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(glM , glN )-DUALITIES IN GAUDIN MODELS

WITH IRREGULAR SINGULARITIES

BENOÎT VICEDO AND CHARLES YOUNG

Abstract. We establish (glM , glN )-dualities between quantum Gaudin models with
irregular singularities. Specifically, for any M,N ∈ Z≥1 we consider two Gaudin
models: the one associated with the Lie algebra glM which has a double pole at
infinity and N poles, counting multiplicities, in the complex plane, and the same
model but with the roles of M and N interchanged. Both models can be realized in
terms of Weyl algebras, i.e. free bosons; we establish that, in this realization, the
algebras of integrals of motion of the two models coincide.

At the classical level we establish two further generalizations of the duality. First,
we show that there is also a duality for realizations in terms of free fermions. Second,
in the bosonic realization we consider the classical cyclotomic Gaudin model associ-
ated with the Lie algebra glM and its diagram automorphism, with a double pole at
infinity and 2N poles, counting multiplicities, in the complex plane. We prove that it
is dual to a non-cyclotomic Gaudin model associated with the Lie algebra sp

2N , with
a double pole at infinity and M simple poles in the complex plane. In the special
case N = 1 we recover the well-known self-duality in the Neumann model.

1. Introduction

Fix a set of N distinct complex numbers {zi}
N
i=1 ⊂ C, and an element λ ∈ gl∗M . The

quadratic Hamiltonians of the quantum Gaudin model [Gau83, Gau14] associated to
glM are the following elements of U(glM )⊗N :

Hi =
∑

j 6=i

N∑

a,b=1

E
(i)
abE

(j)
ba

zi − zj
+

N∑

a,b=1

λ(Eab)E
(i)
ba ,

where {Eab}
M
a,b=1 denote the standard basis of glM and E

(i)
ab means Eab in the ith tensor

factor. The Hi belong to a large commutative subalgebra Z ⊂ U(glM )⊗N called the
Gaudin [Fre05] or Bethe [MTV06a] subalgebra, for which an explicit set of generators
is known [Tal11, MTV06a, CT06].

If the element λ ∈ gl∗M is regular semisimple, i.e. if we can choose bases such that
λ(Eab) = λaδab for some distinct numbers {λa}

M
a=1 ⊂ C, then one can also consider the

following elements of U(glN )⊗M :

H̃a =
∑

b 6=a

M∑

i,j=1

Ẽ
(a)
ij Ẽ

(b)
ji

λa − λb
+

M∑

i=1

ziẼ
(a)
ii ,

where {Ẽij}
N
i,j=1 denote the standard basis of glN . They belong to a large commutative

subalgebra Z̃ ⊂ U(glN )⊗M .
1
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Let CM denote the defining representation of glM . Then Z can be represented as a
subalgebra of

End((CM )⊗N ) ∼= End(CNM ) ∼= End((CN )⊗M ).

So can Z̃. In fact their images in End(CNM ) coincide. This is the (glM , glN )-duality for
quantum Gaudin models first observed between the quadratic Gaudin Hamiltonians and
the dynamical Hamiltonians in [TL02], see also [TV02]. It was later proved in [MTV09],

see also [CF08]. (Under this realization the Hamiltonians H̃a ∈ Z̃ of the dual model
coincide with suitably defined dynamical Hamiltonians [FMTV00] of the original glM
Gaudin model. See [MTV09, MTV06b].) The classical counterpart of this duality goes
back to the works of J. Harnard [AHH90], [Har94].

In this paper we generalize this (glM , glN )-duality in a number of ways, for both
the quantum and classical Gaudin models. Let us describe first the main result. Two
natural generalizations of the Gaudin model above are to

(a) models in which the quadratic Hamiltonians (and the Lax matrix, see below) have
higher order singularities at the marked points zi ∈ C, i = 1, . . . , N . Such models
are called Gaudin models with irregular singularities.1

(b) models in which λ ∈ gl∗M is not semisimple, i.e. has non-trivial Jordan blocks.2

We show that these two generalizations are natural (glM , glN )-duals to one another.
Namely, we show that there is a correspondence among models generalized in both
directions, (a) and (b), and that under this correspondence the sizes of the Jordan
blocks get exchanged with the degrees of the irregular singularities at the marked
points in the complex plane. See Theorem 4.7 below.

The heart of the proof is the observation that the generating functions for the gen-

erators of both algebras Z and Z̃ can be obtained by evaluating, in two different ways,
the column-ordered determinant of a certain Manin matrix. (A similar trick was also
used in [CF08, Proposition 8].) Given that observation, the duality between (a) and
(b) above is essentially a consequence of the simple fact that the inverse of a Jordan
block matrix




x 0 . . . 0
−1 x . . . 0
...

. . .
. . .

...
0 . . . −1 x


 is of the form




x−1 0 . . . 0
x−2 x−1 . . . 0
...

. . .
. . .

...
x−k . . . x−2 x−1


 ;

here the higher-order poles in x will give rise to the irregular singularities of the dual
Gaudin model.

1The reason for this terminology is that the spectrum of such models is described in terms of opers
with irregular singularities; see [FFTL10] and also [VY17b]. Strictly speaking, the term λ(Eab)Eab in
Hi is already an irregular singularity of order 2 at ∞ in the same sense: namely, the opers describing
the spectrum have a double pole at ∞. For that reason we refer to a Gaudin model with such terms
in the Hamiltonians Hi as having a double pole at infinity.

2Let us note in passing that the case of λ semisimple but not regular is very rich; see for example
[Ryb06, FFR10, Ryb16].
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Now let us give an overview of the results of the paper in more detail. Consider the
direct sum of Lie algebras

(1.1) gl
(N)
M

:=
N⊕

i=1

glM ⊕ glcomM

where the Lie algebra glcomM in the last summand is isomorphic to glM as a vector space
but endowed with the trivial Lie bracket. Henceforth we denote the copy of Eab in the

ith direct summand of gl
(N)
M by E

(zi)
ab and the copy in the last abelian summand glcomM

by E
(∞)
ab . In terms of these data, the formal Lax matrix of the Gaudin model associated

with glM , with a double pole at infinity and simple poles at each zi, i = 1, . . . , N , is
given by

(1.2) L(z)dz :=
M∑

a,b=1

Eba ⊗

(
E
(∞)
ab +

N∑

i=1

E
(zi)
ab

z − zi

)
dz.

Here Eab := ρ(Eab) where ρ : glM → MatM×M (C) is the defining representation.

Regarding L(z) as anM×M matrix with entries in the symmetric algebra S
(
gl

(N)
M

)
,

the coefficients of its characteristic polynomial

det
(
λ1M×M − L(z)

)

span a large Poisson commutative subalgebra Z cl
(zi)

(
gl

(N)
M

)
of S

(
gl

(N)
M

)
. Given a classical

model described by a Poisson algebra P and Hamiltonian H ∈ P, the latter becomes

of particular interest if we have a homomorphism of Poisson algebras π : S
(
gl

(N)
M

)
→ P

such that H lies in the image of Z cl
(zi)

(
gl

(N)
M

)
. Indeed, π

(
Z cl

(zi)

(
gl

(N)
M

))
⊂ P then consists

of Poisson commuting integrals of motion of the model.
The Lax matrix (1.2) can also be used to describe quantum models by regarding it

instead as an M ×M matrix with entries in the universal enveloping algebra U
(
gl

(N)
M

)
.

In this case, a large commutative subalgebra Z(zi)

(
gl

(N)
M

)
⊂ U

(
gl

(N)
M

)
, called the Gaudin

algebra, is spanned by the coefficients in the partial fraction decomposition of the
rational functions obtained as the coefficients of the differential operator

(1.3) cdet
(
∂z1M×M − t

L(z)
)
,

where cdet is the column ordered determinant. Given a unital associative algebra U

and a homomorphism π̂ : U
(
gl

(N)
M

)
→ U, the image of Z(zi)

(
gl

(N)
M

)
provides a large

commutative subalgebra of U.
Let U be the Weyl algebra generated by the commuting variables xai for i = 1, . . . , N

and a = 1, . . . ,M together with their partial derivatives ∂ai := ∂/∂xai . We introduce
another set {λa}

M
a=1 ⊂ C of M distinct complex numbers. It is well known that

(1.4) π̂
(
E
(∞)
ab

)
= λaδab, π̂

(
E
(zi)
ab

)
= xai ∂

b
i

defines a homomorphism π̂ : U
(
gl

(N)
M

)
→ U. Therefore, in particular, π̂

(
Z(zi)

(
gl

(N)
M

))

is a commutative subalgebra of U. On the other hand, given the new set of complex
numbers λa, a = 1, . . . ,M , we may now equally consider the Gaudin model associated
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with glN , with a double pole at infinity and simple poles at each λa for a = 1, . . . ,M .
Its formal Lax matrix is defined as in (1.2), explicitly we let

L̃(λ)dλ :=
N∑

i,j=1

Ẽji ⊗

(
Ẽ
(∞)
ij +

M∑

a=1

Ẽ
(λa)
ij

λ− λa

)
dλ.

We can define another homomorphism ˆ̃π : U
(
gl

(M)
N

)
→ U as

ˆ̃π
(
Ẽ
(∞)
ij

)
= ziδij , ˆ̃π

(
Ẽ
(λa)
ij

)
= ∂aj x

a
i .

(Note here the order between ∂aj and xai as compared, for instance, to [MTV06b, §5.1]

where Ẽ
(λa)
ij is realised as xai ∂

a
j .) The (glM , glN )-duality between the above two Gaudin

models associated with glM and glN can be formulated, in the present conventions, as
the equality of differential polynomials

π̂

( N∏

i=1

(z − zi) cdet
(
∂z1M×M − t

L(z)
))

= ˆ̃π

( M∏

a=1

(∂z − λa) cdet
(
z1N×N − L̃(∂z)

))
,

whose coefficients are U-valued polynomials in z. (See §4.2 for the precise definition
of the expression appearing on the right hand side.) In the classical setting discussed
above the same identity holds with ∂z replaced everywhere by the spectral parameter
λ, the Weyl algebra U is replaced by the Poisson algebra P defined as the polynomial
algebra in the canonically conjugate variables (pai , x

a
i ) and column ordered determinants

replaced by ordinary determinants.
We generalise this statement in a number of directions. Firstly, in both the classical

and quantum cases, we consider Gaudin models with irregular singularities. Specifically,
fix a positive integer n ∈ Z≥1 and let {τi}

n
i=1 ⊂ Z≥1 be such that

∑n
i=1 τi = N . We

consider a glM -Gaudin model with a double pole at infinity and an irregular singularity
of order τi at each zi for i = 1, . . . , n. The direct sum of Lie algebras (1.1) is replaced
in this case by a direct sum of Takiff Lie algebras3

(1.5) glDM :=
n⊕

i=1

(
glM [ε]/ετiglM [ε]

)
⊕ glcomM ,

where D is a divisor encoding the collection of points zi for i = 1, . . . , n weighted by
the integers τi for i = 1, . . . , n. The formal Lax matrix L(z) of this Gaudin model

is an M × M matrix with entries in the Lie algebra glDM , and the Gaudin algebra

Z(zi)(gl
D
M ) is spanned by the coefficients in the partial fraction decomposition of the

rational functions obtained as the coefficients of the differential operator

(1.6) cdet
(
∂z1M×M − t

L(z)
)
.

Let U be the same unital associative algebra as above. In order to define a suitable
homomorphism π̂ : U

(
glDM

)
→ U we combine representations of the Takiff Lie algebras

glM [ε]/ετiglM [ε] → U for each i = 1, . . . , n, naturally generalising the representation
glM → U, Eab 7→ xai ∂

b
i in the above regular singularity case, together with a constant

3These were introduced in the mathematics literature in [Tak71] but have also been widely used in
the mathematical physics literature though not by this name, see for instance [RSTS79].
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homomorphism glcomM → C1 ⊂ U. As before, the choice of the latter is what determines
the position of the poles of the dual glN -Gaudin model. In fact, if instead of choosing
a diagonal matrix as in (1.4) we let

(
π̂
(
E
(∞)
ab

))M
a,b=1

=




λ1
1 λ1 0

. . .
. . .

1 λ1
. . .

λm
1 λm

0
. . .

. . .

1 λm




be a direct sum of m Jordan blocks of size τ̃a ∈ Z≥1 with λa ∈ C along the diagonal for
a = 1, . . . ,m, such that

∑m
a=1 τ̃a =M , then the dual Gaudin model associated with glN

will have a double pole at infinity and an irregular singularity at each λa of order τ̃a for

a = 1, . . . ,m. Let D̃ be the divisor corresponding to these data and glD̃N the associated
direct sum of Takiff algebras, cf. (1.5). After defining a corresponding homomorphism
ˆ̃π : U

(
glD̃N
)
→ U for this Gaudin model, we prove a (glM , glN )-duality similar to the

one stated above for the regular singularity case, see Theorem 4.7. As before, a similar
result also holds in the classical setting where π and π̃ in this case are homomorphisms

from the symmetric algebras S
(
glDM

)
and S

(
glD̃N
)
, respectively, to the Poisson algebra

P, see Theorem 3.2.
In the classical setup of §3 we also consider fermionic generalisations of (glM , glN )-

duality. Specifically, for the Poisson algebra P we take instead the even part of the Z2-
graded Poisson algebra generated by canonically conjugate Grassmann variable pairs
(πai , ψ

a
i ). The corresponding homomorphisms of Poisson algebras πf : S

(
glDM

)
→ P and

π̃f : S
(
glD̃N
)
→ P are defined in Lemma 3.3. In this case we establish a different type

of (glM , glN )-duality between the same Gaudin models with irregular singularities and

associated with glM and glN as above. Denoting by L(z) and L̃(λ) their respective Lax
matrices, it takes the form

πf

(
det
(
λ1M×M − L(z)

))
π̃f

(
det
(
z1N×N − L̃(λ)

))
=

n∏

i=1

(z − zi)
τi

m∏

a=1

(λ− λa)
τ̃a .

See Theorem 3.4, the proof of which is completely analogous to that of Theorem 3.2
in the bosonic setting, using basic properties of the Berezinian of an (M |N)× (M |N)
supermatrix. We leave the possible generalisation of such a fermionic (glM , glN )-duality
to the quantum setting for future work.

Finally, in §5 we consider extensions of these results to cyclotomic Gaudin models
also in the classical setting. Specifically, we consider a Z2-cyclotomic glM -Gaudin
model with a double pole at infinity as usual and with irregular singularities at the
origin of order τ0 and at points zi ∈ C

×, with disjoint orbits under z 7→ −z, of order
τi for each i = 1, . . . , n. Let N = τ0 +

∑n
i=1 τi. Using the bosonic Poisson algebra P
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generated by canonically conjugate variables (pai , x
a
i ) we prove that this model is dual

to a Gaudin model associated with the Lie algebra sp2N , with a double pole at infinity
and regular singularities atM points λa, a = 1, . . . ,M , see Theorem 5.2. We show that
the well know self-duality in the Neumann model is a particular example of the latter
with N = 1. Generalisations of such (glM , glN )-dualities involving cyclotomic Gaudin
models to the quantum case are less obvious since it is known [VY16] that in this case
the cyclotomic Gaudin algebra is not generated by a cdet-type formula as in (1.6), see
remark 2.

2. Gaudin models with irregular singularities

2.1. Lie algebras glDM and glD̃N . Let M,N ∈ Z≥1. Denote by Eab for a, b = 1, . . . ,M

the standard basis of glM and by Ẽij for i, j = 1, . . . , N the standard basis of glN .
Let zi ∈ C for i = 1, . . . , n and λa ∈ C for a = 1, . . . ,m be such that zi 6= zj for

i 6= j and λa 6= λb for a 6= b. Pick and fix integers τi ∈ Z≥1 for each i = 1, . . . , n
and τ̃a ∈ Z≥1 for each a = 1, . . . ,m. We call these the Takiff degrees at zi and λa,
respectively. Consider the effective divisors

D =

n∑

i=1

τi · zi + 2 · ∞, D̃ =

m∑

a=1

τ̃a · λa + 2 · ∞.

(Recall that an effective divisor is a finite formal linear combination of points in some
Riemann surface, here the Riemann sphere C ∪ {∞}, with coefficients in Z≥0.)

We require that degD = N + 2 and deg D̃ =M + 2 or in other words,

n∑

i=1

τi = N and
m∑

a=1

τ̃a =M.

Note that if τi = 1 = τ̃a for all i = 1, . . . , n and a = 1, . . . ,m then in fact we have n = N
and m =M . More generally, it will be convenient to break up the list of integers from
1 to N into n blocks of sizes τi, i = 1, . . . , n, and similarly for the list of integers from
1 to M . To that end, let us define

(2.1) νi :=
i−1∑

j=1

τj , and ν̃a :=
a−1∑

b=1

τ̃b

for i = 1, . . . , N and a = 1, . . . ,M , so that

(1, . . . , N) = (1, . . . , τ1; ν2 + 1, . . . , ν2 + τ2; . . . ; νn + 1, . . . , νn + τn),

(1, . . . ,M) = (1, . . . , τ̃1; ν̃2 + 1, . . . , ν̃2 + τ̃2; . . . ; ν̃m + 1, . . . , ν̃m + τ̃m).

Note that ν1 = ν̃1 = 0.
Let glM [ε] := glM ⊗ C[ε] denote the Lie algebra of polynomials in a formal variable

ε with coefficients in glM . For any k ∈ Z≥1 we have the ideal εkglM [ε] := glM ⊗ εkC[ε].
The corresponding quotient glM [ε]/εk := glM [ε]/εkglM [ε] is called a Takiff Lie algebra
over glM . When k ∈ Z≥2, for every n ∈ Z≥1 with n < k we have a non-trivial ideal in
glM [ε]/εk given by εnglM [ε]/εk := εnglM [ε]/εkglM [ε], which by abuse of terminology we
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shall also refer to as a Takiff Lie algebra. We define direct sums of Takiff Lie algebras
over glM and glN , respectively, as

glDM := ε∞glM [ε∞]/ε2∞ ⊕

n⊕

i=1

glM [εzi ]/ε
τi
zi
,

glD̃N := ε̃∞glN [ε̃∞]/ε̃2∞ ⊕
m⊕

a=1

glN [ε̃λa
]/ε̃τ̃aλa

.

Note that ε∞glM [ε∞]/ε2∞ and ε̃∞glN [ε̃∞]/ε̃2∞ are respectively isomorphic to the abelian
Lie algebras glcomM and glcomN in the notation used in the introduction, see e.g. (1.1).

We use the abbreviated notation X εk for an element X⊗ εk ∈ glM [ε] where X ∈ glM
and k ∈ Z≥0, and likewise for elements of glN [ε]. Fix a basis of glDM defined by

E
(zi)
ab[r]

:= Eabε
r
zi
, E

(∞)
ab[1]

:= Eabε∞

for i = 1, . . . , N , a, b = 1, . . . ,M and r = 0, . . . , τi − 1. Let us note, in particular, that

E
(zi)
ab[r] = 0 whenever r ≥ τi. Likewise, as a basis of glD̃N we take

Ẽ
(λa)
ij[s]

:= Ẽij ε̃
s
λa
, Ẽ

(∞)
ij[1]

:= Ẽij ε̃∞

for a = 1, . . . ,M , i, j = 1, . . . , N and s = 0, . . . , τ̃a − 1. Here also Ẽ
(λa)
ij[s] = 0 for s ≥ τ̃a.

The set of non-trivial Lie brackets of these basis elements read

(2.2)
[
E
(zi)
ab[r],E

(zj)

cd[s]

]
= δij [Eab,Ecd]

(zi)
[r+s] = δijδbcE

(zi)
ad[r+s] − δijδadE

(zi)
cb[r+s],

for any i, j = 1, . . . , n and a, b, c, d = 1, . . . ,M , and

(2.3)
[
Ẽ
(λa)
ij[r] , Ẽ

(λb)
kl[s]

]
= δab[Ẽij , Ẽkl]

(λa)
[r+s] = δabδjkẼ

(λa)
il[r+s] − δabδilẼ

(λa)
kj[r+s],

for any i, j, k, l = 1, . . . , N and a, b = 1, . . . ,m. Note, in particular, that E
(∞)
ab[1] and Ẽ

(∞)
ij[1]

are Casimirs of the Lie algebras glDM and glD̃N , respectively.

2.2. Lax matrices. Let ρ : glM → MatM×M (C) and ρ̃ : glN → MatN×N (C) denote
the defining representations of glM and glN , respectively. We write Eab := ρ(Eab) and

Ẽij := ρ̃(Ẽij).
The sets {Eab}

M
a,b=1 and {Eba}

M
a,b=1 form dual bases of glM with respect to the trace

in the representation ρ since tr(EabEcd) = δadδbc for all a, b, c, d = 1, . . . ,M . Likewise,

dual bases of glN with respect to the trace in the representation ρ̃ are given by {Ẽij}
N
i,j=1

and {Ẽji}
N
i,j=1.

The Lax matrix of the Gaudin model associated with glDM is given by

(2.4a) L
D(z)dz :=

M∑

a,b=1

Eba ⊗

(
E
(∞)
ab[1] +

n∑

i=1

τi−1∑

r=0

E
(zi)
ab[r]

(z − zi)r+1

)
dz.
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It is an M ×M matrix whose coefficients are rational functions of z valued in glDM .

Likewise, the Lax matrix of the Gaudin model associated with glD̃N reads

(2.4b) L
D̃(λ)dλ :=

N∑

i,j=1

Ẽji ⊗

(
Ẽ
(∞)
ij[1] +

m∑

a=1

τ̃a−1∑

s=0

Ẽ
(λa)
ij[s]

(λ− λa)s+1

)
dλ,

and is an N ×N matrix with entries rational functions of λ valued in glD̃N .

3. Classical (glM , glN )-duality

3.1. Classical Gaudin model. The algebra of observables of the classical Gaudin
model associated with glDM is the symmetric tensor algebra S(glDM ). It is a Poisson
algebra: the Poisson bracket is defined to be equal to the Lie bracket (2.2) on the

subspace glDM →֒ S(glDM ) and then extended by the Leibniz rule to the whole of S(glDM ).
Consider the quantity

(3.1)

n∏

i=1

(z − zi)
τi det

(
λ1M×M − L

D(z)
)
.

This is a polynomial of degree M in λ whose coefficients are rational functions in z
with coefficients in S(glDM ). The classical Gaudin algebra Z cl(glDM ) of the glDM -Gaudin

model is by definition the linear subspace of S(glDM ) spanned by these coefficients. It

is a Poisson-commutative subalgebra of S(glDM ).

The classical Gaudin algebra Z cl(glD̃N ) of the glD̃N -Gaudin model is defined analo-
gously in terms of the following polynomial of degree N in z with coefficients rational
in λ,

(3.2)

m∏

a=1

(λ− λa)
τ̃a det

(
z1N×N − L

D̃(λ)
)
.

3.2. Bosonic realisation. Introduce the Poisson algebra Pb := C[xai , p
b
j ]
N M
i,j=1 a,b=1 with

Poisson brackets

(3.3) {xai , x
b
j} = 0, {pai , x

b
j} = δijδab, {pai , p

b
j} = 0,

for a, b = 1, . . . ,M and i, j = 1, . . . , N . In the following we shall regard Pb as a Lie
algebra under the Poisson bracket.

For any x ∈ C and k ∈ Z≥1 we denote by Jk(x) the Jordan block of size k × k with
x along the diagonal and −1’s below the diagonal, namely

(3.4) Jk(x) =




x 0 . . . 0
−1 x . . . 0
...

. . .
. . .

...
0 . . . −1 x


 .
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We note for later that if x 6= 0 then this is invertible and its inverse is given by

(3.5) Jk(x)
−1 =




x−1 0 . . . 0
x−2 x−1 . . . 0
...

. . .
. . .

...
x−k . . . x−2 x−1


 .

Lemma 3.1. The linear maps πb : glDM → Pb and π̃b : glD̃N → Pb defined by

πb
(
E
(zi)
ab[r]

)
=

νi+τi−r∑

u=νi+1

xau+rp
b
u, πb

(
E
(∞)
ab[1]

)
= −

(
m⊕

c=1

Jτ̃c(−λc)

)

ba

,

for every r = 0, . . . , τi − 1, i = 1, . . . , n and a, b = 1, . . . ,M , and

π̃b
(
Ẽ
(λa)
ij[s]

)
=

ν̃a+τ̃a−s∑

u=ν̃a+1

puj x
u+s
i , π̃b

(
Ẽ
(∞)
ij[1]

)
= −

(
n⊕

k=1

Jτk(−zk)

)

ji

,

for every s = 0, . . . , τ̃a−1, i, j = 1, . . . , N and a = 1, . . . ,m, are homomorphisms of Lie
algebras. They extend uniquely to homomorphisms of Poisson algebras πb : S(glDM ) →

Pb and π̃b : S(glD̃N ) → Pb.

Proof. We will prove the corresponding result in the quantum case in detail below. See
Lemma 4.6. That proof applies line-by-line here, with ∂ replaced by p. �

Let C(z)[λ] denote the algebra of polynomials in λ with coefficients rational in z.
Given any Poisson algebra P we introduce the Poisson algebra P(z)[λ] := P ⊗ C(z)[λ]
with Poisson bracket defined using multiplication in the second tensor factor. Extend
the homomorphisms πb and π̃b from Lemma 3.1 to homomorphisms of Poisson algebras

πb : S(glDM )(z)[λ] −→ Pb(z)[λ], π̃b : S(glD̃M )(λ)[z] −→ Pb(λ)[z],

by letting them act trivially on the tensor factors C(z)[λ] and C(λ)[z], respectively. In
particular, we may apply these homomorphisms respectively to the expressions (3.1)
and (3.2). It follows from Theorem 3.2 below that the resulting expressions in fact live
in the common subalgebra Pb[z, λ] := Pb⊗C[z, λ] of both Pb(z)[λ] and Pb(λ)[z], where
C[z, λ] denotes the algebra of polynomials in the variables z and λ. The coefficients of
these polynomials in Pb[z, λ] span the images of the classical Gaudin algebras in Pb,
namely

πb

(
Z

cl(glDM )
)
⊂ Pb and π̃b

(
Z

cl(glD̃N )
)
⊂ Pb,

respectively. The following theorem establishes that these Poisson-commutative subal-
gebras of Pb coincide.

Theorem 3.2. We have the following relation

πb

(
n∏

i=1

(z − zi)
τi det

(
λ1M×M −L

D(z)
)
)

= π̃b

(
m∏

a=1

(λ− λa)
τ̃a det

(
z1N×N −L

D̃(λ)
)
)
,

as an equality in Pb[z, λ].
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Proof. Introduce the M ×M and N ×N block diagonal matrices

Λ :=
m⊕

a=1

tJτ̃a(λ− λa), Z :=
n⊕

i=1

Jτi(z − zi).

Also introduce the M ×N matrices

(3.6) P := (pai )
M N
a=1 i=1, X := (xai )

M N
a=1 i=1.

Consider the block matrix

(3.7) M :=

(
Λ X
tP Z

)
,

with entries in the commutative algebra Pb[λ, z]. We may evaluate its determinant in
two ways. On the one hand, we have

detM = det

(
M

(
1 −Λ−1X
0 1

))

= det

(
Λ 0
tP Z − tPΛ−1X

)
= detΛdet

(
Z − tPΛ−1X

)
.

On the other hand,

detM = det

(
Z tP
X Λ

)
= det

((
Z tP
X Λ

)(
1 −Z−1 tP
0 1

))

= det

(
Z 0
X Λ−XZ−1 tP

)
= detZ det

(
Λ−XZ−1 tP

)
.

Hence we obtain the relation

(3.8) detZ det(Λ−XZ−1 tP ) = detΛdet(Z − tPΛ−1X).

It remains to note that the square matrices Z and Λ can be written as

Z =

N∑

i,j=1

Ẽij

(
zδij − πb

(
Ẽ
(∞)
ij[1]

))
, Λ =

M∑

a,b=1

Eab

(
λδab − πb

(
E
(∞)
ba[1]

))

with πb and π̃b as defined in Lemma 3.1, and that their inverses are given by

Z−1 =
n⊕

i=1

Jτi(z − zi)
−1, Λ−1 =

m⊕

a=1

tJτ̃a(λ− λa)
−1.

Thus we have

Λ−XZ−1 tP =
M∑

a,b=1

Eab(Λ−XZ−1 tP )ab

= λ1−
M∑

a,b=1

Eab

(
πb
(
E
(∞)
ab[1]

)
+

n∑

i=1

νi+τi∑

j,k=νi+1

xaj
(
Jτi(z − zi)

−1
)
jk
pbk

)
,
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which is nothing but λ1 − πb
(
tLD(z)

)
using Lemma 4.6, the expression (2.4a) for the

Lax matrix LD(z) and (3.5) for the inverse of a Jordan block. Likewise

Z − tPΛ−1X =

N∑

i,j=1

Ẽij(Z − tPΛ−1X)ij

= z1−
N∑

i,j=1

Ẽij

(
π̃b
(
Ẽ
(∞)
ji[1]

)
+

m∑

a=1

ν̃a+τ̃a∑

b,c=ν̃a+1

pbi
(
Jτ̃a(λ− λa)

−1
)
cb
xcj

)
,

which coincides with z1 − π̃b
(
L̃(λ)

)
, as required. Since det tA = detA for any square

matrix A and noting that detZ =
∏n

i=1(z − zi)
τi and detΛ =

∏m
a=1(λ − λa)

τ̃a , the
result follows. �

3.3. Fermionic realisation. Let V := spanC{ψ
a
i , π

b
j}

N M
i,j=1 a,b=1 and define the exterior

algebra Pf :=
∧
V =

⊕2MN
k=0

∧k V , whose skew-symmetric product we denote simply

by juxtaposition. We refer to an element u ∈
∧k V as being homogeneous of degree k

and write |u| = k. In particular, |ψa
i | = |πai | = 1 for any a = 1, . . . ,M and i = 1, . . . , N .

We endow Pf with a Z2-graded Poisson structure defined by

{πai , ψ
b
j}+ = {ψb

j , π
a
i }+ = δijδab,

for any a, b = 1, . . . ,M and i, j = 1, . . . , N , and extended to the whole of Pf by the
Z2-graded skew-symmetry property and the Z2-graded Leibniz rule, i.e.

{u, v}+ = −(−1)|u||v|{v, u}+,

{u, vw}+ = {u, v}+w + (−1)|u||v|v{u,w}+

for any homogeneous elements u, v, w ∈ Pf .

Let P0̄
f
:=
⊕MN

k=0

∧2k V denote the even subspace of Pf . The restriction of the Z2-

graded Poisson bracket {·, ·}+ to P0̄
f
defines a Lie algebra structure on P0̄

f
.

Lemma 3.3. The linear maps πf : gl
D
M → P0̄

f
and π̃f : gl

D̃
N → P0̄

f
defined by

πf
(
E
(zi)
ab[r]

)
=

νi+τi−r∑

u=νi+1

πau+rψ
b
u, πf

(
E
(∞)
ab[1]

)
= −

(
m⊕

c=1

Jτ̃c(−λc)

)

ab

,

for every i = 1, . . . , n and a, b = 1, . . . ,M , and

π̃f
(
Ẽ
(λa)
ij[s]

)
=

ν̃a+τ̃a−s∑

u=ν̃a+1

ψu
i π

u+s
j , π̃f

(
Ẽ
(∞)
ij[1]

)
= −

(
n⊕

k=1

Jτk(−zk)

)

ij

,

for every i, j = 1, . . . , N and a = 1, . . . ,m, are homomorphisms of Lie algebras.
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Proof. For each i, j = 1, . . . , n and a, b = 1, . . . ,M we have

{
πf
(
E
(zi)
ab[r]

)
, πf
(
E
(zj)

cd[s]

)}
+
=

νi+τi−r∑

u=νi+1

νj+τj−s∑

v=νj+1

{πau+rψ
b
u, π

c
v+sψ

d
v}+

=

νi+τi−r∑

u=νi+1

νi+τi−s∑

v=νi+1

(
πau+r{ψ

b
u, π

c
v+s}+ψ

d
v − πcv+s{π

a
u+r, ψ

d
v}+ψ

b
u

)
δij

=

νi+τi−r−s∑

u=νi+1

(
δcbπ

a
u+r+sψ

d
u − δadπ

c
u+r+sψ

b
u

)
δij

=
(
δbcπf

(
E
(zi)
ad[r+s]

)
− δadπf

(
E
(zi)
cb[r+s]

))
δij = πf

({
E
(zi)
ab[r],E

(zj)

cd[s]

})
.

Likewise, for each i, j = 1, . . . , N and a, b = 1, . . . ,m one shows that
{
π̃f
(
Ẽ
(λa)
ij[r]

)
, π̃f
(
Ẽ
(λb)
kl[s]

)}
+
= π̃f

({
Ẽ
(λa)
ij[r] , Ẽ

(λb)
kl[s]

})
,

and all Poisson brackets involving the generators at infinity are also easily seen to be
preserved by the linear maps πf and π̃f since zi ∈ C and λa ∈ C are central in P0̄

f
. �

Theorem 3.4. We have the following relation

πf

(
det
(
λ1M×M − L

D(z)
))
π̃f

(
det
(
z1N×N − L

D̃(λ)
))

=

n∏

i=1

(z − zi)
τi

m∏

a=1

(λ− λa)
τ̃a .

Proof. Consider the same M ×M and N ×N block diagonal matrices Z and Λ as in
the proof of Theorem 3.2. Introduce the M ×N and N ×M matrices

Π := (πai )
M N
a=1 i=1, Ψ := (ψa

i )
N M
i=1 a=1,

and consider the following even supermatrix

M :=

(
Λ Π
Ψ Z

)
.

Since Λ and Z are both invertible, we can define the Berezinian, or superdeterminant, of

M which is given by BerM = detΛ
(
det(Z−ΨΛ−1Π)

)−1
. Alternatively, the Berezinian

of M can equally be expressed as BerM = det(Λ−ΠZ−1Ψ)(detZ)−1, see for instance
[BF84]. Equating these two expressions of BerM we obtain the relation

det(Λ−ΠZ−1Ψ)det(Z −ΨΛ−1Π) = detZ detΛ.

Recalling the expressions for the square matrices Z and Λ and their inverses given
in the proof of Theorem 3.2, we can write

Λ−ΠZ−1Ψ =
M∑

a,b=1

Eab(Λ−ΠZ−1Ψ)ab

= λ1−
M∑

a,b=1

Eab

(
πf
(
E
(∞)
ba[1]

)
+

n∑

i=1

νi+τi∑

j,k=νi+1

πaj
(
Jτi(z − zi)

−1
)
jk
ψb
k

)
,
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which is nothing but λ1− πf
(
LD(z)

)
. Likewise

Z −ΨΛ−1Π =

N∑

i,j=1

Eij(Z −ΨΛ−1Π)ij

= z1−
N∑

i,j=1

Eij

(
π̃f
(
E
(∞)
ij[1]

)
+

m∑

a=1

ν̃a+τ̃a∑

b,c=ν̃a+1

ψb
i

(
Jτ̃a(λ− λa)

−1
)
cb
πcj

)
,

which is z1− π̃f
(
tLD̃(λ)

)
. The result now follows as in the proof of Theorem 3.2. �

4. Quantum (glM , glN )-duality

There is a natural quantum version of Theorem 3.2. In order to state it, we first need
a short digression on Manin matrices. In this section we do not consider the fermionic
counterpart of Theorem 3.2, namely Theorem 3.4, but leave this for future work.

4.1. Manin matrices. Let A be an associative (but possibly noncommutative) algebra
over C. Suppose M = (Mij) is a matrix with entries in A.

Definition 4.1. The matrix M is a Manin matrix if

(i) [Mij ,Mkj ] = 0 for all i, j, k, and
(ii) [Mij ,Mkl] = [Mkj ,Mil] for all i, j, k, l.

That is, elements of the same column must commute amongst themselves, and com-
mutators of cross terms of 2× 2 submatrices must be equal (for example [M11,M22] =
[M21,M12]). Actually the second of these conditions implies the first (set j = l) but it
is convenient to think of them separately.

In the literature Manin matrices have been also called right quantum matrices [Kon07,
Kon08, KP07, MR14] or row-pseudo-commutative matrices [CSS09]. For a review of
their properties, and further references, see [CFR09].

Definition 4.2. The column(-ordered) determinant of an N ×N matrix M is

cdetM :=
∑

σ∈SN

(−1)|σ|Mσ(1)1Mσ(2)2 . . .Mσ(N)N .

Lemma 4.3. The column determinant cdetM changes only by a sign under the ex-
change of any two rows of M . If M is Manin, then cdetM also changes only by a sign
under the exchange of any two columns of M .

Proof. The first part is manifest. See [CFR09, §3.4] for the second. �

Proposition 4.4. Let M be an N ×N Manin matrix with coefficients in A. Let X be
a k × (N − k) matrix with coefficients in A, for some 0 ≤ k ≤ N . Then

cdetM = cdet

(
M

(
1 X
0 1

))
.

Proof. See [CFR09, §5.1]. �

This has the following corollary which will be important for us.
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Proposition 4.5. Let M =

(
A B
C D

)
be the block form of an N × N Manin matrix

with coefficients in A.

(i) Suppose A is a subalgebra of a (possibly larger) algebra A′ over which A has a
right inverse, i.e. AA−1 = 1 for some matrix A−1 with coefficients in A′. Then

cdetM = cdetA cdet(D − CA−1B)

as an equality in A.
(ii) Suppose A is a subalgebra of a (possibly larger) algebra A′′ over which D has a

right inverse, i.e. DD−1 = 1 for some matrix D−1 with coefficients in A′′. Then

cdetM = cdetD cdet(A−BD−1C)

as an equality in A.

Proof. We work initially over A′. Suppose A has a right inverse. By Proposition 4.4
we have

cdet

(
A B
C D

)
= cdet

((
A B
C D

)(
1 −A−1B
0 1

))

= cdet

(
A 0
C D − CA−1B

)
= cdetA cdet(D − CA−1B)

as an equality in A′. But cdetM belongs to A, so in fact this is an equality in A. This
establishes part (i).

For part (ii) note that, by Lemma 4.3, cdetM is invariant under the exchange of
any pair of rows followed by the exchange of the corresponding pair of columns. So we
can rearrange the blocks to find

cdetM = cdet

(
D C
B A

)

and then argue as for part (i). �

Remark 1. The proposition above is the first half of [CFR09, Proposition 10], specifi-
cally lines (5.17) and (5.18). The subsequent lines (5.19) and (5.20) appear to contain

misprints. For example, if M =

(
a b
c d

)
is a 2 × 2 Manin matrix with d invertible

then cdetM = ad − cb = (a − cbd−1)d = (a − cd−1b)d whereas [CFR09, (5.20)] gives
cdetM = (a− bd−1c)d, which is not in general the same. ⊳

4.2. Quantum Gaudin model. The algebra of observables of the quantum Gaudin
model associated with glDM is the enveloping algebra U(glDM ), equipped with its usual
associative product. Let ∂z := ∂

∂z
and consider the same Lax matrix given by (2.4a),

as in the classical model we considered above but now regarded as taking values in
glDM →֒ U(glDM ). Its transpose is

t
L
D(z)dz =

M∑

a,b=1

Eab ⊗

(
E
(∞)
ab[1] +

n∑

i=1

τi−1∑

r=0

E
(zi)
ab[r]

(z − zi)r+1

)
dz.
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Recall the definition of the column-ordered determinant, Definition 4.2, and consider
the quantity

(4.1)

n∏

i=1

(z − zi)
τi cdet

(
∂z1M×M − t

L
D(z)

)
=:

M∑

k=0

Sk(z)∂
k
z .

This is a differential operator in z of order M . For each 0 ≤ k ≤ M , the coefficient
Sk(z) of ∂

k
z is a rational function in z valued in U(glDM ).

The quantum Gaudin algebra Z (glDM ) of the glDM -Gaudin model is by definition

the unital subalgebra of U(glDM ) generated by the coefficients in the partial fraction
decomposition of these rational functions Sk(z). It is a commutative subalgebra of

U(glDM ), [Tal06, MTV06a].4

The quantum Gaudin algebra Z (glD̃N ) of the glD̃N -Gaudin model is defined in exactly
the same way in terms of the N th order differential operator in λ,

m∏

a=1

(λ− λa)
τ̃a cdet

(
∂λ1N×N − t

L
D̃(λ)

)
,

where, cf. (2.4b),

(4.2) t
L
D̃(λ)dλ =

N∑

i,j=1

Ẽij ⊗

(
Ẽ
(∞)
ij[1] +

m∑

a=1

τ̃a−1∑

s=0

Ẽ
(λa)
ij[s]

(λ− λa)s+1

)
dλ.

There is an automorphism of glDN defined by LD̃(λ) 7→ − tLD̃(λ). The Gaudin algebra
is stabilized by this automorphism. (This statement follows from applying a tensor
product of evaluation homomorphisms of Takiff algebras to the statement of [MTV06a,
Proposition 8.4]). Therefore we may equivalently consider the N th order differential
operator

(4.3)
m∏

a=1

(λ− λa)
τ̃a cdet

(
∂λ1N×N + L

D̃(λ)
)
=:

N∑

k=0

S̃k(λ)∂
k
λ

and define the quantum Gaudin algebra Z (glD̃N ) to be the unital subalgebra of U(glD̃N )
generated by the coefficients in the partial fraction decomposition of the rational func-

tions S̃k(λ) in λ. It is a commutative subalgebra of U(glD̃N ).
To state our result on quantum (glM , glN )-duality, it will be convenient to write (4.3)

in the equivalent form

(4.4)

m∏

a=1

(∂z − λa)
τ̃a cdet

(
− z1N×N + L

D̃(∂z)
)
=

N∑

k=0

S̃k(∂z)(−z)
k.

Let us explain the meaning of the expression cdet
(
− z1N×N +LD̃(∂z)

)
. The quantity

cdet
(
∂λ1N×N+LD̃(λ)

)
, which appears in (4.3), belongs to the algebra U(glD̃N )(λ)[∂λ] of

differential operators in λ whose coefficients are rational functions of λ with coefficients

4It is shown in [MTV06a] that cdet(∂z1M×M−Eab⊗
∑∞

n=0
(Eab⊗tn)z−n−1) generates a commutative

subalgebra of U(glM [t]). The algebra Z (glDM ) is a homomorphic image of this algebra in U(glDM ).
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in U(glD̃N ). Here λ and ∂λ can be regarded as formal generators obeying the commu-
tation relation [∂λ, λ] = 1. We can relabel these generators as we wish, provided we
preserve this relation. In particular, we may send (∂λ, λ) 7→ (−z, ∂z), since [−z, ∂z] = 1.

Thus cdet
(
− z1N×N + LD̃(∂z)

)
is an element of the algebra U(glD̃N )(∂z)[z].

More precisely, we shall be concerned in what follows with the quantity

(4.5)

m∏

a=1

(∂z − λa)
τ̃a cdet

(
z1N×N − L

D̃(∂z)
)
=

N∑

k=0

(−1)N−kS̃k(∂z)z
k.

4.3. Bosonic realisation. We consider realisations of U(glDM ) and U(glD̃N ) acting by
differential operators on the polynomial algebra C[xai ]

N M
i=1 a=1. Namely, let ∂ai := ∂

∂xa
i

and let us denote by Ub the unital associative algebra generated by {xai }
N M
i=1 a=1 and

{∂ai }
N M
i=1 a=1 subject to the commutation relations

[xai , x
b
j ] = 0, [∂ai , x

b
j ] = δijδab, [∂ai , ∂

b
j ] = 0,

for a, b = 1, . . . ,M and i, j = 1, . . . , N .
Ub is in particular a Lie algebra, with the Lie bracket given by the commutator.

Lemma 4.6. The linear maps π̂b : glDM → Ub and ˆ̃πb : glD̃N → Ub defined by

π̂b
(
E
(zi)
ab[r]

)
=

νi+τi−r∑

u=νi+1

xau+r∂
b
u, π̂b

(
E
(∞)
ab[1]

)
= −

(
m⊕

c=1

Jτ̃c(−λc)

)

ba

,

for every r = 0, . . . , τi − 1, i = 1, . . . , n and a, b = 1, . . . ,M , and

ˆ̃πb
(
Ẽ
(λa)
ij[s]

)
=

ν̃a+τ̃a−s∑

u=ν̃a+1

∂uj x
u+s
i , ˆ̃πb

(
Ẽ
(∞)
ij[1]

)
= −

(
n⊕

k=1

Jτk(−zk)

)

ji

,

for every s = 0, . . . , τ̃a − 1, i, j = 1, . . . , N and a = 1, . . . ,m, are homomorphisms
of Lie algebras. They extend uniquely to homomorphisms of associative algebras π̂b :

U(glDM ) → Ub and ˆ̃πb : U(glD̃N ) → Ub.

Proof. For each i, j = 1, . . . , n and a, b = 1, . . . ,M we have

[
π̂b
(
E
(zi)
ab[r]

)
, π̂b
(
E
(zj)

cd[s]

)]
=

νi+τi−r∑

u=νi+1

νj+τj−s∑

v=νj+1

[xau+r∂
b
u, x

c
v+s∂

d
v ]

=

νi+τi−r∑

u=νi+1

νi+τi−s∑

v=νi+1

(
xau+r[∂

b
u, x

c
v+s]∂

d
v + xcv+s[x

a
u+r, ∂

d
v ]∂

b
u

)
δij

=

νi+τi−r−s∑

u=νi+1

(
δbcx

a
u+r+s∂

d
u − δadx

c
u+r+s∂

b
u

)
δij

=
(
δbcπ̂b

(
E
(zi)
ad[r+s]

)
− δadπ̂b

(
E
(zi)
cb[r+s]

))
δij = π̂b

([
E
(zi)
ab[r],E

(zj)

cd[s]

])
.

In the second equality we have used the fact that if i 6= j then all commutators vanish
due to the restriction in the range of values in the sums over u and v.
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Likewise, for all i, j = 1, . . . , N and a, b = 1, . . . ,m we find

[
ˆ̃πb
(
Ẽ
(λa)
ij[r]

)
, ˆ̃πb
(
Ẽ
(λb)
kl[s]

)]
=

ν̃a+τ̃a−r∑

u=ν̃a+1

ν̃b+τ̃b−s∑

v=ν̃b+1

[∂uj x
u+r
i , ∂vl x

v+s
k ]

=

ν̃a+τ̃a−r∑

u=ν̃a+1

ν̃a+τ̃a−s∑

v=ν̃a+1

(
∂uj [x

u+r
i , ∂vl ]x

v+s
k + ∂vl [∂

u
j , x

v+s
k ]xu+r

i

)
δab

=

ν̃a+τ̃a−r−s∑

u=ν̃a+1

(
− δil∂

u
j x

u+r+s
k + δjk∂

u
l x

u+r+s
i

)
δab

=
(
δjk ˆ̃πb

(
Ẽ
(λa)
il[r+s]

)
− δil ˆ̃πb

(
Ẽ
(λa)
kj[r+s]

))
δab = ˆ̃πb

([
Ẽ
(λa)
ij[r] , Ẽ

(λb)
kl[s]

])
,

as required. Moreover, all the commutators involving the generators at infinity are also
easily seen to be preserved by the linear maps π̂b and ˆ̃πb since zi ∈ C and λa ∈ C are
central in Ub. �

Given any unital associative algebra U we denote by U[z, ∂z] the tensor product of
unital associative algebras U⊗C[z, ∂z]. As in the classical setting of §3.2, consider also
the unital associative algebras U(z)[∂z] := U ⊗ C(z)[∂z] and U(∂z)[z] := U ⊗ C(∂z)[z],

both containing U[z, ∂z] as a subalgebra. We extend the homomorphisms π̂b and ˆ̃πb
from Lemma 4.6 to homomorphisms of tensor product algebras,

π̂b : U(glDM )(z)[∂z] → Ub(z)[∂z], ˆ̃πb : U(glD̃M )(∂z)[z] → Ub(∂z)[z],

respectively. Applying these homomorphisms respectively to the expressions given by
(4.1) and (4.5), Theorem 4.7 below shows that the resulting expressions in fact live in
the common subalgebra Ub[z, ∂z]. The coefficients of the resulting differential operators
in z span the respective images of the quantum Gaudin algebras in Ub, namely

π̂b

(
Z (glDM )

)
⊂ Ub and ˆ̃πb

(
Z (glD̃N )

)
⊂ Ub.

The following theorem establishes that these commutative subalgebras of Ub coincide.

Theorem 4.7. We have

π̂b

(
n∏

i=1

(z−zi)
τi cdet

(
∂z1M×M− t

L
D(z)

)
)

= ˆ̃πb

(
m∏

a=1

(∂z−λa)
τ̃a cdet

(
z1N×N−L

D̃(∂z)
)
)
,

as an equality of polynomial differential operators in z.

Proof. Introduce the M ×M and N ×N block diagonal matrices

Λ :=
m⊕

a=1

tJτ̃a(∂z − λa), Z :=
n⊕

i=1

Jτi(z − zi).

Also introduce the M ×N matrices

D := (∂ai )
M N
a=1 i=1, X := (xai )

M N
a=1 i=1.

Consider the block matrix

M :=

(
Λ X
tD Z

)
,
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with entries in the noncommutative algebra A := Ub[z, ∂z]. The key observation is that
this is a Manin matrix. Indeed, the only non-trivial check is for the 2× 2 submatrices
of the form

(4.6)

(
∂z − λa xai
∂ai z − zi

)

and for these we have [∂z − λa, z − zi] = 1 = [∂ai , x
a
i ] as required. This fact means that

we can follow the proof of Theorem 3.2, with suitable modifications, as follows.
The square matrices Z and Λ with entries in C[z, ∂z] ⊂ Ub[z, ∂z] have (two-sided)

inverses in the enlarged algebras A′′ := Ub(z)[∂z] and A′ := Ub(∂z)[z], respectively,
both of which contain A as a subalgebra. These inverses are given explicitly by

Z−1 =

n⊕

i=1

Jτi(z − zi)
−1, Λ−1 =

m⊕

a=1

tJτ̃a(∂z − λa)
−1.

We are therefore in the setup of Proposition 4.5. We may apply it to evaluate cdetM
in two different ways. We obtain

(4.7) cdetΛ cdet
(
Z − tDΛ−1X

)
= cdetZ cdet

(
Λ−XZ−1 tD

)
,

as an equality in A = Ub[z, ∂z], namely this is an equality of polynomial differential
operators in z with coefficients in Ub.

It remains to evaluate both sides of (4.7) more explicitly. We have

cdetZ =
n∏

i=1

(z − zi)
τi , cdetΛ =

m∏

a=1

(∂z − λa)
τ̃a ,

where the order of the products on the right of these equalities does not matter. Now
Z and Λ can be written explicitly as follows

Z =
N∑

i,j=1

Ẽij

(
zδij − ˆ̃πb

(
Ẽ
(∞)
ji[1]

))
, Λ =

M∑

a,b=1

Eab

(
∂zδab − π̂b

(
E
(∞)
ab[1]

))

with π̂b and ˆ̃πb as defined in Lemma 4.6. In terms of these expressions we can write

Λ−XZ−1 tD =
M∑

a,b=1

Eab(Λ−XZ−1 tD)ab

= ∂z1−
M∑

a,b=1

Eab

(
π̂b
(
E
(∞)
ab[1]

)
+

n∑

i=1

νi+τi∑

j,k=νi+1

xaj
(
Jτi(z − zi)

−1
)
jk
∂bk

)
.

The latter expression is exactly ∂z1−π̂b
(
tLD(z)

)
by virtue of Lemma 4.6, the expression

(2.4a) for the Lax matrix LD(z) and the expression (3.5) for the inverse of a Jordan
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block. Likewise

Z − tDΛ−1X =
N∑

i,j=1

Ẽij(Z − tDΛ−1X)ij

= z1−

N∑

i,j=1

Ẽij

(
ˆ̃πb
(
Ẽ
(∞)
ji[1]

)
+

m∑

a=1

ν̃a+τ̃a∑

b,c=ν̃a+1

∂bi
(
Jτ̃a(∂z − λa)

−1
)
cb
xcj

)
,

which coincides with z1− ˆ̃πb
(
LD̃(∂z)

)
. The result now follows. �

In the special case of no Jordan blocks and no non-trivial Takiff algebras, Theorem
4.7 can be found in [MTV09]. See also [CF08, Proposition 8], where it is noted that
the relation cdetM = detZ cdet(Λ−XZ−1 tD) leads to a relation between the classical
spectral curve and the “quantum spectral curve”.

5. Z2-cyclotomic Gaudin models with irregular singularities

Another possible class of generalisations of Gaudin models are those whose Lax
matrix is equivariant under an action of the cyclic group, determined by a choice of
automorphism of the Lie algebra (here glM ). Such models were considered in [Skr06,
Skr07, Skr13] and in [CY07] for automorphisms of order 2, and for automorphisms of
arbitrary finite order in [VY16, VY17b].

It is natural to ask whether (glM , glN )-dualities also exist, in the sense of §3, between
cyclotomic Gaudin models. Theorem 5.2, which can be deduced from the results of
[AHH90], establishes a duality between a cyclotomic glM -Gaudin model associated
with the diagram automorphism of glM and a non-cyclotomic spN -Gaudin model.

5.1. Z2-cyclotomic Lax matrix for the diagram automorphism. Let zi ∈ C for
i = 1, . . . , n be such that 0 6= zi 6= ±zj for i 6= j. Pick and fix integers τi ∈ Z≥1 for
i = 0 and for each i = 1, . . . , n. Consider the effective divisor

C = 2τ0 · 0 +

n∑

i=1

τi · zi +

n∑

i=1

τi · (−zi) + 2 · ∞.

Note, in particular, that the Takiff degree at the origin is always even. Let N ∈ Z≥1.
We require that degC = 2N + 2 or in other words,

τ0 +
n∑

i=1

τi = N.

Let M ∈ Z≥1. As before, cf. §2.1, denote by Eab for a, b = 1, . . . ,M the standard
basis of glM . There is an automorphism σ of glM defined by

σ(Eab) := −Eba.

We call this the diagram automorphism of glM . The Lie algebra glM decomposes into
the direct sum of the ±1 eigenspaces of σ,

glM = soM ⊕ pM .
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Here the subalgebra of invariants, i.e. the (+1)-eigenspace, is a copy of the Lie al-
gebra soM . The (−1)-eigenspace pM is a copy of the symmetric second rank tensor
representation of soM . We shall write

E
±
ab

:= Eab ± Eba,

so that E+
ab ∈ soM and E

−
ab ∈ pM , for all a, b = 1, . . . ,M . We introduce the pair of maps

Π(0) : glM → soM , Eab 7→ E
−
ab and Π(1) : glM → pM , Eab 7→ E

+
ab. More generally, for

r ∈ Z≥0 we define Π(r) := Π(rmod 2) : glM → glM , so that Π(r)Eab = Eab − (−1)rEba.
There is an extension of the automorphism σ to an automorphism of the polynomial

algebra glM [ε] defined by

X εk 7→ σ(X)(−ε)k.

Let glM [ε]σ denote the subalgebra of invariants. As vector spaces, we have

glM [ε]σ ∼= soM [ε2]⊕ ε pM [ε2].

Define glCM to be the direct sum of Takiff Lie algebras

glCM := (ε∞glM [ε∞])σ/ε2∞ ⊕

n⊕

i=1

glM [εzi ]/ε
τi
zi
⊕ glM [ε0]

σ/ε2τ00 .

Note that as a vector space the Takiff algebra attached to the point at infinity is simply
(ε∞glM [ε∞])σ/ε2∞

∼= pMε∞.
As before we let ρ : glM → MatM×M (C) denote the defining representation of glM

and write Eab := ρ(Eab). The formal Lax matrix of the Z2-cyclotomic Gaudin model

associated with glCM is theM×M matrix with entries consisting of glCM -valued rational
functions of z, given by

L̃
C(z)dz :=

M∑

a,b=1

Eba ⊗

(
E
+(∞)
ab[1] +

2τ0−1∑

r=0

(Π(r)Eab)
(0)
[r]

zr+1

+

n∑

i=1

τi−1∑

r=0

E
(zi)
ab[r]

(z − zi)r+1
+

n∑

i=1

τi−1∑

r=0

(−1)r+1
E
(zi)
ba[r]

(z + zi)r+1

)
dz.(5.1)

It obeys the following Lax algebra

(5.2)
[
L̃
C
1 (z), L̃

C
2 (w)

]
=
[
r12(z, w), L̃

C
1 (z)

]
−
[
r21(w, z), L̃

C
2 (w)

]

where r12(z, w) denotes the (non-skew-symmetric) classical r-matrix

r12(z, w) :=

M∑

a,b=1

(
Eba ⊗ Eab

w − z
−
Eba ⊗ Eba

w + z

)
.

Consider the quantity

(5.3)

(
z2τ0

n∏

i=1

(z − zi)
τi(z + zi)

τi

)
det
(
λ1M×M − L̃

C(z)
)

This is a polyomial in λ of order M . For each 0 ≤ k ≤M , the coefficient of λk is a ra-
tional function in z valued in S(glCM ). The classical cyclotomic Gaudin algebra Z (glCM )



(glM , glN )-DUALITIES IN GAUDIN MODELS WITH IRREGULAR SINGULARITIES 21

associated with the divisor C and the diagram automorphism σ is by definition the
Poisson subalgebra of S(glCM ) generated by the coefficients of these rational functions.

It follows from (5.2) that Z (glCM ) is a Poisson-commutative subalgebra of S(glCM ).

5.2. Lax matrix of sp2N -Gaudin model with regular singularities. Denote by

ẼIJ the standard basis of gl2N , where, for convenience, we shall let I, J run over the
index set I := {−N, . . . ,−1, 1, . . . , N}. There is a subalgebra of gl2N , isomorphic to
the Lie algebra sp2N , spanned by

(5.4) ĒIJ := ẼIJ − σIσJ Ẽ−J,−I ,

for all I, J ∈ I. Here we denote by σI the sign of I, equal to 1 if I > 0 and to −1 if
I < 0. We have the relation Ē−J,−I = −σIσJ ĒIJ for every I, J ∈ I. Let

I2 :=
{
(I, J) ∈ I× I

∣∣ I, J > 0 or σIσJ = −1 with |I| ≤ |J |
}
.

Then {ĒIJ}(I,J)∈I2 is a basis of the subalgebra sp2N . A dual basis with respect to half

the trace in the fundamental representation is given by {ĒIJ}(I,J)∈I2 where

(5.5) Ē
IJ := ẼJI − σIσJ Ẽ−I,−J , Ē

I,−I := Ẽ−I,I ,

for any I, J ∈ I with J 6= −I. Indeed, if we let ĒIJ := ρ(ĒIJ) and Ē
IJ := ρ(ĒIJ) for all

I, J ∈ I then we have 1

2
tr(ĒIJ Ē

KL) = δILδJK for all (I, J), (K,L) ∈ I2.

Let D̄ denote the special case of the effective divisor D̃ of §2.1 obtained by setting
τ̃a = 1 for each a = 1, . . . ,m, and hence m =M . That is,

(5.6) D̄ =
M∑

a=1

λa + 2 · ∞.

Introduce the direct sum of Lie algebras

spD̄2N := ε̃∞sp2N [ε̃∞]/ε̃2∞ ⊕

M⊕

a=1

sp2N .

The Lax matrix of the classical Gaudin model associated with the divisor D̄ is the
2N × 2N matrix of spD̄2N -valued rational functions of λ given by

L
D̄(λ)dλ :=

∑

(I,J)∈I2

ĒIJ ⊗

(
Ē
(∞)
IJ +

M∑

a=1

Ē
(λa)
IJ

λ− λa

)
dλ,(5.7)

where by abuse of notation we drop the subscript on the Takiff generators, namely we

define Ē
(λa)
IJ

:= Ē
(λa)
IJ [0] for all a = 1, . . . ,M and Ē

(∞)
IJ

:= Ē
(∞)
IJ [1]. It obeys the Lax algebra

(5.8)
[
L
D̄
1 (λ),L

D̄
2 (µ)

]
=
[
r̄12(λ, µ),L

D̄
1 (λ) + L

D̄
2 (µ)

]

where r̄12(λ, µ) is the standard skew-symmetric classical r-matrix with spectral param-
eter for the Lie algebra sp2N , namely

r̄12(λ, µ) :=
∑

(I,J)∈I2

ĒIJ ⊗ ĒIJ

µ− λ
.
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Just as in §3.1 we may consider the subalgebra Z (spD̄2N ) of the Poisson algebra S(spD̄2N )
generated by the coefficients rational functions in λ obtained as the coefficients of the
polynomial in z defined by

(5.9)

M∏

a=1

(λ− λa) det
(
z1N×N − L

D̄(λ)
)
,

which is Poisson-commutative by virtue of the relation (5.8).

5.3. Bosonic realisation. Consider the Poisson algebra Pb := C[xai , p
b
j ]
N M
i,j=1 a,b=1, as

in §3.2, with Poisson brackets given by (3.3).
We now want to break up the list of integers from 1 to N into n+1 blocks of size τi

for each i = 0, 1, . . . , n. Define the integers νi by – in contrast to (2.1) –

νi :=

i−1∑

j=0

τj ,

for each i = 0, . . . , N (note in particular that now ν0 = 0), so that

(1, . . . , N) = (1, . . . , τ0; ν1 + 1, . . . , ν1 + τ1; . . . ; νn + 1, . . . , νn + τn).

Lemma 5.1. Let µ ∈ C be arbitrary and define a pair of linear maps πb : glCM → Pb

and π̄b : spD̄2N → Pb by

πb
(
E
(zi)
ab[r]

)
=

νi+τi−r∑

u=νi+1

xau+rp
b
u, πb

(
E
+(∞)
ab[1]

)
= λaδab,

πb

(
(Π(s)Eab)

(0)
[s]

)
=

τ0−s∑

u=1

(
xau+sp

b
u − (−1)sxbu+sp

a
u

)
− µ

τ0∑

u,v=1
u+v=s+1

(−1)vxaux
b
v

for every r = 0, . . . , τi − 1, s = 0, . . . , 2τ0 − 1, i = 1, . . . , n and a, b = 1, . . . ,M , and

π̄b
(
Ē
(λa)
ij

)
= pajx

a
i π̄b

(
Ē
(λa)
i,−j

)
= −xajx

a
i , π̄b

(
Ē
(λa)
−i,j

)
= pajp

a
i ,

π̄b
(
Ē
(∞)
IJ

)
= −

(
1⊕

i=n

(
− Jτi(−zi)

)
⊕
(
− Jτ0(0)

)
⊕ Jτ0(0)⊕

n⊕

i=1

Jτi(−zi) + µẼ1,−1

)

JI

,

for every i, j = 1, . . . , N , I, J ∈ I and a = 1, . . . ,m. These maps are homomorphisms
of Lie algebras. They extend uniquely to homomorphisms of Poisson algebras πb :

S(glCM ) → Pb and π̄b : S(spD̄2N ) → Pb.

Proof. We first show that πb is a homomorphism. It follows, exactly as in the proof of
Lemma 3.1 (see Lemma 4.6) that

(5.10)
{
πb
(
E
(zi)
ab[r]

)
, πb
(
E
(zj)

cd[s]

)}
= πb

([
E
(zi)
ab[r],E

(zj)

cd[s]

])
,

for any r, s = 0, . . . , τi− 1, i, j = 1, . . . , n and a, b, c, d = 1, . . . ,M . We also clearly have
{
πb
(
(Π(s)Eab)

(0)
[s]

)
, πb
(
E
(zi)
cd[r]

)}
= 0
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for any r = 0, . . . , τi − 1 i = 1, . . . , n and a, b, c, d = 1, . . . ,M since the canonical
variables entering each argument of the Poisson brackets mutually commute.

To simplify the notation, introduce yabr :=
∑τ0−r

u=1

(
xau+rp

b
u − (−1)rxbu+rp

a
u

)
. We can

then write

πb

(
(Π(s)Eab)

(0)
[s]

)
= yabs − µ

τ0∑

u,v=1
u+v=s+1

(−1)vxaux
b
v.

By a similar computation to the one leading to (5.10), we find that
{
yabr , y

cd
s

}
= δbcy

ad
r+s + (−1)sδacy

db
r+s + (−1)rδbdy

ca
r+s + (−1)r+sδady

bc
r+s.

Likewise, we have

−

τ0∑

v,w=1
v+w=s+1

(−1)w
{
yabr , x

c
vx

d
w

}

= −

τ0∑

u=r+1

s∑

w=1
u+w=r+s+1

(−1)w
(
δbcx

a
ux

d
w + (−1)rδbdx

c
ux

a
w + (−1)sδacx

d
ux

b
w + (−1)r+sδadx

b
ux

c
w

)
.

and also by symmetry we obtain

−

τ0∑

v,w=1
v+w=r+1

(−1)w
{
xavx

b
w, y

cd
s

}
=

τ0∑

v,w=1
v+w=r+1

(−1)w
{
ycds , x

a
vx

b
w

}

= −

r∑

u=1

τ0∑

w=s+1
u+w=r+s+1

(−1)w
(
δbcx

a
ux

d
w + (−1)rδbdx

c
ux

a
w + (−1)sδacx

d
ux

b
w + (−1)r+sδadx

b
ux

c
w

)
.

It now follows by combining all the above that
{
πb

(
(Π(r)Eab)

(0)
[r]

)
, πb

(
(Π(s)Ecd)

(0)
[s]

)}

= δbcπb

(
(Π(r)Ead)

(0)
[r+s]

)
+ (−1)sδacπb

(
(Π(r)Edb)

(0)
[r+s]

)

+ (−1)rδbdπb

(
(Π(r)Eca)

(0)
[r+s]

)
+ (−1)r+sδadπb

(
(Π(r)Ebc)

(0)
[r+s]

)

= πb

([
(Π(r)Eab)

(0)
[r] , (Π(s)Ecd)

(0)
[s]

])
,

as required. And finally, since E
+(∞)
ab[1] is a Casimir and is sent to a constant under πb,

all Poisson brackets involving it are preserved by πb.
We now turn to showing that π̄b is also a homomorphism. Define qaI for each I ∈ I

and a = 1, . . . ,M by letting qai := xai and qa−i := pai for every i = 1, . . . , N . In this
notation the Poisson brackets (3.3) can be rewritten more uniformly as

{qaI , q
b
J} = σJδI,−Jδab,
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for all I, J ∈ I and a, b = 1, . . . ,M . Moreover, we also have π̄b
(
Ē
(λa)
IJ

)
= σJq

a
I q

a
−J for

all I, J ∈ I and a = 1, . . . ,M . We then have

{
π̄b
(
Ē
(λa)
IJ

)
, π̄b
(
Ē
(λb)
KL

)}
= σJσL

(
σKδI,−Kq

a
−Jq

a
−L + σ−LδI,Lq

a
Kq

a
−J

+ σKδJ,Kq
a
I q

a
−L + σ−LδJ,−Lq

a
I q

a
K

)
δab

= σJσK

(
π̄b
(
Ē
(λa)
IL

)
δJ,K + π̄b

(
Ē
(λa)
−J,−K

)
δI,L

+ π̄b
(
Ē
(λa)
I,−K

)
δ−J,L + π̄b

(
Ē
(λa)
−J,L

)
δK,−I

)
δab = π̄b

([
Ē
(λa)
IJ , Ē

(λb)
KL

])
,

where in the second equality we have made use of the fact that σIσ−I = −1 for any

I ∈ I. Finally, the Poisson brackets involving the generators Ē
(∞)
IJ attached to infinity

are all trivially preserved by π̄b. �

We are now in a position to prove the analogue of Theorem 3.2 in the present context.

Theorem 5.2. For any µ ∈ C as in Lemma 5.1, we have the relation

πb

(
z2τ0

n∏

i=1

(z − zi)
τi(z + zi)

τi det
(
λ1M×M − L̃

C(z)
)
)

= π̄b

(
M∏

a=1

(λ− λa) det
(
z1N×N − L

D̃(λ)
)
)
.

Proof. We follow the argument given in the proof of Theorem 3.2 very closely. Consider
the M ×M and 2N × 2N block matrices

Λ :=
(
(λ− λa)δab

)M
a,b=1

,

Z :=

1⊕

i=n

(
− Jτi(−z − zi)

)
⊕
(
− Jτ0(−z)

)
⊕ Jτ0(z)⊕

n⊕

i=1

Jτi(z − zi) + µẼ1,−1.

We use here the convention, cf. §5.2, that indices on components of the 2N×2N matrix
Z run through the index set I = {−N, . . . ,−1, 1, . . . , N}. As an example of the form
of the matrix Z, if n = 2, τ0 = 2, τ1 = 1 and τ2 = 2 then we have

Z =




z + z2 0
1 z + z2 0

z + z1
z 0 0 0
1 z 0 0
0 µ z 0
0 0 −1 z

z − z1
0 z − z2 0

−1 z − z2




.
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We define a pair of M × 2N matrices P and X, whose columns are also indexed by
the set I, as

tP :=




−x1N . . . −xMN
...

. . .
...

−x11 . . . −xM1
p11 . . . pM1
...

. . .
...

p1N . . . pMN




, X :=



p1N . . . p11 x11 . . . x1N
...

. . .
...

...
. . .

...
pMN . . . pM1 xM1 . . . xMN


 .

Consider now the block (M + 2N)× (M + 2N) square matrix (3.7) with Λ, Z, X and
P defined as above. Now the derivation leading to the equation (3.8) from the proof of
Theorem 3.2 still holds and so it just remains to compute the determinants appearing
on both sides of this identity.

On the one hand, we have

Λ−XZ−1 tP =

M∑

a,b=1

Eab(Λ−XZ−1 tP )ab

= λ1−
M∑

a,b=1

Eab

(
πb
(
E
+(∞)
ab[1]

)
+

n∑

i=1

νi+τi∑

j,k=νi+1

xaj (Z
−1)jkp

b
k +

τ0∑

j,k=1

xaj (Z
−1)jkp

b
k

−

τ0∑

j,k=1

paj (Z
−1)−j,−kx

b
k −

τ0∑

j,k=1

xaj (Z
−1)j,−kx

b
k −

n∑

i=1

νi+τi∑

j,k=νi+1

paj (Z
−1)−j,−kx

b
k

)
.

For each i = 1, . . . , n we note using the expression (3.5) for the inverse of a Jordan
block together with Lemma 5.1 that

νi+τi∑

j,k=νi+1

xaj (Z
−1)jkp

b
k =

τi−1∑

r=0

πb
(
E
(zi)
ab[r]

)

(z − zi)r+1
,

−

νi+τi∑

j,k=νi+1

paj (Z
−1)−j,−kx

b
k =

τi−1∑

r=0

(−1)r+1πb
(
E
(zi)
ba[r]

)

(z + zi)r+1
.

Next, for the two terms in the middle line above, corresponding to the origin, we find

τ0∑

j,k=1

(
xaj (Z

−1)jkp
b
k − paj (Z

−1)−j,−kx
b
k

)
=

τ0−1∑

s=0

1

zs+1

τ0−s∑

u=1

(
xau+sp

b
u − (−1)sxbu+sp

a
u

)
.

Finally, for the remaining term we have

−

τ0∑

j,k=1

xaj (Z
−1)j,−kx

b
k = −

2τ0−1∑

s=1

µ

zs+1

τ0∑

u,v=1
u+v=s+1

(−1)vxaux
b
v.

Putting all the above together we deduce that Λ−XZ−1 tP = λ1− πb
(
tL̃C(z)

)
.
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On the other hand, we have

Z − tPΛ−1X =
∑

I,J∈I

ẼIJ(Z − tPΛ−1X)IJ

= z1−
∑

(I,J)∈I2

ĒIJ

(
π̄b
(
Ē
(∞)
IJ

)
−

M∑

a=1

π̄b
(
Ē
(λa)
IJ

)

λ− λa

)
= z1− π̄b

(
L
D̄(λ)

)
.

To see the second equality we note that setting z = 0 in Z− tPΛ−1X yields a 2N ×2N
symplectic matrix, i.e. of the block form

M =

(
A B

C −Ã

)

with B̃ = B and C̃ = C, where for an N ×N matrix A we denote by Ã the transpose
of A along the minor diagonal. And for any such matrix M we have

M =
∑

I,J∈I

ẼIJMIJ =

N∑

i,j=1

((
Ẽij − Ẽ−j,−i

)
Aij + Ẽi,−jCij − Ẽ−i,jBij

)

=
N∑

i,j=1

ĒijAji +
N∑

i,j=1
i≤j

Ē−i,jCji −
N∑

i,j=1
i≤j

Ēi,−jBji =
∑

(I,J)∈I2

ĒIJMIJ .

Lastly, we clearly have detΛ =
∏M

a=1(λ− λa) and detZ = z2τ0
∏n

i=1(z − zi)
τi(z + zi)

τi

from which the result now follows, using again the fact that det tA = detA for any
square matrix A, as in the proof of Theorem 3.2. �

Remark 2. Consider replacing p by ∂ in the (M + 2N)× (M + 2N) square matrix



λ− λ1 0 p1N . . . p11 x11 . . . x1N
. . .

...
. . .

...
...

. . .
...

0 λ− λM pMN . . . pM1 xM1 . . . xMN
−x1N . . . −xMN
...

. . .
...

−x11 . . . −xM1
p11 . . . pM1 Z
...

. . .
...

p1N . . . pMN




used in the proof of Theorem 5.2. The resulting square matrix with non-commutative
entries is not Manin since, for example, the entries of the first column are not mutually
commuting. Consequently, we do not immediately obtain a quantum analogue of the
classical relation in Theorem 5.2.

A related remark is that in the quantum case, higher Gaudin Hamiltonians for cyclo-
tomic Gaudin models do exist but they are not in general given by a simple cdet-type
formula. See [VY16, VY17a] (and especially Remark 2.5 in [VY16]). ⊳
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Remark 3. Note that we did not allow irregular singularities on the sp2N side (appart
from the double pole at infinity).

From the point of view of (glM , glN )-duality, the absence of irregular singularities in
the sp2N -Gaudin model is controlled by the fact that the matrix

(5.11)
(
πb
(
E
+(∞)
ab[1]

))M
a,b=1

,

representing the Casimir generators attached to infinity in the cyclotomic glM -Gaudin
model, is purely diagonal and in particular has no Jordan blocks, as in Lemma 5.1. Yet
this is forced on us since the matrix (5.11) is symmetric.

Alternatively, note that if one naively attempts to run the arguments above for the

divisor D̃ in place of D̄, one does not obtain a homomorphism spD̃2N → Pb. For example,

Poisson brackets of the form {−
∑

u x
u
i x

u+1
j ,

∑
v p

v
kp

v+1
l } produce two sorts of terms:

“good” terms like
∑

u x
u
i p

u+2
l δjk, which respect the gradation of the Takiff algebra, but

also “bad” terms like
∑

u x
u+1
j pu+1

l δik, which do not. ⊳

5.4. Example: Neumann model. We end this section by considering the special
case of Theorem 5.2 when N = 1 and µ = −1.

Specifically, for the Z2-cyclotomic Gaudin model of §5.1 we take n = 0 and τ0 = 1.
The formal Lax matrix (5.1) of the corresponding cyclotomic glM -Gaudin model with
effective divisor C = 2 · 0 + 2 · ∞ then reduces to

(5.12) L̃
C(z)dz =

M∑

a,b=1

Eba ⊗

(
E
+(∞)
ab[1] +

E
−(0)
ab[0]

z
+

E
+(0)
ab[1]

z2

)
dz.

WhenN = 1 in §5.2 we have the canonical isomorphism sp2 ≃ sl2 given by Ē11 7→ −H,
Ē1,−1 7→ 2F and Ē−1,1 7→ 2E. The dual basis elements are sent under this isomorphism
to Ē

11 = Ē11 7→ −H, Ē1,−1 = 1

2
Ē−1,1 7→ E and Ē

−1,1 = 1

2
Ē1,−1 7→ F. The formal Lax

matrix (5.7) of the sl2-Gaudin model with effective divisor (5.6) then becomes,

L
D̄(λ)dλ =

(
H ⊗ H

(∞) + 2E ⊗ F
(∞) + 2F ⊗ E

(∞)

+
M∑

a=1

H ⊗ H
(λa) + 2E ⊗ F

(λa) + 2F ⊗ E
(λa)

λ− λa

)
dλ,(5.13)

where we have used the notation

E := ρ(E) =

(
0 1
0 0

)
, F := ρ(F) =

(
0 0
1 0

)
, H := ρ(H) =

(
1 0
0 −1

)
.

The Poisson algebra Pb in the present context is simply C[xa, pa]
M
a,b=1 where we have

dropped the subscript 1 from the canonical variables by defining xa := xa1 and pa := pa1.

In terms of this notation, the representation πb : glCM → Pb from Theorem 5.2 reads

πb
(
E
+(∞)
ab[1]

)
= λaδab, πb

(
E
−(0)
ab[0]

)
= xapb − xbpa, πb

(
E
+(0)
ab[1]

)
= −xaxb,
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recalling that µ = −1. Correspondingly, the map π̄b : spC2 → Pb takes the form

π̄b
(
E
(∞)
)
= 1

2
, π̄b

(
F
(∞)
)
= 0, π̄b

(
H
(∞)
)
= 0,

π̄b
(
E
(λa)
)
= 1

2
p2a, π̄b

(
F
(λa)
)
= − 1

2
x2a, π̄b

(
H
(λa)
)
= xapa.

Applying the first representation πb to the formal Lax matrix (5.12) we find

L̃(z)dz := πb
(
L̃
C(z)

)
dz

=

(
M∑

a=1

λaEaa − z−1
M∑

a,b=1

(xapb − xbpa)Eab − z−2
M∑

a,b=1

xaxbEab

)
dz.

If we introduce variables ωa, a = 1, . . . ,M such that ω2
a = λa then the above coincides

with the M ×M Lax matrix of the Neumann model, with Hamiltonian

H =
1

4

M∑

a,b=1
a 6=b

(xapb − xbpa)
2 +

1

2

M∑

a=1

ω2
ax

2
a,

describing the motion of a particle constrained to the sphere
∑M

a=1 x
2
a = 1 in R

M and

subject to harmonic forces with frequency ωa along the ath axis. On the other hand,
applying π̄b to the formal Lax matrix (5.13) yields

L(λ)dλ := π̄b
(
L
D̄(λ)

)
dλ = 2

( ∑M
a=1

xapa
λ−λa

∑M
a=1

−x2
a

λ−λa

1 +
∑M

a=1
p2a

λ−λa
−
∑M

a=1
xapa
λ−λa

)
dλ,

which coincides with the expression for the 2× 2 Lax matrix of the same model. The
statement of Theorem 5.2 corresponds to the well known relation between the above
two Lax formulations of the Neumann model (see e.g. [Sur04, §12])

z2 det
(
λ1M×M − L̃(z)

)
=

M∏

a=1

(λ− λa) det
(
z12×2 − L(λ)

)
.
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