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CV MDI QKD: Composable Security against Coherent Attacks

Cosmo Lupo, Carlo Ottaviani, Panagiotis Papanastasiou, Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, UK

We present a rigorous security analysis of Continuous-Variable Measurement-Device Independent Quantum

Key Distribution (CV MDI QKD) in a finite size scenario. The security proof is obtained in two steps: by

first assessing the security against collective Gaussian attacks, and then extending to the most general class

of coherent attacks via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security

proofs for CV QKD with new findings about min-entropy calculus and parameter estimation. In doing so, we

improve the finite-size estimate of the secret key rate. Our conclusions confirm that CV MDI protocols allow

for high rates on the metropolitan scale, and may achieve a nonzero secret key rate against the most general

class of coherent attacks after 107 − 109 quantum signal transmissions, depending on loss and noise, and on the

required level of security.

I. INTRODUCTION

Quantum communication technologies, and in particu-

lar quantum key-distribution (QKD), are rapidly progressing

from research laboratories towards real-world implementa-

tions. The ultimate goal is building a network of quantum

devices (quantum internet) enabling unconditionally secure

communications on the global scale [1–4]. To this end, QKD

has been recently extended to a scenario where two honest

users (Alice and Bob) exploit the mediation of an untrusted

relay, operated by the eavesdropper (Eve), to establish a se-

cure communication channel [5, 6]. This remarkable feature

is made possible by the working mechanism of the relay it-

self, which activates secret correlations on the users’ remote

stations by performing Bell detection on the incoming sig-

nals and publicly announcing the results [6]. This architec-

ture has been called measurement-device independent (MDI)

QKD because, as such, the security of the communication

does not rely on the assumption that the measurement devices

(which are more exposed to side-channel attacks than other

devices) are trusted [5, 6].

Protocols exploiting quantum continuous variables (CV)

have attracted considerable attention, for their potential of

boosting the communication rate and for their employabil-

ity across mid-range (metropolitan) distances [6, 7]. The key

rates achievable by CV QKD protocols are not far from the ul-

timate repeater-less bound for private communication, which,

for a lossy line of transmissivity η is − log (1− η) bits per

use [8]. The security of CV QKD, which is very well estab-

lished under Gaussian attacks and in the asymptotic regime

[9], has been recently generalized to the most general class of

coherent attacks as well as to the finite-size setting [10–14]. In

this landscape, the problem of establishing the secret key rates

achievable by CV MDI QKD in the finite-size setting has not

been yet explicitly addressed.

In this paper we fill this gap and provide a rigorous

composable-security proof of the CV MDI QKD protocol pro-

posed in Ref. [6] (this proof can then be extended to tripartite

[15] and multipartite CV MDI protocols [16]). The security

of CV MDI QKD against collective attacks can be obtained

along the lines of Ref. [10]. Then, the extension to the most

general class of coherent attacks can be obtained by exploit-

ing the recently introduced Gaussian de Finetti reduction [11].

Here we apply to CV MDI QKD and improve the proof tech-

niques of Ref. [10]:

1. We present a simpler analysis of parameter estimation

that holds under general coherent attacks. Our analy-

sis exploits the recently proven optimality of Gaussian

attacks in the finite-size scenario [11] to simplify pa-

rameter estimation.

2. We show that in CV MDI protocols, the parameter es-

timation routine can be performed locally by the legiti-

mate users with almost no public communication.

3. We improve the secret-key rate estimates of Ref. [10]

by exploiting a new entropic inequality.

The paper develops as follows. We start in Section II by

reviewing the CV MDI QKD protocol of Ref. [6]. Section

III is devoted to our new results about parameter estimation

and its statistical analysis. In Section IV we present an im-

proved estimation of the secret key rate obtained by applying

a new entropic inequality. A comparison with previous works

is presented in Section V. To make our results more concrete,

numerical examples are presented in Section VI. We finally

discuss the relation between security proof and experimental

realization and possible improvements in Section VII. Finally,

conclusions are presented in Section VIII.

II. DESCRIPTION OF THE PROTOCOL

In this section, we review the CV MDI QKD protocol in-

troduced in Ref. [6].

The protocol develops in five steps (see Fig. 1):

1. Coherent states preparation. Alice and Bob locally

prepare 2n coherent states, whose complex amplitudes

α′ = (q′A + ip′A)/2 and β′ = (q′B + ip′B)/2 are drawn

i.i.d. from circular symmetric, zero-mean Gaussian dis-

tributions with variance V A
M and V B

M , respectively [17].

The initial random variables of Alice and Bob are re-

spectively denoted as X ′ = (q′A, p
′
A), Y

′ = (q′B, p
′
B).

2. Operations of the relay. The 2n coherent states are sent

to the relay. For each pair of coherent states received the
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FIG. 1: The figure shows the scheme of the CV MDI QKD protocol

as described in details in Section II. Single lines represent bosonic

modes, double lines classical variables. Time evolves from left to

right. Alice and Bob initially prepare coherent states by applying

displacement operators DA, DB to the vacuum state |0〉, according

to the value of their local classical variables. The coherent states are

collected by the relay that, through some (unknown) physical trans-

formation, outputs a classical variable Z and gives to Eve quantum

side information. Finally, Alice and Bob apply classical displace-

ment dA, dB , conditioned on the value of Z, to their local classical

variables.

relay publicly announces a complex value γ = (qZ +
ipZ)/2.

3. Parameter estimation. Alice and Bob estimate

the covariance matrix (CM) of the variables

(q′A, p
′
A, q

′
B, p

′
B, qZ , pZ).

4. Conditional displacements. Alice and Bob define the

displaced variables α = (qA + ipA)/2 and β = (qB +
ipB)/2 such that

qA = q′A − gq′
A
(γ) , (1)

pA = p′A − gp′
A
(γ) , (2)

qB = q′B − gq′
B
(γ) , (3)

pB = p′B − gp′
B
(γ) , (4)

where g⋆, for each ⋆ = q′A, p
′
A, q

′
B, p

′
B , is an affine

functions of γ. As shown in Ref. [19], the optimal

choice is to define the functions as

g⋆(γ) = u⋆ qZ + v⋆ pZ , (5)

where [20]

u⋆ =
〈⋆ qZ〉〈p2Z〉 − 〈⋆ pZ〉〈qZpZ〉

〈p2Z〉〈q2Z 〉 − 〈qZpZ〉2
, (6)

v⋆ =
〈⋆ pZ〉〈q2Z〉 − 〈⋆ qZ〉〈qZpZ〉

〈q2Z〉〈p2Z〉 − 〈qZpZ〉2
. (7)

We remark that the parameters u⋆, v⋆ can be computed

directly from the estimated CM.

5. Classical post-processing. The variables X =
(qA, pA), Y = (qB, pB) represent the local raw keys of

Alice and Bob, respectively. To conclude the protocol,

the raw keys X , Y are post-processed for error correc-

tion and privacy amplification. We assume without loss

of generality that error reconciliation is on Alice’s raw

key.

The CV MDI QKD protocol described above has two main

characteristic features. The first is that Alice and Bob does

not apply any measurement, as the only measurement is per-

formed by the untrusted relay. This property defines the pro-

tocol as MDI [5, 6]. The second feature is that the correlations

between Alice and Bob are generated through the variable Z
announced by the relay. As explained in details in Ref. [19],

this property allows Alice and Bob to do parameter estima-

tion with a negligible amount of public communication [21].

Therefore, they can exploit the whole raw key for both param-

eter estimation and secret key extraction.

Finally we remark that, although the variables X and Y
have in principle infinite cardinality, in practice they are al-

ways specified by a finite number of digits. Furthermore, for

the finite-size analysis of the protocol (as well as for other

practical issues), one needs to map the unbounded and contin-

uous variables X , Y to some discrete and bounded variables

X̄ , Ȳ . The mappings X → X̄ , Y → Ȳ can be realized by an

Analog to Digital Conversion (ADC) algorithm. We therefore

assume that X̄ and Ȳ are discrete variables with cardinality

22d (i.e., d bits per quadrature).

III. PARAMETER ESTIMATION

In this Section we discuss how Alice and Bob can estimate

the CM of the variables (qA, pA, qB, pB). Without loss of gen-

erality we can assume that these variables have zero mean and

the CM has the form

VAB = 〈







q2A qApA qAqB qApB
pAqA p2A pAqB pApB
qBqA qBpA q2B qBpB
pBqA pBqB pBqB p2B






〉 =

(

xI zI
zI yI

)

,

(8)

where I = diag(1, 1), and

x =
〈q2A〉+ 〈p2A〉

2
, (9)

y =
〈q2B〉+ 〈p2B〉

2
, (10)

z =
〈qAqB〉+ 〈pApB〉

2
. (11)

Clearly, the entries on the principal diagonal of (8) can be

estimated locally by either Alice and Bob. It remains to esti-

mate the off diagonal term z. This can be done in three differ-

ent ways:

1. The traditional way is that Alice and Bob exchange part

of the data via a public channel to estimate the corre-

lation terms 〈qAqB〉 and 〈pApB〉. Clearly, in order to

do so they have to disclose part of the raw key, thus re-

ducing the final secret-key rate. Suppose that, over a
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total of n signals exchanged, Alice and Bob use m < n
signals for parameter estimation, thus allowing an er-

ror in the estimation of the order of m−1/2. Then only

the remaining n −m < n signals remain available for

secret key extraction (i.e., error correction and privacy

amplification).

2. As noted in Ref. [10] (see also [22]) a rough estimate of

the signal-to-noise ratio is sufficient for Alice and Bob

to run the error correction routine before performing pa-

rameter estimation. Then, a verification step is done to

ensure that the initial estimate was accurate enough. In

this way Alice and Bob can exploit virtually all the raw

data for key generation.

3. For our MDI protocol Alice and Bob can exploit the

relations (see Section II)

qA = q′A − uq′
A
qZ − vq′

A
pZ , (12)

pA = p′A − up′
A
qZ − vp′

A
pZ , (13)

qB = q′B − uq′
B
qZ − vq′

B
pZ , (14)

pB = p′B − up′
B
qZ − vp′

B
pZ , (15)

to obtain

z =
〈qAqB〉+ 〈pApB〉

2
=

= w1〈q2Z〉+ w2〈p2Z〉+ w3〈qZpZ〉 , (16)

where we have defined

w1 :=
1

2

(

uq′
A
uq′

B
+ up′

A
up′

B

)

, (17)

w2 :=
1

2

(

vq′
A
vq′

B
+ vp′

A
vp′

B

)

, (18)

w3 :=
1

2

(

uq′
A
vq′

B
+ vq′

A
uq′

B
+ up′

A
vp′

B
+ vp′

A
up′

B

)

. (19)

Since the variances 〈qZ〉, 〈pZ〉 and the covariance

〈qZpZ〉 can be locally computed by the users, then this

implies that Alice and Bob can do parameter estimation

without publicly announcing their local data [21]. In

conclusion, in this way Alice and Bob can exploit all

their raw data for both parameter estimation and secret

key extraction.

Here we follow the latter approach because, in contrast with

the first approach and in analogy with the second one, it re-

quires only a constant (and hence negligible) amount of pub-

lic communication. Furthermore, the third approach exploits

the very structure of the MDI protocol and therefore appears

to be the most natural in this context.

A. Statistical analysis of parameter estimation

We are then left with the problem of estimating the confi-

dence interval associated with the statistical estimation of the

CM of (qA, pA, qB, pB). It is worth stressing that this is a

remarkably complex problem in the case of general collec-

tive attacks (see Ref. [10]). By contrast, this task becomes

straightforward under the assumption of collective Gaussian

attacks. Unlike other authors [23–25], our analysis of param-

eter estimation under collective Gaussian attacks does not rely

on the central limit theorem and is therefore mathematically

rigorous in the finite-size setting (see instead Ref. [26, 27] for

a statistical analysis of parameter estimation in CV MDI QKD

that exploits the central limit theorem).

Our analysis is based on the assumption that the

(q′A, p
′
A, q

′
B, p

′
B, qZ , pZ) are Gaussian variables. This as-

sumption comes with no loss of generality because:

• The variables (q′A, p
′
A, q

′
B, p

′
B) are Gaussian by defini-

tion of the protocol;

• The optimality of Gaussian attacks in the finite-size sce-

narion has been established in Ref. [11]. This implies

that the variables (qA, pA, qB, pB) can be assumed to

be Gaussian without loss of generality;

• In principle, the variables (qZ , pZ) are not necessar-

ily Gaussian. Notwithstanding, by inverting Eqs. (12)-

(15) we can write (qZ , pZ) as linear combinations of

(qA, pA, qB, pB) and (q′A, p
′
A, q

′
B , p

′
B). Since the latter

are assumed to be Gaussian, and since a linear combi-

nation of Gaussian variables is also Gaussian, it follows

that (qZ , pZ) are Gaussian variables too.

First consider the estimation of, say, 〈q2Z〉, whose estimator

is the empirical variance n−1
∑n

j=1 q
2
Zj . Given that qZj are

i.i.d. Gaussian variables [28], then the empirical variance is

distributed (up to rescaling) according to a chi-squared distri-

bution. Therefore, a confidence interval can be readily ob-

tained applying the cumulative distribution function of the

chi-squared distribution, or tail bounds for it.

Second, consider the estimation of the correlation 〈qZpZ〉.
We apply the identity

〈qZpZ〉 =
1

4
〈(qZ + pZ)

2〉 − 1

4
〈(qZ − pZ)

2〉 , (20)

whose estimator

1

n

n
∑

j=1

qZjpZj =
1

4n

n
∑

j=1

(qZj + pZj)
2 − 1

4n

n
∑

j=1

(qZj − pZj)
2

(21)

is distributed as the sum of chi-squared variables. Therefore,

for each chi-squared variable, we can compute a confidence

interval, and then obtain a confidence interval for the quanti-

ties x, y, and z in (8) by error propagation.

An explicit calculation of the confidence intervals is pre-

sented in Appendix C.

IV. IMPROVED RATE ESTIMATION

The security proof against collective or Gaussian attacks

can be obtained along the lines of Ref. [10]. Here we
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present an improved estimation of the conditional smooth

min-entropy obtained by applying a new entropic inequality.

We assume without loss of generality that the reconciliation

is on Bob’s variable Ȳ . The number of (approximately) secret

bits that can be extracted from the raw key is lower bounded

by the smooth min-entropy of Ȳ , conditioned on the quantum

state of the eavesdropperE′ as well as on the classical variable

Z [29]:

sǫ+ǫs+ǫEC

n ≥ Hǫs
min(Ȳ |E′Z)ρn−leakEC(n, ǫEC)+2 log (2ǫ) ,

(22)

where we have also subtracted the information leakage

leakEC(n, ǫEC) due to error correction. The security parame-

ter ǫ + ǫs + ǫEC comprises of three terms: ǫ comes from the

leftover hash lemma, ǫs is the smoothing parameter entering

the smooth conditional min-entropy, and ǫEC is the error in

the error correction routine. Since conditioning does not in-

crease the entropy, for any purification ρnABE of ρnABE′Z we

have

Hǫs
min(Ȳ |E′Z)ρn ≥ Hǫs

min(Ȳ |E)ρn , (23)

which implies

sǫ+ǫs+ǫEC

n ≥ Hǫs
min(Ȳ |E)ρn − leakEC(n, ǫEC) + 2 log (2ǫ) .

(24)

A crucial point of the security proof is the estimation of

the conditional smooth min-entropy Hǫs
min(Ȳ |E)ρn . Here we

present an approach that yields a bound on the min-entropy

that is tighter than the one of [10]. For collective (or collective

Gaussian) attacks, the state ρn is a tensor-power, i.e., ρn =
ρ⊗n. On the other hand, the state that is actually used for key

generation is the one conditioned upon error correction being

successful. Because error correction has a non-zero failure

probability, the conditional state is no longer guaranteed to be

a tensor-power. Indeed, the conditioned state has the form

τn = p−1Πρ⊗nΠ , (25)

where Π is a projector operator (projecting on the subspace in

which error correction does not abort), and p = Tr(Πρ⊗nΠ)
is the probability of successful error correction. Let us recall

that the security parameter ǫ can be interpreted as the prob-

ability that the protocol is not secure (see Appendix A for a

review). Therefore, the probability that the protocol is not se-

cure, given that it does not abort, cannot be larger than ǫ/p.

This suggests a relation of the form

Hǫ
min(Ȳ |E)τn ≃ Hpǫ

min(Ȳ |E)ρ⊗n . (26)

As a matter of fact we can prove the following

Theorem 1 Given two n − qudits states τn and ρ⊗n such

that τn = p−1Πρ⊗nΠ for some projector operator Π and

p = Tr(Πρ⊗n), then

Hǫ
min(Ȳ |E)τn ≥ H

2

3
pǫ

min (X̄|E)ρ⊗n + log

(

p− 2

3
pǫ

)

. (27)

The proof is presented in Appendix B.

Theorem 1 implies that the state can still be assumed to be

a tensor-power upon replacing ǫ → 2
3pǫ and shortening the

secret key by log
(

p− 2
3pǫ
)

bits, that is,

sǫ+ǫs+ǫEC

n ≥ H
2

3
pǫs

min (Ȳ |E)ρ⊗n − leakEC(n, ǫEC)

+ log

(

p− 2

3
pǫs

)

+ 2 log (2ǫ) . (28)

The conditional smooth min-entropy of the tensor-power

state ρ⊗n can be estimated using the Asymptotic Equiparti-

tion Property (AEP), which yields a bound in terms of the von

Neumann conditional entropy [30]:

Hδ
min(Ȳ |E)ρ⊗n ≥ nH(Ȳ |E)ρ −

√
n∆AEP(δ, d) ,

where

∆AEP(δ, d) ≤ 4(d+ 1)
√

log (2/δ2) (29)

is also a function of the dimensionality parameter d.

The next step in the security proof is to estimate the condi-

tional entropy

H(Ȳ |E)ρ = H(X̄)ρ − I(X̄;E)ρ . (30)

Let us first consider the estimation of the mutual informa-

tion I(Ȳ ;E)ρ. We remark that the latter is upper bounded by

the mutual information with the variable X , i.e., I(Ȳ ;E)ρ ≤
I(Y ;E)ρ, since the ADC algorithm cannot increase the mu-

tual information. In turn, the property of extremality of Gaus-

sian states [31, 32] allows us to write the bound I(Y ;E)ρ ≤
I(Y ;E)ρG

≡ IBE , where ρG is a Gaussian state with same

CM as ρ.

To conclude, we notice that the quantity nH(X̄) −
leakEC(n, ǫEC) is the number of (non necessarily secret) bits

of common information shared by Alice and Bob after the er-

ror correction routine. Ideally, in the limit of large block size,

ADC with arbitrarily large precision, and perfect operations,

this quantity is expected to be equal to nI(X ;Y )ρ, where

I(X ;Y ) is the mutual information between Alice and Bob.

Therefore we can put

H(Ȳ )− 1

n
leakEC(n, ǫEC) = βI(X ;Y )ρ , (31)

where the efficiency parameter β ∈ (0, 1) accounts for all

the sources of non-ideality in the protocol. The inequality

βI(X ;Y )ρ ≥ βI(X ;Y )ρG
≡ βIAB , where ρG is the Gaus-

sian state with same first and second moments, follows from

Ref. [32]. Notice that β is also a function of n and ǫEC.

In conclusion, the results presented in this section, com-

bined with the security proof of [10], yield the following lower

bound on the secret key rate:

rǫ+ǫs+ǫEC+ǫPE

n =
1

n
sǫ+ǫs+ǫEC+ǫPE

n (32)

≥ βÎAB − ÎBE − 1√
n
∆AEP

(

2

3
pǫs, d

)

+
1

n
log

(

p− 2

3
pǫs

)

+
1

n
2 log (2ǫ) , (33)
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where ÎAB and ÎBE are the empirical estimates for the mutual

informations, and ǫPE is the probability of error in parameter

estimation.

V. COMPARISON WITH PREVIOUS SECURITY PROOF

Our expression for the rate in Eq. (33) can be compared

to the analogous expression given in Theorem 1 of Ref. [10].

The first difference between the two expressions is in the term

proportional to ∆AEP (that is the leading correction term in

our finite-size analysis), which in Ref. [10] is replaced by [33]

∆
(1)
AEP = (d+ 1)2 + 4(d+ 1)

√

log
2

ǫ2
+2 log

2

p2ǫ
+4

ǫd

p
√
n
.

(34)

It is clear that ∆
(1)
AEP > ∆AEP, where for small values of p

and ǫ the difference is dominated by the term 2 log 2
p2ǫ . We

emphasize that the fact that with our approach we obtain a

smaller finite-size correction ∆AEP follows from the applica-

tion of the new min-entropy inequality of Theorem 1.

The expression for the rate in Ref. [10] also includes an

additional error term ∆ent, scaling as n−1/2 logn. In our for-

mulation this terms does no appear and has been somehow

incorporated in the efficiency factor β. We believe that our

approach provides a better way to model what is done in ex-

perimental implementations of the protocol. We remark that

∆ent is the leading finite-size correction term in the analysis

of Ref. [10].

Finally, we exploit the Gaussian assumption to compute the

confidence intervals for parameter estimation. The result (see

Appendix C) is that the elements of the CM can be estimated

up to a relative error of the order of

√

8 ln (8/ǫPR)

n
(35)

with a given overall probability of error smaller than ǫPR. This

result is comparable with that of Ref. [10]: the reason is that,

although Ref. [10] considers general collective attacks, the

analysis of the parameter estimation is effectively reduced to

the Gaussian setting by applying a randomization technique.

Although we obtain finite-size correction related to parame-

ter estimation that are quantitatively similar to Ref. [10], our

statistical analysis is much simpler. This is due to the fact

that we exploit the assumption of a Gaussian attack which has

been proven to come without loss of generality even in the

finite-size setting [11].

VI. NUMERICAL EXAMPLES

The expression in Eq. (33), together with the parameter

estimation analysis of Section III, allows us to compute the

estimated secret-key directly from experimental data for any

Gaussian attack (and then extend to general attacks using the

results of Ref. [11]). In this Section, as an example, we com-

pute the rate as function of loss and block size for the case of

FIG. 2: As an example, in Section VI we consider the case of inde-

pendent entangling cloner attacks on the two communication lines,

where τA and τB are the beam-splitter transmissivities. The at-

tacks also introduce independent excess noises of variances ξA =
(1− τA)(ωA − 1), ξB = (1− τB)(ωB − 1). The relay applies Bell

detection on the incoming modes, whose result define the variable Z
and is publicly announced.

an entangling cloner attack (depicted in Figure 2). We con-

sider two settings:

1. symmetric attacks in which both communication lines

from Alice to the relay and from Bob to the relay are

wiretapped with a beam-splitter with equal transmissiv-

ity τA = τB = τ ;

2. asymmetric attacks where the relay is assumed very

close to Alice station, τA ≃ 1.

In both cases, following Ref. [6], the eavesdropper collects

all the loss from the communication lines, and the variable Z
is the outcome of a perfect Bell detection performed at the

relay. These kinds of attacks have been characterized thor-

oughly in Ref. [6], where the asymptotic rate (in the limit of

infinite block size) has been computed as:

r0n = βÎAB − ÎBE , (36)

where the mutual informations are bounded by the results of

parameter estimation. In our example we choose the conser-

vative value β = 0.95 [34–37]. (Notice that in principle the

factor β is a function of n and ǫEC, but for the sake of illus-

tration we assume it to be constant.)

Putting 〈q′A
2〉 = 〈p′A

2〉 = 〈q′B
2〉 = 〈p′B

2〉 = VM , we

obtain

〈q′AqZ〉 = −
√

τA
2

VM , (37)

〈p′ApZ〉 =
√

τA
2

VM , (38)

〈q′BqZ〉 = 〈p′BqZ〉 =
√

τB
2

VM , (39)

and the covariances of mutually conjugate quadratures vanish.

We also have 〈qZpZ〉 = 0 and

〈q2Z〉 = 〈p2Z〉 =
τA + τB

2
VM + 1 +

ξA + ξB
2

=: ν , (40)
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where ξA = (1 − τA)(ωA − 1), ξB = (1 − τB)(ωB − 1) are

the excess noise variances and ωA,B are the thermal noise that

Eve injects in the links respectively (see Eq. (1) of Ref. [6]).

The only non-vanishing displacement coefficients are

uq′
A
= −

√

τA
2

VM

ν
, (41)

vp′
A
=

√

τA
2

VM

ν
, (42)

uq′
B
= vp′

B
=

√

τB
2

VM

ν
, (43)

that imply

w1 = w2 = −
√
τAτB

4

V 2
M

ν2
, (44)

and w3 = 0. Finally, applying Eq. (C9) we obtain

zmin =

√
τAτB

2(1 + t)

V 2
M

ν
, (45)

and similarly, from Eq. (C8),

xmax =
VM

1− t

(

1− τA
2

VM

ν

)

, (46)

ymax =
VM

1− t

(

1− τB
2

VM

ν

)

, (47)

with t =
√

n−1 8 ln (8/ǫPE) (see Appendix C).

For collective Gaussian attacks, Eq. (33) is rewritten as

rǫ
′

n ≥ r0n − 1√
n
∆AEP

(

2

3
pǫs, d

)

+
1

n
log

(

p− 2

3
pǫs

)

+
1

n
2 log (2ǫ) , (48)

where ǫ′ = ǫ+ ǫs+ ǫEC+ ǫPE. In Figs. 3, 4 this rate is plotted

vs the block size n, for different values of the transmissivities

and excess noise for error correction efficiency of β = 95%.

The plots are obtained putting p = 0.99, ǫ = ǫs = ǫEC =
ǫPE = 10−21, hence obtaining an overall security parameter

ǫ′ < 10−20. We also put d = 5: with this choice of d the

error in the Shannon entropy due to the ADC is less than 1%.

The rate is then obtained by maximizing over the value of

modulation VM .

For coherent attacks, by applying the results of Ref. [11]

we obtain

rǫ
′′

n ≥ n− k

n
r0n −

√
n− k

n
∆AEP

(

2

3
pǫs, d

)

+
1

n
log

(

p− 2

3
pǫs

)

+
1

n
2 log (2ǫ)

− 1

n
2 log

(

K + 4

4

)

, (49)

where k is the number of signals used for the energy test, K ∼
n and ǫ′′ = K4

50 ǫ
′.
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FIG. 3: Secret key rate vs block size for asymmetric attacks: τA =
0.99 and different values of τB (from top to bottom the attenuation

of the communication line from Bob to the relay is of 1dB, 2dB,

and 4dB). The excess noise is ξA = 0 and ξB = 0.01 (in shot noise

unit). Solid lines are for collective Gaussian attacks, and dashed lines

are for coherent attacks. For both kinds of attack, the overall security

parameter is smaller than 10−20.
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FIG. 4: Secret key rate vs block size for symmetric attacks and dif-

ferent values of τA = τB (from top to bottom the symmetric attenu-

ation is of 0.1dB, 0.3dB, 0.5dB, and 0.55dB). The excess noise is

ξA = ξB = 0.01 (in shot noise unit). Solid lines are for collective

Gaussian attacks, and dashed lines are for coherent attacks. For both

kinds of attack, the overall security parameter is smaller than 10−20.

In Figs. 3, 4 this rate is plotted vs the block size n, for

different values of the transmissivities and excess noise, for

error correction efficiency of β = 95%. The plots are obtained

for ǫ = ǫs = ǫEC = ǫPE chosen in such a way to obtain

ǫ′′ < 10−20. The rate is then obtained by maximizing over k
and the modulation VM and for p = 0.99.

VII. DISCUSSION

In the case of coherent attacks, the major bottleneck limit-

ing the rate of secret bits generation per second comes from

the classical post-processing, and in particular the active sym-
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metrization routine, due to the typically large size of the data

set. While it has been conjectured that such an active sym-

metrization might not be actually needed [11], it remains an

open theoretical problem to find a security proof that does not

require to perform such a computationally costly operation.

Here we present two arguments supporting the conjecture

that the active symmetrization routine may not be actually per-

formed in any experimental realization of the protocol:

1. The active symmetrization routine consists in Alice and

Bob multiplying their local raw keys by a random ma-

trix. Since the matrix is invertible and publicly known,

such an operation cannot by any means increase the se-

cret key length. Therefore, we deduce that the same

secret key rate might be achieved even without perform-

ing the symmetrization routine;

2. The symmetrization routine is also instrumental for the

energy test. After the symmetrization operation, Alice

and Bob estimate the expectation value of the energy

from only a relatively small part of the raw key. We

notice that Alice and Bob can obtain an even better esti-

mate of the mean energy from the whole raw key. This

suggests that the symmetrization step might be avoided

without affecting the energy test.

In summary, these two arguments suggest that the require-

ment of performing the symmetrization routine might be a ar-

tifact of the particular technique used to prove the security and

therefore might not be strictly required in a practical realiza-

tion of the protocol.

VIII. CONCLUSIONS

We have presented a rigorous assessment of the security

of CV MDI QKD in the finite-size regime. Our results are

obtained by applying and modifying the results of Ref. [10],

also exploiting the Gaussian de Finetti reduction recently in-

troduced in Ref. [11], together with new results on parameter

estimation and a new min-entropy inequality. Because of this

improvements, our estimate on the secret-key rate is improved

with respect to results of [10, 11].

In doing this, we have shown that for our MDI protocol all

the raw data can be used for both parameter estimation and

secret key extraction. Such a unique feature is a consequence

of the fact that correlations between Alice and Bob are en-

coded in the variable that is publicly announced by the relay

— even though such a variable does not contain information

about the secret key (see Ref. [19]). It might be possible that

for the same reason the security analysis of MDI QKD can

be further simplified, in particular the energy test and active

symmetrization routines. It is worth remarking that standard

one-way protocols, in both direct and reverse reconciliation,

can be simulated by an MDI one, simply by assigning the re-

lay to either Alice and Bob [6]. For this reason, this unique

property of MDI QKD can be readily extended to the one-way

setting [19].

Our statistical analysis of parameter estimation is fully

composable and does not rely on the central limit theorem

(and therefore is mathematically rigorous in the finite-size set-

ting). Notwithstanding, we do not expect that our approach

gives tight bounds on the statistical error induced by parame-

ter estimation. In fact, tighter bounds may be obtained follow-

ing a different approach, for example by invoking the central

limit theorem as in Ref. [26, 27].

We have shown that it is in principle possible to generate

secret key against the most general class of coherent attacks

for block sizes of the order of 107 − 109, depending on loss

and noise, and on the required level of security. Therefore, our

results indicate that a field demonstration of CV MDI QKD

might be feasible with currently available technologies. In

particular, our composable security analysis confirms that CV

MDI protocols allow for high QKD rates on the metropolitan

scale, thus confirming the results of the asymptotic analysis

first discussed in Ref. [6].

Note added: after the completion of this work, other au-

thors have independently presented a security analysis of CV

MDI QKD obtained by exploiting entropic uncertainty rela-

tions [38]. Although directly applicable to obtain security

against coherent attacks, this approach is known to provide

bounds on the secret key rate that in general are not tight.
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Appendix A: Operational interpretation of the security

parameter

Ideally, in QKD one would like to obtain a shared key that

is truly random and secret to the eavesdropper. The final state

of a protocol that successfully distributes s perfectly secret

bits would be represented by a density operator of the form

ρ0 = 2−s
2s−1
∑

x=0

|x〉A〈x| ⊗ |x〉B〈x| ⊗ σE . (A1)

In reality, one can only hope to get as close as possible to such

an ideal scenario. Let ρ denote the final state of a given QKD

protocol. The extent to which the state ρ approximates the

ideal one ρ0 is often quantified in terms of the trace distance,

D(ρ, ρ0) =
1

2
‖ρ− ρ0‖1 =

1

2
Tr|ρ− ρ0| . (A2)

The trace distance has several desiderable properties for

a good security quantifier [29, 39, 40]. In particular, here

we discuss its interpretation in terms of the probability that
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the generated key is secret. It is well known that the opera-

tional meaning of the trace distance is related to the problem

of quantum state discrimination [41]. Suppose one is given

a black box containing either ρ or ρ0, each with probability

1/2. Then any measurement strategy, compatible with the

principles of quantum mechanics, allows one to distinguish

between the two states up to an error probability [42]

pe ≥
1−D(ρ, ρ0)

2
. (A3)

Let us define a binary random variable U with probability

distribution PU = (pe, 1 − pe). As a matter of fact U char-

acterizes the distinguishability of the states ρ and ρ0, that is,

between the output of the given QKD protocol and an ideal,

perfectly secure one. For example, if the state happens to co-

incide with the ideal one, we have PU = Psec = (1/2, 1/2).
On the other hand, if the state can be perfectly distinguished

from the ideal one, PU = Pinsec = (0, 1).
Putting D(ρ, ρ0) = ǫ we can write

PU =

(

1− ǫ

2
,
1 + ǫ

2

)

= (1− ǫ)Psec + ǫPinsec . (A4)

Therefore, the probability distribution of the variable U char-

acterizing the output of the QKD protocol is the convex sum of

the probability distribution Psec associated to the ideal output

state and the probability Pinsec associated to a state that can

be perfectly distinguished from the ideal one. In conclusion,

such a convex sum decomposition of PU allows us to interpret

1− ǫ as the probability that the output of the QKD protocol is

indistinguishable from the ideal one, and thus, for all practical

purposes is itself perfectly secure. In other words, the proba-

bility that the output of the protocol is not perfectly secure is

smaller than ǫ. Assuming the worst case scenario, below we

put ǫ equal to the probability that the key is not secret.

Taking abstraction on the state and focusing on the protocol

itself, this same reasoning is extended to the direct comparison

of two protocols E and E0, formally represented as completely

positive maps, via the diamond norm

‖E − E0‖⋄ = sup
σ

‖(E ⊗ I − E0 ⊗ I)σ‖1 , (A5)

where the supremum is over all input states and the maps are

extended to including an ancillary system.

Appendix B: Some properties of smooth entropy

One of the main tools for quantifying the security of QKD is

the conditional smooth min-entropy. In this Appendix we re-

view some of the main definitions and properties (see [29, 30]

for the proofs) and derive a useful inequality in Proposition 6

that is applied for our security proof.

Definition 2 [Conditional min-entropy] The min-entropy ofA
conditioned on B of the bipartite state ρAB is

Hmin(A|B)ρ := max
σ

sup
{

λ : ρAB ≤ 2−λIA ⊗ σB

}

,

(B1)

where I is the identity operator and σ is a subnormalized

state.

Here we are interested in the conditional min-entropy

of classical-quantum (CQ) states of the form ρXB =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x). In this case the conditional min-

entropy can be written in terms of the maximum guessing

probability:

2−Hmin(X|B)ρ = max
E

∑

x∈X

P (x)〈x|E(ω(x))|x〉 , (B2)

where E is a quantum channels.

The following holds:

Lemma 1 Let ρ =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x) be a CQ state

and S a subset of X . We define the projector operator Π =
∑

x∈S |x〉〈x|, and the state p−1ΠρΠ, with p = Tr(ΠρΠ). The

following inequality holds:

Hmin(X |B)p−1ΠρΠ ≥ Hmin(X |B)ρ + log p . (B3)

Proof: By applying the characterization of the min-entropy

in terms of the guessing probability we obtain:

2−Hmin(X|B)
p−1ΠρΠ = max

E

∑

x∈S

p−1P (x)〈x|E(ω(x))|x〉

(B4)

≤ p−1max
E

∑

x∈X

P (x)〈x|E(ω(x))|x〉

(B5)

= p−12−Hmin(X|B)ρ (B6)

= 2−Hmin(X|B)ρ−log p . ✷ (B7)

The smooth conditional min-entropy of ρ is defined as the

maximum min-entropy in a neighborhood of ρ:

Definition 3 (Smooth conditional min-entropy) The

smooth conditional min-entropy of A conditioned on B of the

state ρAB is

Hǫ
min(A|B)ρ := max

ρ̃
Hmin(A|B)ρ̃ (B8)

where ρ̃ is a ”smoothing state” such that D(ρ̃, ρ) ≤ ǫ, with

D(ρ̃, ρ) denoting the trace distance.

Remark 4 Here we have defined the entropy smoothing us-

ing the trace distance as in Ref. [29] instead of the purified

distance as done in Ref. [30].

Remark 5 For a CQ state ρ it is sufficient to consider smooth-

ing states that are classical on the same support as ρ [30].

Therefore there exists a CQ states ρ⋆ such that D(ρ⋆, ρ) ≤ ǫ
and

Hǫ
min(X |B)ρ = Hmin(X |B)ρ⋆

. (B9)
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Lemma 2 Let us consider two CQ states ρ =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x) and ρ⋆ =
∑

x∈X P⋆(x)|x〉〈x| ⊗
ω⋆(x) such that D(ρ, ρ⋆) ≤ ǫ, and a projector operator

Π =
∑

x∈S |x〉〈x|. Then D(p−1ΠρΠ, p−1
⋆ Πρ⋆Π) ≤ 3

2p
−1ǫ ,

where p = Tr(ΠρΠ) =
∑

x∈S P (x) and p⋆ = Tr(Πρ⋆Π) =
∑

x∈S P⋆(x).

Proof. First notice that the trace distance between the two CQ

states reads

D(ρ, ρ⋆) =
∑

x∈X

D(P (x)ω(x), P⋆(x)ω⋆(x)) , (B10)

and that D(ρ, ρ⋆) ≤ ǫ implies

|p− p⋆| ≤ ǫ . (B11)

We then have

D
(

p−1ΠρΠ, p−1
⋆ Πρ⋆Π

)

=
∑

x∈S

D
(

p−1P (x)ω(x), p−1
⋆ P⋆(x)ω⋆(x)

)

(B12)

≤
∑

x∈S

D
(

p−1P (x)ω(x), p−1P⋆(x)ω⋆(x)
)

+D
(

p−1P⋆(x)ω⋆(x), p
−1
⋆ P⋆(x)ω⋆(x)

)

(B13)

=
∑

x∈S

p−1D (P (x)ω(x), P⋆(x)ω⋆(x))

+
1

2

∣

∣p−1 − p−1
⋆

∣

∣P⋆(x)‖ω⋆(x)‖1 (B14)

=
∑

x∈S

p−1D (P (x)ω(x), P⋆(x)ω⋆(x))

+
1

2
p−1p−1

⋆ |p− p⋆|P⋆(x) (B15)

≤ p−1ǫ+
1

2
p−1ǫ (B16)

=
3

2
p−1ǫ , (B17)

where in the first inequality we have applied the triangular

inequality and in the last one we have applied Eqs. (B10)–

(B11). ✷

We are now ready to present a ”smoothed” version of

Lemma 1:

Proposition 6 Let ρ =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x) be a CQ

state and S a subset of X . We define the projector Π =
∑

x∈S |x〉〈x|, and the (normalized) state τ = p−1ΠρΠ,

where p = Tr(ΠρΠ). The following inequality relates the

conditional smooth min-entropies of ρ and τ :

Hǫ
min(X |B)p−1ΠρΠ ≥ H

2

3
pǫ

min (X |B)ρ + log

(

p− 2

3
pǫ

)

.

(B18)

Proof. Let ρ⋆ be a CQ state such that D(ρ, ρ⋆) ≤ 2
3pǫ.

Lemma 2 implies that D(p−1ΠρΠ, p−1
⋆ Πρ⋆Π) ≤ ǫ. We

then upper bound the conditional smooth min-entropy of τ =
p−1ΠρΠ as follows:

Hǫ
min(X |B)p−1ΠρΠ ≥ Hmin(X |B)p−1

⋆ Πρ⋆Π
(B19)

≥ Hmin(X |B)ρ⋆
+ log p⋆ (B20)

= Hǫ′

min(X |B)ρ + log p⋆ (B21)

≥ Hǫ′

min(X |B)ρ + log (p− ǫ′) , (B22)

where in the first inequality we have applied the fact that

p−1
⋆ Πρ⋆Π is ǫ-close to p−1ΠρΠ, in the second inequality we

have applied Lemma 1, the first equality is obtained choosing

a ρ⋆ that verifies Eq. (B9) with ǫ′ = 2
3pǫ, and the last inequal-

ity is obtained from Eq. (B11). ✷

1. Dealing with the non-zero probability that the protocol

aborts

The assumption that the state ρ⊗n is a tensor product is jus-

tified for collective attacks. However, since error correction

has non-zero probability of aborting, one should consider the

conditional probability of obtaining a secret key given the pro-

tocol did not abort. Unfortunately, the state conditioned on the

protocol not aborting is no longer guaranteed to have a tensor

product structure.

The state ρ⊗n, that describes the correlations between

Bob’s output measurement and Eve, is a classical-quantum

(CQ) state of the form:

ρ⊗n =
∑

xnyn

P (xn, yn)|xn〉〈xn| ⊗ |yn〉〈yn| ⊗ ωE(x
nyn) ,

(B23)

where P (xn, yn) is the probability of a sequence of symbols

xn, yn and ωE(x
nyn) is the corresponding conditional state

of Eve. The protocol does not abort only on a given subset S
of the sequences xnyn, therefore the state for a non-aborting

protocol reads

τn = p−1Πρ⊗nΠ , (B24)

where Π =
∑

xnyn∈S |xn〉〈xn| ⊗ |yn〉〈yn| is a projector op-

erator, and p = Tr(Πρ⊗nΠ) is the normalization factor.

Proposition 6 in Section B yields a simple relation between

the conditional smooth min-entropies of ρ⊗n and τn, namely

Hǫ
min(X |E)τn ≥ H

2

3
pǫ

min (X |E)ρ⊗n + log

(

p− 2

3
pǫ

)

,

(B25)

where p is interpreted as the probability that the protocol does

no abort.

Appendix C: Tail bounds

The cumulative distribution function of the chi-squared

variable χ2(k) with k degrees of freedom is F (x; k) =
Γ[k/2,x/2]

Γ[k/2] , where Γ[k/2] is the Euler Gamma function, and

Γ[k/2, x/2] is the lower incomplete Gamma function.
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To bound the cumulative distribution function we can use,

for example, the tail bounds:

Pr

{

k <
χ

1 + t

}

< e−nt2/8 , (C1)

Pr

{

k >
χ

1− t

}

< e−nt2/8 . (C2)

(These bounds are derived from the Chernoff bound using the

fact that distribution of χ2(k) is sub-exponential with param-

eters (2
√
k, 4)).

A direct application of these bounds yields

Pr

{

〈q2Z〉 <
n−1

∑

j q
2
Zj

1 + t

}

≤ e−nt2/8 , (C3)

Pr

{

〈q2Z〉 >
n−1

∑

j q
2
Zj

1− t

}

≤ e−nt2/8 , (C4)

together with similar bounds for the quantities 〈p2Z〉, 〈q2A〉,
〈p2A〉 〈q2B〉, 〈p2B〉.

We also obtain

Pr

{

〈qZpZ〉 >
n−1

∑

j(qZj + pZj)
2

4(1− t)
−

n−1
∑

j(qZj − pZj)
2

4(1 + t)

}

≤ Pr

{

〈(qZ + pZ)
2〉 >

n−1
∑

j(qZj + pZj)
2

(1− t)

}

+ Pr

{

〈(qZ − pZ)
2〉 <

n−1
∑

j(qZj − pZj)
2

(1 + t)

}

≤ 2e−nt2/8 , (C5)

and analogously

Pr

{

〈qZpZ〉 <
n−1

∑

j(qZj + pZj)
2

4(1 + t)
−

n−1
∑

j(qZj − pZj)
2

4(1− t)

}

≤ 2e−nt2/8 . (C6)

This implies

Pr {x > xmax} ≤ 2e−nt2/8 , Pr {y > ymax} ≤ 2e−nt2/8 , Pr {z < zmin} ≤ 4e−nt2/8 , (C7)

with

xmax =
1

1− t

∑

j

q2Aj + p2Aj

2n
, ymax =

1

1− t

∑

j

q2Bj + p2Bj

2n
, (C8)

and

zmin = min
s1,s2,s3∈{−1,1}

∣

∣

∣

∣

∣

w1

n−1
∑

j q
2
Zj

1 + s1t
+ w2

n−1
∑

j p
2
Zj

1 + s2t
+ w3

(

n−1
∑

j(qZj + pZj)
2

4(1 + s3t)
−

n−1
∑

j(qZj − pZj)
2

4(1− s3t)

)∣

∣

∣

∣

∣

, (C9)

where w1, w2 and w3 are defined in Eqs. (17)-(19).

For example, putting

t =

√

8 ln (8/ǫPE)

n
(C10)

we finally obtain

Pr {x > xmax ∨ y > ymax ∨ z < zmin} ≤ ǫPE . (C11)
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