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The diffusion of mobile social networking: Further study  

 

Abstract 

     In a recent study, Scaglione, Giovannetti, and Hamoudia (2015) analyze the diffusion of 

mobile social networking in four G7 countries. Using Bass’s model and Bemmaor’s 

Gamma/Shifted Gompertz (G/SG) model, they find evidence for a left skew in the right-

censored distributions of the times to adoption in three countries out of four. However, they 

rely on the skewness parameter of Bemmaor’s model to draw their conclusion. With the use 

of three special cases of the G/SG as well as the full version, we reanalyze the data. 

Extending the data basis to six countries, we show that (i) fitting the four models to the data 

does not allow us to discriminate between models, but (ii) forecasting subsequent adoptions 

provides strong support of right skew in the data set: in each country (except France), after an 

initial embrace of the access, there appears a substantial mass of later adopters of mobile 

social networking.     

 

Keywords: Gamma/Shifted Gompertz (G/SG); Skew; Chasm; Chilling effects; Social media   
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   . . It is thus of interest to understand how attention to novel items propagates and 

eventually fades among large populations” (Wu and Huberman, 2007). 

1. Introduction.  

A recent study by Scaglione, Giovannetti, and Hamoudia – hereafter SGH (2015) focuses 

on the diffusion of mobile social networking (MSN) in four G7 countries. Using Bass’s 

(1969) model and Bemmaor’s (1994) Gamma/Shifted Gompertz model (G/SG) on 67 

monthly data points, they find that the adoption curves were left skewed in three countries: 

France is the exception (no skew). This pattern depicts an apparently increasing fervour for 

social media at an increasing rate as the pool of active and unique MSN users increases (for 

France, the rate of change is constant). However, their finding is based on the fit of the more 

flexible model, the Bemmaor model, to the data when the special case, the Bass model, 

provides an equal fit.  We reanalyse their data by (i) including a broader range of models, and 

(ii) relying on the forecasting accuracy to assess the skew of the right-censored diffusion 

curves. Similar to the original interpretation of the Bass model, the study relies on the 

assumption of complete homogeneity of the densities of the times to adoption across the 

population. The interpretation of the G/SG differs from that given in Bemmaor (1994).     

The data used are the monthly numbers of active and unique MSN users over an 

observation period of 67 months starting in April 20071. We added two countries (Spain and 

Italy) from the same data source (comScore) to extend the scope of the analysis. Using three 

two-parameter models that allow for left-skew, symmetry and right-skew respectively as well 

                                                 

 

1 SGH made a data handling error in three countries out of four by summing the numbers of 
active and unique MSN users in months t and t – 1 in order to obtain the number of active and 
unique MSN users in month t. (The US is the exception). The error resulted in the doubling of 
MSN users at the end of the observation period (October 2012).     
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as estimating the full three-parameter version of the G/SG, excluding the market size 

parameter, we show that all four models provide a comparable fit to the data set despite their 

apparently divergent implications. However, when used for forecasting purposes, the shifted 

Gompertz leads to superior forecasts to the other models, in five countries out of six (France 

is the exception). Therefore, from a predictive standpoint, the data are mostly consistent with 

right skew which corresponds to a relatively thick right-hand tail. The following section 

provides a brief introduction to the three nested models and to the generalized G/SG, and to 

their characteristics in terms of implied effect of network externalities. The third section 

reanalyzes the data set. The fourth section is the conclusion.   

2. The models and their implied effect of network externalities  

SGH tested the Bass model versus the G/SG. Here, we estimate the G/SG but also three 

constrained two-parameter versions. The reason for this is that parameter identification issues 

can arise when the data are right censored which is typically the case with diffusion data.   

The G/SG is a three-parameter model whose cumulative distribution function takes the 

following form:        

ሻݐሺܨ               ൌ ଵ ି ௘ష್೟൫ଵାఉ ௘ష್೟൯ഀ  ǡ ܾǡ ǡߙ ߚ ൐ Ͳǡݐ ൐ ͲǤ                                                                      (1) 

The advantage of the formulation is that it is relatively flexible: the probability density 

function (p.d.f.) can be skewed to the right, to the left or it can be symmetric depending on 

the value of Į. The model reduces to the Bass model when Į = 1. Letting f(t) be the p.d.f, we 

can parametrize it as a function of (i) a coefficient of external influence,  f(0) = p, which 

captures the likelihood to adopt at time t = 0, and (ii) a coefficient of of internal influence q, 
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with b = p + q and ȕ = q/p for the Bass model. Evaluated at t = 0, the p.d.f. of the G/SG is 

such as:  

                ݂ሺͲሻ ൌ ൌ ݌ ௕ሺଵ ା ఉሻഀǤ                                                                                                  (2)                         

Letting z(t) be the conditional likelihood to adopt at time t given that one has not adopted yet 

with z(t) =  f(t)/(1 – F(t)), it can be shown that z(t) approaches b as t gets close to ∞. It follows 

that:  

                                                        b = p + q                                                                          (3) 

regardless of the value of ɲ, and it follows that                                                         ߚ ൌ ሺͳ ൅ ݍ Τ݌ ሻଵ ఈΤ െ ͳǤ                                                          (4)                                                                                 

The G/SG can be parametrized as a function of p and q in the following way2:            ܨሺݐሻ ൌ ଵ  ି  ௘షሺ೛శ೜ሻ೟ሼଵ ା ൣ ሺଵ ା ௤ ௣Τ ሻభ ĮΤ  ି  ଵ൧௘షሺ೛శ೜ሻ೟ሽഀ  ǡ ݐ ൐ Ͳǡ ǡ݌ ǡݍ ߙ ൐ ͲǤ                                                        (5) 

    Such parametrization offers a common interpretation to the parameters of the nested 

versions and of the general version. Depending on the value of ɲ, the shape of the conditional 

likelihood to adopt given one has not adopted yet can vary substantially as a function of the 

cumulative proportion of adopters.  

We study three special cases that include two parameters for estimation only and the 

generalized case (Eq. 5). The cases are as follows:  

- 0 <  Į < 1: Skew to the left with 0.5 < F(t*) < 1 (t*: mode of f(t)).   

                                                 

 

2 SGH (2015, p. 1162) parametrize the G/SG differently from us: in Eq. (1), they replace b 
with p + q and ȕ with q/p for all the values of Į. However, in this case, the parameters p and q 
cannot be interpreted as the coefficient of external influence and the coefficient of internal 
influence respectively since f(0) is a function of Į (Eq. 2). Hence, our estimates of p and q are 
not comparable with theirs (unless Į = 1). In our case, the interpretations of p and q are 
consistent regardless of the value of Į.  
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The selected case is G/SG(Į = 1/2) which exhibits a slight skew to the left (0.5 < F(t*) < 

0.58). The implied hazard rate is a convex function of the cumulative proportion of active 

MSN users: according to the model, the rate of change of the conditional likelihood to adopt 

(given one has not adopted yet) increases with the cumulative proportion of adopter. The 

model captures an increasingly warming effect of network externalities: Later adopters carry 

more weight than early adopters in the diffusion curve. On average, the rate of change is 

equal to q over time. Such pattern in the effect of network externalities can apply when 

adoption induces switching costs, for example from one generation of the product to the next 

one, that the attraction of the new version gradually overcomes;        

- Į = 1: Right-skewed distribution that approaches symmetry as p/q gets close to 0  

(0 <  F(t* ) <  0.5)   

This is the Bass model. Its shape has been studied by Mahajan, Muller, and Srivastava 

(1990). Here, the rate of change in the conditional likelihood to adopt (given one has not 

adopted yet) as the cumulative proportion of adopters increases is constant; it is equal to q. 

This is the case where the hazard rate is a linear function of the cumulative proportion of 

adopters. Network externalities operate as a warming effect at a constant temperature.  

This can appear as a relatively strong assumption.    

- Į = ∞: Right skew: 0 < F(t*) < e-1. 

     In this case, the G/SG reduces to the shifted Gompertz (SG) distribution3.  The conditional 

likelihood to adopt a social service given one has not adopted it yet is a concave function of 

the cumulative proportion of adopters: the marginal effect of the cumulative proportion of 

adopters on the conditional likelihood to adopt (given one has not adopted yet) decreases as 

                                                 

 

3 When Į gets close to ∞, the G/SG approaches a SG. There is an error in SGH (p. 1162) on 
the limit distribution. The “Bass model” is a shifted logistic curve.  
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the cumulative proportion of adopters increases. The warming effect declines over time. On 

average, the rate of change is equal to q over the diffusion process. The effect of network 

externalities tapers off as the number of active MSN users builds up: Early adopters carry 

more impact on potential adopters than later adopters. This is consistent with the “decay 

factor” in collective attention that Wu and Huberman (2007) refer to. Recently, the SG 

distribution has been shown to be superior to the Bass model to describe the search 

frequencies from 45 countries related to 175 social media services and Web businesses 

(Bauckhage and Kersting, 2016). 

- Free ɲ: Skewed to the left when 0.5 < F(t*) < 1, to the right when 0 < F(t*) < 0.5 or 

symmetric when F(t*) = 0.5 

    This is the most flexible distribution. SGH refer to it as the Bemmaor model (with a 

different parametrization)4. Interestingly, it captures a scenario which differs from the 

preceding ones: 0 < ɲ < 0.5. In such case, the p.d.f. exhibits two modes (one at 0 and another 

away from 0 with a local minimum in-between). Such apparently odd pattern is consistent 

with the existence of a chasm in the data set which means a time gap (a crack) between the 

early adopters and the later adopters (see, e.g., Chandrasekaran and Tellis, 2011; Goldenberg, 

Libai, and Muller, 2002; Libai, Mahajan, and Muller, 2008; Moore, 1991, Figure in p. 17; 

Peres, Muller, and Mahajan, 2010). The consequence is that the rate of change of the 

conditional likelihood to adopt (given one has not adopted yet) is negative and it decreases (in 

                                                 

 

4 SGH use the parameter Į of the fitted Bemmaor model to the data set in order to infer the 
skewness of the times-to-adoption distribution. Since they find that in three cases out of four, 
Į is less than one, they conclude that the curves exhibit left skew – when the diffusion curves 
are right censored. Our argument here is that one cannot infer skewness from the fit of the 
models, including Bemmaor’s model, since all the four models lead to relatively close fits 
(R2). As forecasting accuracy appears as a better discriminatory device than a model’s fit, we 
assess skewness from the relative forecasting accuracy.   
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absolute value) to a minimum as the cumulative proportion of adopters increases, prior to 

increasing with the cumulative proportion of adopters. This shape is compatible with the 

existence of a chilling effect of network externalities prior to a warming effect beyond a cut-

off value of the cumulative proportion of adopters (Goldenberg, Libai, and Muller, 2010). 

The analysis allows us to assess the required cumulative proportion of adopters for the 

warming effect to take place. It also demonstrates the potential co-existence of both effects in 

time over the whole diffusion process. (Note that some products may fail before the warming 

effect takes place). Hence the G/SG(ɲ) shows that the existence of a chasm and the chilling 

effect of network externalities can be considered as two alternative facets of the same process.      

Overall, all three models and the full G/SG(ɲ) capture a broad pattern of effects. All four 

models and their characteristics are depicted in Table 1. 

[Insert Table 1 about here] 

3. The data analysis  

       We use the same data set as SGH and add two countries (Italy and Spain) over the same 

observation window: April 2007 to October 2012, i.e., a total of 67 monthly observations. 

Active users in month t logged in to the social network at least once in the month via their 

mobile phone. Figure 1 shows the corrected numbers of active and unique MSN users for 

France, Germany and the UK (see also the six curves separately at the Github address in the 

Acknowledgements section).  

[Insert Figure 1 about here] 

We used Srinivasan and Mason’s (1986) nonlinear least square method to estimate the 

parameters of all four models. Letting Nt be the number of active and unique MSN users in 

month t and m be the eventual number of adopters (i.e., registered individuals), the method 

consists of minimizing the following sum with respect to the parameters:  

                MinǤ σ ሾ݉൫ܨሺݐሻ െ ݐሺܨ െ ͳሻ൯ െ ሺܰ௧ െ ܰ௧ିଵሻሿଶ௧்ୀଵ                                              (6) 
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with F(0) = 0, N0 = 0 and T = 67 for all four models5. The parameters m, p and q or m, p, q 

and Į, can be obtained with a search algorithm.  

Table 2 shows the parameter estimates of the four models, i.e., the three special cases and 

the full G/SG, as well as the corresponding measures of skewness, the relative impact of 

network externalities, and the sizes of the right-hand tails of the implied adoption curves. For 

example, for Germany, the full G/SG with Į = .0495 may support a heavily left-skewed (F(t*) 

= 0.86) distribution but the improvement in fit relative to the SG is quite small6: the SG is 

right-skewed (F(t*) = 0.36). The same applies to the US where Į is estimated at 0.2066 with 

F(t*) = 0.69 but the root mean squared error corresponding to the SG (F(t*) = 0.32) is 

marginally larger. Based on those results, we can make the following additional observations:  

[Insert Table 2 about here] 

(i) As the skewness parameter Į increases, the predicted market potential m increases 

whereas the parameters p and q decrease; the increase in market size can be modest as in 

France or it can be substantial as in Spain. The marginal effect of the cumulative number of 

                                                 

 

5 By comparison, SGH (2015) used the Srinivasan and Mason (1986) estimation method for 
the Bass model only. Our estimates for the US data differ from theirs because they either 
started the summation with t = 2 or they inadvertently set N1 – N0 to 0 when t equals one. Both 
procedures lead to about the same parameter estimates when the total number of observations 
equals 66 or 67. For the Bemmaor model which corresponds to the G/SG with free Į here, 
they fitted the theoretical cumulative number of MSN users in month t, mF(t), to the actual 
number of active and unique MSN users Nt to obtain the parameter estimates. Again, our 
estimates are not comparable with theirs due to the difference in the estimation procedures. 
For the US, the first-order correlation among the residuals when one applies the SGH 
estimation method equals .833 versus -0.037 when one uses the differences between the 
numbers of active and unique MSN users in months t and t – 1 as shown in Eq. (6) (see 
Schmittlein and Mahajan, 1982, Table 7).    
   
6 As shown in Table 2, R2 measures the fit to the increments in the number of active and 
unique MSN users. In contrast, SGH (2015) assess the fit of the models to the number of 
active and unique MSN users.   
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adopters as measured with the q parameter varies sensibly across models. This shows that the 

formulation of the diffusion model matters to capture the size of the eventual market size 

despite the assumption of exogeneity, but also the key characteristics of the process;   

(ii) The predicted times to peak adoption are rather close between formulations and they 

belong to the observation window, except for Spain (SG); the peak magnitude decreases as Į 

increases (except for Spain);  

(iii) As shown by the 95-th percentile, the level of right censoring increases with Į: the 

right-hand tail becomes all the fatter as Į is large. The parameter Į becomes a signal for the 

implied speed of diffusion as it tends to vary with the coefficient of internal influence q: the 

larger it is, the smaller q is, and the slower the speed. For example, for the US, the expected 

difference between two randomly picked adoption times equals 5.2 months for G/SG(Į =  

0.2066, q = 0.1595), 10.1 months for the G/SG(Į =  0.5, q = 0.0783), 15.2 months for the Bass 

model (q = 0.0477), and 27.3 months for the SG (q = 0.0202) - see Trajtenberg and Yitzhaki, 

1989, Eq. 87. Hence, the G/SG(Į =  0.2066) predicts a diffusion which is more than five times 

faster than that implied by the SG. Still, except for Germany and the US, the standard errors 

of the ɲ parameters are quite large. This lack of reliability may be due to a very short data 

duration;       

(iv) There appears a monotonic relationship between Į and the relative impact of network 

externalities as measured with q/p: it can be increasing with Į as in the case of Germany or it 

can be decreasing as Į increases as shown with Italy (the deviation in the case of Spain can be 

due to sampling error);  

                                                 

 

7 The speed corresponds to the Gini index which is such as: 
߁               ൌ ׬ ሻሺͳݐሺܨ െ ஶ଴ݐሻሻ݀ݐሺܨ  
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(v) As depicted by the R2 and the root mean squared error, the fits of all four models are 

quite close. Figure 2A shows an example of the fit of the four models to the US data.  

[Insert Figure 2 about here] 

As shown in Figure 2B, the analysis supports the existence of a chasm for the US data. 

(The same applies to Germany). The conditional likelihood to adopt (given one has not 

adopted yet) decreases to a minimum as the cumulative proportion of adopters increases, 

prior to increasing. It reaches the minimum when the cumulative proportion of MSN users 

equals 18.5% in the US and 6.8% in Germany. Chilling effects precede the warming effects 

of network externalities. In the early stages of the diffusion process, some individuals may 

disassociate themselves from the group of the early active MSN users, perhaps in part to 

protect their privacy, until they weigh the positive sides more heavily. Note that in two 

countries out of six, a chasm seems to exist between the early active MSN users and the later 

users. (The US data show that the number of active and unique MSN users decreased by 3.1% 

in July 2007. The data for Germany exhibit a decline by 14% between June and August 

2007).       

Overall, despite the analysis of relatively extreme cases, the skewness of the diffusion 

curves cannot be identified from the mere fit to the data: Models with varying implied 

skewness and speed of diffusion tend to fit the data about the same.  

To discriminate between models more forcefully and in particular, to identify skewness, 

we carry out forecasts using the same setting as SGH: We make forecasts starting with 

observation 33 (December 2009), and use a rolling estimation period to make from one-

month-ahead up to 18-month-ahead forecasts. We also use a linear (“naïve”) trend model and 

a seasonal model for comparison (SGH, p. 1165). The results are shown in Table 3.  

[Insert Table 3 about here] 



12 

Starting with about the same accuracy as the other models, with the exception of France,  

the SG appears as the model whose predictions deteriorate least as the length of the 

forecasting horizon increases8. This pattern applies to both error measures (median and 

geometric mean of the absolute percentage errors). Note the good overall forecasting 

performance of the linear trend model in the 35-month time window, except for Germany and 

Spain, as compared with the four models9. When one looks at the right-hand half of Figure 1 

on its own, a linear trend seems appropriate over the 5+-year observation period. If the use of 

MSN is really a diffusion process, then we are looking at this process before any sort of shift 

becomes apparent. Over this range, the relative value of diffusion models appears quite 

limited.   

Lastly, the G/SG with free ɲ performs rather poorly which raises the issue of parameter 

identification when (i) diffusion curves are right-censored, and (ii) both m and ɲ are included 

as free parameters.  

In sum, from a forecasting standpoint, the data seem mostly consistent with right-skewed 

distributions. The pooled measures of errors across all six countries support this finding. The 

initial spark created with the building of the installed base of MSN users seems to fade away 

with later adopters. Resistance to change may also become stronger and stronger as the 

novelty diffuses through the intended audience. Such result holds across five out of the six 

countries under study. 

 

                                                 

 

8 For the US data, the difference with the results shown in Table 2 of SGH for the Bass model 
and the Bemmaor model can be explained by the difference in the estimation procedures (see 
footnote 5). We cannot explain the differences with the “naïve” model. We checked our own 
code and made it available.   
9 We also computed the forecasts of the seasonal model but they were totally uncompetitive.  
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4. Conclusion 

We reanalyze the data on the active and unique MSN users in four countries as reported in 

SGH and add Italy and Spain. In addition to providing an analytical framework for testing for 

the existence of a chasm, the study shows that the distributions of the times to adoption are 

heavily skewed to the right: Increments in the pool of potential MSN users tend to be smaller 

and smaller as the installed base builds up. The fading of novelty as it applies to social media 

appears as a prevalent phenomenon, perhaps in combination with an increasing inertia 

through the layers of the targeted population. The next step is to provide alternative 

explanations.    
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Fig. 1. Mobile social networking (MSN) in the US (right axis), UK, Germany, Italy, France, 
and Spain, (left axis) - from top to bottom in October 2012. 
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A.  Fit of the four models

 

    

B. Hazard rates 

 

Note: For the G/SG(Į = 0.2066), the maxima of the hazard rate are equal to 0.0205 and 0.180 
when F(t) equals 0 and 1 respectively, with a minimum at 0.01142. The minimum takes place 
when F(t) = 0.185. It can be obtained with a numerical search. 

Fig. 2. Data fitting and hazard rates for Bass, Shifted Gompertz, G/SG(Į = 1/2) and G/SG(Į):   
US.   
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Table 1  
Description of G/SG and three special cases.  

Models of 
diffusion 

Type of 
skew 

Cumulative distribution function Probability density function Conditional likelihood to 
adopt at t:  

z(t) = f(t)/(1 – F(t)) 

G/SG (Į) 0 < F(t*) < (1 + 
1/Į)-Į,  

where t* is the 
mode of f(t) 

ሻݐሺܨ ൌ ͳ  െ  ݁ିሺ௣ା௤ሻ௧ሼͳ ൅  ሾሺͳ ൅ ݍ Τ݌ ሻଵ ఈΤ  Ȃ ͳሿ݁ିሺ௣ା௤ሻ௧ሽఈ  
݌ ൐ Ͳǡ ǡݍ ߙ ൒ Ͳǡ ݐ ൐ Ͳ 

When q = 0, F(t) reduces to an exponential 
distribution. 

݂ሺݐሻ ൌ ሺ݌ ൅ ሻ݁ିሺ௣ା௤ሻ௧ሼͳݍ ൅ ሾሺͳ ൅ ݍ Τ݌ ሻଵ ఈΤ  െ  ͳሿ݁ିሺ௣ା௤ሻ௧ሽఈାଵ  ൈ 

  ൛ͳ ൅ ൣሺͳ ൅ ݍ Τ݌ ሻଵ ఈΤ െ  ͳ൧ൣߙ ൅ ݁ିሺ௣ା௤ሻ௧ሺͳ െ  ሻ൧ൟߙ

  Bi-modal curve with one mode at zero when 0 < Į < 
0.5 

 

 

 

0.5 ≤ Į < 1: Convex function of                                  
F(t) from z(0) = p to z(∞) = p + q 

0 < Į  < 0.5: Nonmonotone 
function of F(t), first decreasing 
from z(0) = p towards a 
minimum and then increasing 
towards z(∞) = p + q 

Į  = 1: Linear function of F(t) 

Į  > 1: Concave function of F(t) 

from z(0) = p to z(∞) = p + q 

 
G/SG (Į = 1/2) Left 

0.5 < F(t*) < 
0.58 

ሻݐሺܨ ൌ ͳ െ   ݁ିሺ௣ା௤ሻ௧ ሾͳ ൅ ሺݍ ʹሻሺ݌ ൅ ݍ Τ݌ ሻ݁ିሺ௣ା௤ሻ௧ሿΤ ଵ ଶΤ  

݌ ൐ Ͳǡ ݍ ൒ Ͳǡ ݐ ൐ Ͳ 

݂ሺݐሻ ൌ  ሺ݌ ൅ ሻ݁ିሺ௣ା௤ሻ௧ሾͳݍ ൅ ሺݍ ʹሻሺ݌ ൅ ݍ Τ݌ ሻ݁ିሺ௣ା௤ሻ௧ሿΤ ଷȀଶ ൈ 

         ሾͳ ൅ ሺݍ ሻΤ݌ ሺͳ ൅ ݍ Τ݌ʹ ሻሺͳ ൅ ݁ିሺ௣ା௤ሻ௧ሻሿ 

Convex function of F(t)  

 

G/SG (Į = 1): 
Bass model 

Right skewed. 
Approaches 
symmetry as p/q 
gets close to 0:   
0 < F(t*) < 0.5 

 

ሻݐሺܨ ൌ ͳ  െ   ݁ିሺ௣ା௤ሻ௧ͳ ൅ ሺݍ ሻ݁ିሺ௣ା௤ሻ௧Τ݌ ݌   ൐ Ͳǡ ݍ ൒ Ͳǡ ݐ ൐ Ͳ ݂ሺݐሻ ൌ ሺ݌ ൅ ݌ሻଶݍ  ݁ିሺ௣ା௤ሻ௧ሾͳ ൅ ሺݍ ሻ݁ିሺ௣ା௤ሻ௧ሿΤ݌ ଶ 

 

ሻݐሺݖ ൌ ݌ ൅  ሻǤݐሺܨݍ

G/SG (Į = ∞): 
Shifted 

Gompertz 

Right 

0 < F(t*) < e-1 

 

ሻݐሺܨ ൌ ൫ͳ Ȃ ݁ିሺ௣ା௤ሻ௧൯ሺͳ ൅ ݍ Τ݌ ሻି ୶ୣ୮ ሺି ሺ௣ା௤ሻ௧ሻ            ݌ ൐ Ͳǡ ݍ ൒ Ͳ ǡݐ ൐ Ͳ 
݂ሺݐሻ ൌ ሺ݌ ൅ ሻ݁ିሺ௣ା௤ሻ௧ሺͳݍ ൅ ݍ Τ݌ ሻିୣ୶୮ ሺିሺ௣ା௤ሻ௧ሻ ൈ                 ሾͳ ൅ lnሺͳ ൅ ݍ Τ݌ ሻሺͳ െ ݁ିሺ௣ା௤ሻ௧ሻሿ   
 

Concave function of F(t)  
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Table 2            
Gamma/Shifted Gompertz (G/SG) models: Į = 0.5, Bass (Į = 1), Shifted Gompertz (Į = Ğ) and full version with free ɲ (N = 67). 

Country Model 
Market 

potential:  
m 

Coefficient 
of external 
influence:  

p 

Coefficient 
of internal 
influence: 

q 

Relative 
impact of 
network 

externalities: 
q/p 

Skew 
parameter:  

ɲ 
R2a 

Root mean 
squared 

error(x103) 

Time to 
peak 

adoption 
t* 

(Months) 

Skewness 
F(t*) 

Peak 
magnitude 

mf(t*) 

95-th 
percentile 
(Months) 

France Į = 0.5 14,816,812 0.00707 0.0935 13.225  0.118 186.0 46 0.57 292,467 75 

  (2,158,914)b (0.0019) (0.022)         
 Į = 1 15,729,027 0.00329 0.067 20.365  0.134 184.3 43 0.48 289,804 86 

  (2,700,906) (0.0015) (0.019)         
 Į = ∞ 17,816,480 0.000446 0.0418 93.722  0.133 184.5 40 0.36 282,578 111 

  (3,977,197) (0.00081) (0.013)         
 Free Į  16,424,121 0.0019 0.0553 29.105 1.7879 0.136 184.1 42 0.43 287,594 94 

  (4,582,523) (0.0035) (0.0436)  (4.2210)       
             

Germany Į = 0.5 19,381,617 0.00269 0.1192 44.312  0.35 201.2 57 0.58 455,456 81 

  (3,296,772) (0.0011) (0.025)         
 Į = 1 22,558,689 0.000946 0.0754 79.704  0.342 202.4 57 0.49 435,719 96 

  (5,637,956) (0.00058) (0.021)         
 Į = ∞ 36,569,559 0.0000585 0.0313 535.043  0.331 204.2 63 0.36 426,223 158 

  (19,322,209) (0.00016) (0.014)         
 Free Į  15,339,020 0.0477 0.8905 18.669 0.0495 0.407 192.2 61 0.86 583,526 64 

  (1,504,014) (0.0235) (0.4343)  (0.0231)       
             

Italy Į = 0.5 21,338,374 0.00637 0.0583 9.152  0.058 214.8 60 0.55 276,191 106 

  (10,872,639) (0.0025) (0.029)         
 Į = 1 28,334,911 0.00365 0.0304 8.329  0.064 215.5 62 0.44 270,461 152 

  (25,810,042) (0.0023) (0.026)         
 Į = ∞ 41,600,959 0.00204 0.0142 6.961  0.065 214.6 67 0.33 269,302 252 

  (51,332,896) (0.0017) (0.0158)         
 Free Į  39,280,378 0.0022 0.0158 7.182 6.8230 0.065 214.6 66 0.34 269,437 233 

  
(193,244,947) (0.0127) (0.1207) 

 
(398.1733) 

      
             

Spain Į = 0.5 17,039,980 0.00297 0.1101 37.071  0.384 143.1 58 0.58 371,835 84 

  (2,808,661) (0.00092) (0.0208)         
 Į = 1 22,555,944 0.00129 0.0609 47.179  0.363 145.6 62 0.49 358,224 110 



18 

  (7,324,805) (0.00052) (0.0179)         
 Į = ∞ 71,168,140 0.000317 0.0162 51.104  0.348 147.3 96 0.36 444,741 276 

  (94,008,402) (0.00023) (0.012)         
 Free Į  16,371,747 0.0028 0.1153 41.179 0.4919 0.383 143.1 59 0.58 370,055 83 

  (4,488,860) (0.0038) (0.0800)  (0.4356)       
             

UK Į = 0.5 26,318,806 0.0081 0.0719 8.877  0.143 181.8 48 0.55 422,264 85 

  (2,985,809) (0.0011) (0.014)         
 Į = 1 30,933,350 0.00493 0.042 8.519  0.141 181.9 46 0.44 405,392 111 

  (5,672,411) (0.0010) (0.0124)         
 Į = ∞ 44,192,144 0.00307 0.0189 6.156  0.129 183.3 47 0.32 388,331 185 

  (15,142,872) (0.0010) (0.0084)         
 Free Į  27,821,425 0.0064 0.0582 9.094 0.6514 0.145 181.6 47 0.51 414,556 94 

  6,152,766 (0.0036) (0.0369)  (0.4591)       
             

US Į = 0.5 106,116,751 0.00844 0.0783 9.277  0.082 1,108.9 45 0.55 1,839,306 80 

  (14,692,512) (0.0017) (0.020)         

 Į = 1 119,975,856 0.0051 0.0477 9.353  0.067 1,117.7 42 0.45 1,753,711 100 

  (24,418,252) (0.0016) (0.017)         
 Į = ∞ 170,930,724 0.00348 0.0202 5.805  0.05 1,128.2 43 0.32 1,626,618 171 

   (71,412,855) (0.0016) (0.012)              

 Free Į  94,526,976 0.0205 0.1595 7.780 0.2066 0.09 1,104.2 50c 0.69 2,024,824 65 
    (11,011,079) (0.0084) (0.0573)   (0.0768)             
a R2 assesses the fit to the incremental number of active and unique MSN users.        
b The asymptotic standard errors are reported in parentheses.        
C Since Į is less than 0.5, the probability density function is bi-modal with the other mode at 0. The time to the minimum between the two modes t**  is 
equal to 15 months  
.  
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Table 3

Forecasting accuracy levels in the six countries: Absolute percentage errorsa.

Naïve trend Naïve trend

Median
Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean Median

Geo. 
Mean

1 (35)b 2.32 1.62 3.26 2.73 4.97 3.66 3.20 3.24 1.31 1.24 3.32 3.97 3.35 3.783.03 2.67 3.05 2.92 3.30 2.60

2 (34) 3.50 2.38 4.07 3.37 5.12 4.55 6.54 5.09 2.30 2.26 5.04 6.08 4.42 5.23 4.64 3.58 5.30 4.46 5.41 3.43

3 (33) 4.98 3.91 5.61 4.77 6.36 4.75 6.43 6.97 2.50 2.38 8.07 8.92 8.18 8.126.45 5.77 8.47 6.36 6.66 5.83

4 (32) 6.34 5.37 7.23 5.97 7.04 6.67 8.31 8.35 2.96 2.70 8.59 11.17 8.83 10.016.51 6.31 11.06 9.39 9.49 7.50

12 (24) 16.31 12.75 13.72 13.31 17.52 15.63 27.95 27.38 6.545.50 23.31 31.17 17.19 24.2412.09 8.33 32.37 24.45 26.84 27.59

18 (18) 24.05 22.10 19.80 17.49 36.21 26.12 40.91 54.54 11.87 9.68 60.99 61.50 43.17 51.3517.52 18.98 48.49 41.80 38.31 39.27

Pooledc 12.95 9.14 12.75 10.00 14.82 11.02 22.47 18.02 4.93 4.60 18.55 20.92 13.08 17.098.78 7.63 26.53 16.64 20.90 16.53

1 (35) 2.30 1.70 2.67 2.06 4.17 2.97 4.18 2.98 1.52 1.19 1.99 1.80 3.65 2.60 1.98 2.10 2.94 3.18 2.12 1.46

2 (34) 3.19 3.01 3.19 3.20 6.76 4.33 4.94 4.72 2.62 2.40 3.35 3.09 4.95 3.602.95 2.25 3.17 2.61 3.71 3.21

3 (33) 4.26 4.00 4.44 4.58 7.55 5.94 9.13 6.11 3.56 2.37 5.87 3.85 6.46 4.483.75 2.95 3.56 3.50 5.02 4.62

4 (32) 4.57 4.26 4.62 4.45 8.28 6.79 10.12 7.42 3.62 2.95 6.74 6.12 8.08 6.563.54 3.90 5.76 5.49 6.25 6.05

12 (24) 22.57 20.91 20.79 18.34 21.38 18.79 32.73 31.05 9.20 6.49 30.48 20.03 27.96 21.4413.15 10.48 18.41 14.06 25.82 21.43

18 (18) 32.02 39.43 30.38 34.8928.51 28.57 42.99 54.62 11.02 6.86 44.88 48.21 41.00 36.6512.07 10.48 37.65 29.49 33.78 31.75

Pooled 17.06 12.03 15.07 10.98 16.80 11.87 23.22 17.63 7.49 4.73 21.64 14.56 20.49 13.3111.91 7.58 16.27 10.69 18.42 12.74

UK US

1 (35) 1.15 0.75 1.25 0.97 1.12 0.63 1.82 1.72 1.04 0.94 1.13 0.61 1.08 0.73 0.91 0.81 11.09 5.67 0.78 0.83

2 (34) 1.27 1.47 1.47 1.38 1.39 1.36 2.92 2.60 1.49 1.16 1.48 1.44 1.94 1.40 1.64 1.02 11.85 7.16 1.83 1.28

3 (33) 2.30 1.84 2.14 1.77 2.03 1.29 2.71 2.57 1.88 1.54 2.55 2.17 3.13 2.042.48 1.81 13.73 8.23 2.39 2.11

4 (32) 2.71 2.40 2.56 1.85 1.96 1.58 4.22 3.20 1.97 1.77 3.67 2.94 3.36 2.422.96 1.94 13.21 6.80 3.35 2.49

12 (24) 10.04 8.79 4.58 3.94 4.74 3.67 22.51 21.34 6.80 6.78 8.58 8.43 9.04 4.76 7.12 5.70 28.82 22.74 7.41 6.74

18 (18) 17.92 18.72 7.83 7.59 10.89 9.27 42.06 43.99 9.59 10.26 18.02 17.57 16.16 11.5112.67 8.70 43.35 40.67 12.02 10.93

Pooled 7.37 5.35 4.34 3.30 4.00 3.10 14.40 11.07 5.18 4.13 7.89 5.20 5.41 3.97 5.48 3.81 24.46 16.24 5.91 4.62

a Bold values indicate the steps for which the specified model accuracy measures (median and geometric mean) are the best ones among the four models.
b Starting with the 33-rd observation, we performed 35 one-month-ahead forecasts. (There are errors in the sample sizes of Table 2 in SGH). The number of data points
 in the estimation varied from 32 to 66.
c Similar to SGH (2015), we varied L from 1 to 18: the total number of absolute percentage errors (ape's) is equal to 477. The table reports a subset of the error measures.  

G/SG (ɲ )

Italy Spain

L-step-
ahead 
(sample 
size)

France Germany
G/SG (ɲ  = 
1/2) Bass SG G/SG (ɲ )

G/SG (ɲ  = 
1/2) Bass SG
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