This is a repository copy of Regulation of Inflammatory and anti-apoptotic responses through the IL-1RI/TILRR complex.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130550/

Version: Accepted Version

Proceedings Paper:

https://doi.org/10.4172/2329-6577.C1.005

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Regulation of inflammatory and anti-apoptotic responses through the IL-1RI/TILRR complex.

Eva E. Qwarnstrom
University of Sheffield, Sheffield S102RX UK

Members of the toll-like and IL-1 receptor family (TIR) are central regulators of immune and inflammatory responses. Signal activation is induced through ligand binding and controlled by system specific co-receptors.

The IL-1RI co-receptor TILRR is a splice variant of FREM-1. TILRR association with the signalling receptor magnifies IL-1–induced activation of the canonical and non-canonical NF-κB network, by enhancing signal amplification at the level of the receptor complex and potentiate recruitment of the MyD88 adapter and PI3 kinase.

TILRR-controlled MyD88 dependent activation of the canonical pathway is regulated in a Ras-dependent manner, reflected in alterations in cytoskeletal structure and cell adhesion. The changes induced provide a process for rapid control of NF-κB, involving sequestration and release of cytoskeletal bound IκBα through a mechanism controlled by TILRR signal amplification. In silico simulations using agent based modelling of the NF-κB network predict cytoskeletal control of inhibitor levels to provide a mechanism for signal calibration, and to enable activation-sensitive regulation of NF-κB induced inflammatory responses.

Our studies have identified two functional sites within the TILRR core protein, which selectively control inflammatory and anti-apoptotic responses. The mechanisms underlying distinct network amplification, and the relevance of pathway-specific regulation of canonical and non-canonical NF-κB activation will be discussed.

References
The studies were supported by UK government, BBSRC grants: BB/C515798/1, BBS/B/04056 and BB-J009687-1.