole is decaying onto the second electronic
state and so once the cloned basis functions are placed wholly
onto the two states it will only be the function placed on the first
electronic state which will experience cloning again. As such,
the basis set only grows by a factor of Ncln + 1 which allows
much more cloning to occur before the size of the basis set
becomes unmanageable and so for this case we set Ncln = 8.

Figures 6(a) and 6(b) show the degree to which cloning
can improve the MCEv2 method for the spin boson model for
the symmetric and asymmetric cases, respectively. As with
the application of basis set trains, cloning dampens the over-
large oscillations in the population difference from the MCEv2
method, bringing the result closer to the MCTDH benchmark
simulations, although not so much as with the use of trains.
Also like the application of trains, this dampening is not suf-
ficient to bring the two results into complete agreement for
both cases. For the symmetric case, the agreement between
the cloned result and the MCTDH benchmark seems to get
worse around the second minimum in the population differ-
ence. This can be understood by considering the fact that the
dynamics of the wavefunction cause each basis function to be
cloned around every 0.75∆�1–0.8∆�1 and so the majority of
cloning for Ncln = 4 would take place in the first 4.5∆�1 of
the simulation. Therefore any deviation caused by insufficient
cloning can be expected to be seen after this time. For the
asymmetric case, the oscillations are much smaller than for
the standard MCEv2 method past the first oscillation but still
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FIG. 6. Comparisons of the population differences from cloned MCEv2 sim-
ulations with those from the uncloned MCEv2 simulations, both using the
swarm-type basis set and Nrpt = 100 repetitions. These are also compared
against those from MCTDH simulations.31 Symmetric case (a) uses an initial
basis set of Nbf = 50 basis functions and Ncln = 4 cloning events. Asymmetric
case (b) uses an initial basis set of Nbf = 100 basis functions and Ncln = 8
cloning events.

too large. It should be noted however that despite the larger
oscillations, with cloning the wavefunction seems to decay
onto the second electronic state at a similar rate as for the
MCTDH benchmark. This is in contrast to the result when
using trains, where the wavefunction appears to decay much
slower as evidenced by the offset in the population difference.
It can also be seen that as with the symmetric case the agree-
ment between the result and the benchmark worsens as the
maximum number of cloning events is reached, which for the
asymmetric case happens around t = 7.5∆�1.

While neither of the improvements considered are suffi-
cient to correct the MCEv2 method alone, a combination of
the two methods yields much better results, as shown in Fig. 7.
This combination can be referred to as MC-MCE in an anal-
ogous way to the ab initio AIMC-MCE method. In Fig. 7(a),
it can be seen that the agreement between the population dif-
ferences from the MC-MCE simulations (i.e., MCEv2 with
both cloning and trains) and the MCTDH benchmark calcula-
tions31 is in much better agreement than was seen previously.
The agreement is, in fact, almost to the same level as is given
by the MCEv1 method seen in Fig. 1(a) with only a slight

FIG. 7. Comparisons of the population differences for cloned MCEv2 sim-
ulations using a swarm/train type basis set against those from uncloned
swarm-type MCEv2 simulations and those from the MCTDH benchmark cal-
culations.31 Symmetric case of the spin boson model (a) uses the parameters
ωc/∆ = 2.5, αK = 0.09, β∆ = 5.0, and ε /∆ = 0 with M = 50 degrees of free-
dom and Nrpt = 100 repetitions, with the basis set constructed as 10 trains,
10 basis functions in length with δtrn = 0.25∆�1 and cloned Ncln = 4 times.
Asymmetric case of the spin boson model (b) uses the parametersωc/∆= 7.5,
αK = 0.1, β∆ = 5.0, and ε /∆ = 1.0 with M = 50 degrees of freedom and
Nrpt = 100 repetitions, with the basis set constructed as 10 trains, 20 basis
functions in length with δtrn = 0.15∆�1 and cloned Ncln = 8 times.

deviation in the population difference right at the end of prop-
agation. The improvement seen in Fig. 7(b) is much better than
is seen for either trains or cloning used independently; indeed
for the majority of propagation, the agreement is almost com-
plete, with a slight overestimation of the oscillations toward
the end of the simulation. This result is extremely encourag-
ing, especially when one considers that the final cloning event
occurs around t = 6.75 a.u. and that it is shortly after this that
the discrepancies begin. Figure 8 confirms the earlier asser-
tion that with cloning the basis functions are able to spread out
more to cover a greater area in phase space, and it can be seen
that the decay of the overlap with cloning is more in line with
the way in which the basis functions spread when propagated
using the MCEv1 equations. Again, however, the decay of the
overlap levels out somewhat once cloning has ceased. It can
therefore be reasonably expected that if more cloning events
were allowed, the agreement with the benchmark calculations
would persist for longer.
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FIG. 8. Comparison of the normalised average overlap between the coherent
states for both formulations of the MCE equations with uncloned swarm type
basis sets and the cloned swarm-of-trains type basis sets with the MCEv2 equa-
tions for the asymmetric case of the spin boson model, using the parameters
given for Fig. 7(b).

B. Performance of MCEv2 for spin boson model
with further parameter sets

In light of the success of MCEv2 with the combination
of trains and cloning (referred to as MC-MCE) when applied
to the low temperature symmetric and asymmetric cases of
the spin boson model, a selection of more challenging cases
was considered. As with the previous cases, results are com-
pared against MCTDH benchmark results. A full accounting
of the parameters used is given in Table I. The first of these
more challenging cases was that of a pair of high temperature
symmetric wells. This case considers a system with only 15
degrees of freedom and a high temperature with low coupling
between the electronic states.

Considering the low coupling, and the ratio of degrees
of freedom to number of basis functions, previous investiga-
tions into the spin boson model31,33 would indicate that this
would be a system which should be relatively easy to simu-
late, although due to the high temperature a large number of
repeats are needed to achieve convergence. This is indeed the
case and convergence appeared to have been reached by 2000
repeats (although it should be noted that to be consistent with
Ref. 8 10 000 repeat calculations were performed for unmod-
ified MCEv2), and it can be seen in Fig. 9 that the MCEv2
result does not deviate by an unreasonable amount from the
MCTDH result. The size of the oscillations is however larger
for MCEv2, and it can be seen that the introduction of the
multiple cloning procedure does serve to dampen them some-
what, with the result matching the MCTDH result past around
t = 1.75∆�1. This could conceivably be improved with the use
of longer trains; however, the fact that this system seemed to
benefit from much more closely packed trains than later cases
would raise doubt on this supposition.

We next consider a pair of cases that model decoherence
and illustrate the importance of having adequate dimension-
ality for a system. If the dimensionality of this system is too
low, then an unphysical ringing is observed after the wave-
function becomes decoherent as can be seen in Fig. 10(a). As
seen before, the oscillations in the unmodified MCEv2 result

TABLE I. Tables of the parameters for the different further cases of the spin
boson model.

Figures 9 10(a) 10(b) 11(a)

ωc/∆ 2.5 7.5 7.5 10
αK 0.09 0.1 0.1 1.5
β∆ 0.2 5.0 5.0 1000
ε /∆ 0 0 0 0
M 15 30 60 500

MCEv2
Nbf 50 200 200 50
Nrpt 10 000 100 100 40

MC-MCE
Nbf,init 10 × 10 10 × 10 10 × 10 10 × 10
Ncln 4 4 4 4
δtrn 0.025∆�1 0.15∆�1 0.15∆�1 0.05∆�1

Nrpt 2 000 50 50 50

Figures 11(b) 12(a) 12(b) 13

ωc/∆ 20 7.5 7.5 2.5
αK 1.5 0.6 0.6 1.2
β∆ 1 000 5.0 5.0 0.2
ε /∆ 0 0 0 0
M 1 000 60 60 15

MCEv2
Nbf 50 50 50 200
Nrpt 40 100 100 4000

MC-MCE
Nbf,init 10 × 10 10 × 10 10 × 10 10 × 10
Ncln 4 4 4 4
δtrn 0.05∆�1 0.05∆�1 0.15∆�1 0.075∆�1

Nrpt 50 50 200 800

are much too large; however, these are dampened by the use
of the multiple cloning procedure, bringing the result much
closer to the MCTDH benchmark data, especially in the period
before the decoherent section in both Figs. 10(a) and 10(b).

FIG. 9. Comparison of the MC-MCE and MCEv2 population differences
for a pair of high temperature symmetric wells against a MCTDH bench-
mark calculation from Ref. 31, using the parameters ωc/∆ = 2.5, αK = 0.09,
β∆ = 0.2, and ε /∆ = 0 with M = 15 degrees of freedom. For the MCEv2 results,
Nbf = 50 basis functions and Nrpt = 10 000 repetitions were used, and for the
MC-MCE result an initial basis set of 10 trains with 10 basis functions each
was used for a total Nbf,init = 100 with δtrn = 0.025∆�1 and Ncln = 4 averaged
over Nrpt = 2000 repetitions.
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FIG. 10. Comparison of the MC-MCE and MCEv2 population differences for
a decoherent system with M = 30 degrees of freedom (a) and M = 60 degrees
of freedom (b), compared against a MCTDH benchmark calculation31 using
the parameters ωc/∆ = 7.5, αK = 0.1, β∆ = 5.0, and ε /∆ = 0 with different
dimensionalities causing unphysical ringing at low dimensionality. For the
MCEv2 results, Nbf = 200 basis functions and Nrpt = 100 repetitions were
used, and for the MC-MCE result an initial basis set of 10 trains with 10 basis
functions each was used for a total Nbf,init = 100 with δtrn = 0.15∆�1 and
Ncln = 4 averaged over Nrpt = 50 repetitions.

Unfortunately, cloning stops around 1450 steps in of 10 000
(around t = 7.25∆�1), which is just before the decoherent
section, and so the results deviate after then. This is most
noticeable in the unphysical ringing section of Fig. 10(a), while
in Fig. 10(b) this is only noticeable between t ≈ 10∆�1 and
t ≈ 15∆�1 as the wavefunction is transitioning from oscillat-
ing to being fully decoherent, after which time the MC-MCE
result once again agrees with the MCTDH result.

We next consider two limiting cases of the MC-MCE
methods. First we consider localised wavefunctions which use
very high dimensionality, high cutoff frequencies, strong sys-
tem/bath coupling, and very low (near zero) temperatures to
ensure that the wavefunction remains in the initial electronic
state, which can be seen in Fig. 11. While MCEv1 performed
well in this situation,8 MCEv2 displays high frequency oscil-
lations where no oscillations are expected, and also oscillates
around a value for the population difference which is higher

FIG. 11. Comparison of the MC-MCE and MCEv2 population differences for
a localised wavefunction with M = 500 degrees of freedom and ωc/∆= 10.0
(a) and M = 1000 degrees of freedom and ωc/∆= 20.0 (b), compared
against a benchmark MCTDH calculation32 using the parameters αK = 1.5,
β∆= 1000.0 (to estimate β∆ → ∞), and ε /∆= 0 with different dimension-
alities and frequencies giving different localisation levels. For the MCEv2
results, Nbf = 50 basis functions and Nrpt = 40 repetitions were used, and for
the MC-MCE result an initial basis set of 10 trains with 10 basis functions
each was used for a total Nbf,init = 100 with δtrn = 0.05∆�1 and Ncln = 4 and
Nrpt = 50 repetitions.

than that expected from the benchmark result. This behavior
is echoed in the MC-MCE result, which only differs from the
MCEv2 result in the size of the oscillations. This however is
to be expected as in a localised wavefunction the condition of
|a1ka2k | > 0.249 which triggers cloning will never be reached
as by definition there will never be significant population in
both electronic states. As such, the only improvement seen is
the smoothing from the use of coherent state trains. It should
however be pointed out that despite the oscillations, the wave-
function remains localised in the initial electronic state and
does not show any signs of decaying.

The second limiting case models tunneling between sym-
metric wells at low temperature with fairly strong system/bath
coupling and can be seen in Fig. 12. This is another case
where MCEv1 was able to reproduce the MCTDH result suc-
cessfully;8 however, MCEv2 is unsuccessful in this regard,
instead localising in the initial electronic state. When the same
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FIG. 12. Comparison of the MC-MCE and MCEv2 population differences for
tunneling between a pair of low temperature symmetric wells with fairly strong
system/bath coupling against a MCTDH benchmark calculation,31 using the
parametersωc/∆ = 7.5, αK = 0.6, β∆ = 5.0, and ε /∆ = 0 with M = 60 degrees
of freedom. For the MCEv2 result, Nbf = 50 basis functions and Nrpt = 100
repetitions were used, and for the MC-MCE results an initial basis set of 10
trains with 10 basis functions each was used for a total Nbf,init = 100 with
Ncln = 4. (a) uses simple cloning and cloning threshold |a1ka2k | > 0.249
with δtrn = 0.05∆�1 averaged over Nrpt = 50 repetitions, and (b) uses an
initial blind clone and cloning threshold |a1ka2k | > 0.1 with δtrn = 0.15∆�1

averaged over Nrpt = 200 repetitions.

procedure is used to generate the initial basis set as for the
other cases, the MC-MCE result seen in Fig. 12(a) is vir-
tually unchanged from the MCEv2 result also localising in
the initial electronic state, and so as with Fig. 11 the con-
ditions for stimulating cloning are never met. To overcome
this, two modifications are made. The first is the lowering of
the cloning threshold such that cloning is stimulated when
|a1ka2k | > 0.1. The second modification involves performing
a “blind” cloning (i.e., not dependent upon the value of the
amplitudes) at t = 0, whereby for each initial basis function,
starting in the first electronic state,

|ψk(t)〉 = Dk(1|ϕ1〉 + 0|ϕ2〉)|zk(t)〉, (41)

a second basis function is created on the second electronic state
with zero amplitude,

FIG. 13. Comparison of the MC-MCE and MCEv2 population differences for
tunneling between a pair of low temperature symmetric wells with fairly strong
system/bath coupling against a MCTDH benchmark calculation,31 using the
parametersωc/∆ = 2.5, αK = 1.2, β∆ = 0.2, and ε /∆ = 0 with M = 15 degrees
of freedom. For the MCEv2 results, Nbf = 200 basis functions and Nrpt =
4000 repetitions were used, and for the MC-MCE result an initial basis set of
10 trains with 10 basis functions each was used for a total Nbf,init = 100 with
δtrn = 0.075∆�1 and Ncln = 4 averaged over Nrpt = 800 repetitions.

���ψ
′
k(t)

〉
= 0(0|ϕ1〉 + 1|ϕ2〉)|zk(t)〉. (42)

This allows the wavefunction to transfer population into the
second electronic state on the other side of a potential barrier
during propagation. Figure 12(b) shows the results of includ-
ing these modifications. To carry out this calculation, it was
found that the wavefunction benefited from an increase of the
train spacing parameter to δtrn = 0.15∆�1 and more repetitions
were required to achieve convergence compared to that used
for the results shown in Fig. 12(a). Through these modifica-
tions, it can be seen that the MC-MCE result now agrees much
more with the MCTDH benchmark, although still not an exact
agreement.

A final case can be considered that of a pair of symmetric
wells at high temperature with strong system/bath coupling,
shown in Fig. 13. As with Fig. 9, the higher temperature neces-
sitates more repeat calculations to achieve convergence than
for lower temperatures. Interestingly this case out of all those
considered does not require the addition of trains and cloning
to the method; indeed, the results indicate that both the MC-
MCE and the unmodified MCEv2 results have a similar level
of agreement with the MCTDH benchmark. It is likely that due
to the combination of high temperature and strong system/bath
coupling, this case can be solved semi-classically and so has
no need for the measures taken to prevent the MCEv2 calcu-
lations from guiding the basis functions in such a way that
there is an inadequate spreading of the wavefunction in phase
space.

IV. CONCLUSIONS

This article has investigated the influence of sampling on
the convergence of the MCEv2 method, which recently has
been used extensively for direct dynamics. It has been seen
that for systems which cannot be accurately simulated with
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the unmodified MCEv2 method, the combination of using
basis function trains when sampling the initial basis set and
employing a basis set cloning procedure during propagation
with the MCEv2 method, referred to as MC-MCE can gener-
ate results with an excellent level of agreement to benchmark
calculations. It has also been shown that this combination
is necessary, as using just one of these modifications is not
sufficient to correct the disagreement entirely. While the com-
putational cost of the MC-MCE method with these modifica-
tions is high compared to that of MCEv1 for the spin boson
model due to the increased size of the basis set and a cor-
responding increase in computational time on the order of
(Nbf )2, it has been shown that comparative levels of accuracy
are achievable. The higher computational cost of MC-MCE is
still negligible in comparison to the cost of electronic struc-
ture calculations when using the direct dynamics AIMC-MCE
method. It has been shown here that MC-MCE yields good
results for all cases of the spin boson model except those
where quantum tunneling or low temperature effects are the
most pronounced (shown in Figs. 11 and 12). Conversely, the
most classical case shown in Fig. 13 is the most natural for
MCEv2 even without the extra sampling procedures used by
MC-MCE.

This result is of great significance as it confirms the valid-
ity of the methods applied by Makhov et al.10,11 in their
simulations of ultrafast processes in small organic molecules.
In such simulations, due to the structure of the MCEv2
equations, the single configurational equations can be run
separately to the calculations for the cross-configurational
amplitudes [Eq. (16)]. It is the single configurational equations
which contain computationally expensive electronic structure
calculations and so separating these from the rest of the simula-
tion can be beneficial. If information is saved at each time step,
this can speed up calculations significantly, as each individual
configuration propagated can be made into a basis function
train at no extra cost, meaning that the train basis set is effort-
lessly constructed. Cloning also only occurs on this level,
meaning that the cross-configurational calculations [Eq. (16)]
can be run independently of the modifications discussed here.
In confirming the validity of the modified MCEv2 method,
the original motivation for creating the second formulation of
these equations is finally and fully realised.
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