
This is a repository copy of Towards Formal Proofs of Feedback Control Theory.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130475/

Version: Accepted Version

Proceedings Paper:
Jasim, O.A. and Veres, S.M. (2017) Towards Formal Proofs of Feedback Control Theory.
In: System Theory, Control and Computing (ICSTCC), 2017 21st International Conference
on. 2017 21st International Conference on System Theory, Control and Computing
(ICSTCC), 19-21 Oct 2017, Sinaia, Romania. IEEE , pp. 43-48.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Towards Formal Proofs of Feedback Control Theory

Omar A. Jasim

Department of Automatic Control

and Systems Engineering

The University of Sheffield

Sheffield, UK

E-mail: oajasim1@sheffield.ac.uk

Sandor M. Veres

Department of Automatic Control

and Systems Engineering

The University of Sheffield

Sheffield, UK

E-mail: s.veres@sheffield.ac.uk

Abstract—Control theory can establish properties of systems
which hold with all signals within the system and hence cannot
be proven by simulation. The most basic of such property is
the stability of a control subsystem or the overall system. Other
examples are statements on robust control performance in the
face of dynamical uncertainties and disturbances in sensing
and actuation. Until now these theories were developed and
checked for their correctness by control scientist manually using
their mathematical knowledge. With the emergence of formal
methods, there is now the possibility to derive and prove robust
control theory by symbolic computation on computers. There is
a demand for this approach from industry for the verification
of practical control systems with concrete numerical values
where the applicability of a control theorem is specialised to
an application with given numerical boundaries of parameter
variations. The paper gives an overview of the challenges of the
area and illustrates them on a computer-based formal proof of
the Small-gain theorem and conclusions are drawn from these
initial experiences.

Keywords—Feedback Control; Robust Control; Small-Gain
Theorem; Formal Methods.

I. INTRODUCTION

The purpose of control design is to produce feedback,

feedforward and adaptive controllers to provide robust per-

formance in practical applications. In some industrial areas

control performance needs to be guaranteed due to safety,

economic or productivity requirements. These controllers need

to be officially certified that they conform to standards. The

analysis of controllers for certification has traditionally relied

on symbolic computation. Such symbolic computation is not

only algebraic but it needs the use of the concepts of signal

spaces and nonlinear operators. Theorem provers, which are

computer software that use mathematical symbols with the aid

of some logical techniques, need to be able to handle nonlinear

causal operators and prove properties of their interconnections

into a feedback system as well. Higher-Order Logic (HOL)

[1] is also needed because it includes quantifications and

type theory such as real and complex numbers that make the

implementation of control properties applicable. An example

of such properties is the using of high-order functions to

define nonlinear operators. With the advance of automated

reasoning, such formal analysis can now enter the possibilities

of control system design beside traditional methods of manual

derivations.

Given the performance specifications, where specifications

are the mathematical models of the desired properties, a con-

trol system is designed [2]. Then, code and electronics are de-

veloped and chosen. Fig.1 displays the three stages of formally

verifiable controller design. Stage 1 is a precise mathematical

definition of the plant (the system to be controlled), sensor and

actuator dynamical variations and performance requirements,

against which the implemented control system is to be verified.

Stage 2 consists of the computer aided design (CAD) of a

controller, which can be mathematically proven to perform

up to specifications, the primary topic of this paper using

computer based proofs. Stage 3 is the implementation of the

mathematical model of the controller in computer code, which

should not introduce bugs or numerical errors serious enough

to make the specifications violated. Finally, the code should

be free from bugs, which is ensured by code verification. In

this paper we are interested in formal verification algorithms,

which aims to check the correctness of control design (CAD)

in Stage 2.

Often simulations are used to see whether the design is

acceptable for the performance required. Simulations, how-

ever, may not uncover all signal combinations, which cause

control performance to fail. By their definitions, robust CAD

methods that rely on control theory will achieve performance

requirements. Then the remaining problem is to prove that

encoding does not make control performance underachieved

due to computational errors in Stage 3.

The new formal verification methods proposed in this paper

need to precede software verification of controller code as

they verify the correctness of control algorithms, which are

implemented in software. This paper gives a short overview

of past use of formal methods to verify the correctness of

control system implementations to place our work in context.

We recall efforts made to formally verify that the code used in

practice correctly implements the control algorithms intended.

We also review methods of proving mathematical theorems by

computers. None of these past works addresses the verification

of the control theory and algorithms by formal methods in

the form of symbolic computation to prove control theory on

which the control algorithms are based. For reliability and

safety of practical control systems, both algorithmic verifi-

cation (to be introduced in this paper for the first time) and

verification of controller implementation are needed (the latter

Submitted to the ICSTCC 2017 Conference

!

!

Formal definitions

Mathematical models of assumptions on physical dynamics,

disturbance and control performance requirements

Proven mathematical model of control

Proof of model correctness for the variable physical

dynamics and disturbance signals involved

Control code correctness

Check code correctness relative to mathematical model of

the controller

Formally verified control system

!

Control design
(CAD)

Coding of
processor(s)

Code
verification

Stage 1

Stage 2

Stage 3

Fig. 1. The three principle stages which lead to practical control system
verification.

pursued by many researchers in the past). This will provide

high standards of certification in the future.

As a first attempt to prove control theory by a computer, we

have chosen one of the most fundamental and general result of

nonlinear feedback system, the ”Small-gain theorem” (SGT).

This is a fundamental theoretical result for many practical

applications and plays an important role in robust control

theory [3]. Through this first example, our aim in this paper is

to describe the existing difficulties in the technical execution

of formal proofs needed for control theory in the future.

In practice, both the plant and the feedback controller suffers

from the variability of dynamics and disturbances. The Small-

gain theorem can be used to assess feedback stability for

plants with variable dynamics, for which norm bounds can

be measured in experiments. If for all plant and controller

variations the product of the norm of the plant and the

controller is less than 1, then the feedback loop is robustly

stable.

As no theory is yet widely known for automating the proofs

of control systems, formal proofs in control theory, this paper

intends to provide an initial approach to this challenge and

gives an illustration on a formal proof of the Small-gain

theorem using interactive theorem prover. The paper structure

as follows: Section 2 introduces the research area of computer-

based formal proofs for control theory. Section 3 illustrates the

challenges and methods of the analysis and proof of the Small-

gain theorem of robust feedback control. Section 4 illustrates

the shortcomings of the available formal methods. Finally,

Section 5 shows conclusions.

II. FORMAL METHODS AND RELATED WORKS

A. Formal Methods

Formal methods techniques or tools are based on math-

ematical logic and they are used for specification, design,

and verification of hardware and software systems. The most

useful technique to prove mathematical theories is theorem

proving. There are two different essential techniques of the-

orem proving, Automated Theorem Proving (ATP) [4] which

is automatically proving mathematical formulas by computer

software, and Interactive Theorem Proving (ITP) or proof

assistant which use to develop formal proofs by human-

machine collaboration. There is also another proving type

called Satisfiability Modulo Theories (SMT) [5], which is an

extension of the Boolean satisfiability problem (SAT), that is a

problem of deciding the satisfiability of first-order formulas in

addition to some background theory with respect to some de-

cidable first-order theory [6]. However, the difference between

ITPs and ATPs is that the later are systems which include a set

of decision procedures that use for automatic proof a specific

restricted formats of mathematical formulas. Moreover, ATPs

have limited expressivity where some mathematical theories

cannot be stated and proved using them. In contrast, ITPs

provide the ability to the user to formalize a mathematical

theory and let the system prove it using already existing logical

and mathematical expressions or theories, with the aid of some

proof techniques and ATPs such as SPASS and Vampire or

SMT solvers such as CVC4 and Z3.

Another well-known tool in formal methods is model

checking, an automatic technique use for verifying finite state

systems [7]. ITPs, in contrast to model checkers, can be

applied to an infinite state space design. However, there are

many other features of ITPs such as generality in terms of

results and applicability. For producing results, which are

general and represented as symbolic quantities that can be

substituted by other quantities if the conditions are satisfied

and types are matched. Regarding applicability, it is also

general as the rules of logical deduction which are essentially

general. In addition to modularity as each theory can be

defined and then used or modified during theories formalizing

and proving. Therefore, the total system is a comprehensive

model of correlated theories, i.e., each theory can be built from

other theories according to the relations and requirements.

B. Formal Methods in Control Theory

Typically, control systems design starts with formal anal-

ysis followed by numerical implementation in a simulation

tool, then numerical simulations checking for valid behaviour

before deploying the implementation. Recently, the use of

autocoding generation techniques have increased that produce

real-time code from the simulation which reduces manual

coding errors. However, nowadays, complex control systems

could be designed using digital computation techniques which

have been rapidly developed in the last few decades. This

enables systems to be formally checked and verified to ensure

their validity and reliability. The outcome of that could be sig-

nificant because system modelling using some mathematical

derivations can be checked and verified precisely using formal

methods like proof assistants which ensure system robustness.

There is a wide range of ITPs such as Isabelle/HOL [8],

Coq [9], PVS [10], which are HOL systems that can be used

to verify the stability and performance of control systems with

the aid of ATP like MetiTarski [11]. The current development

of these techniques enables them to prove the most abstract ro-

bust control theories which are used to check systems stability.

This work is motivated by the need of robust techniques for

physical control systems validation and verification. It devotes

to integrate control theory with ITP techniques by formally

proving some of the most important theorems in control theory.

We believe that this will be beneficial especially in safety-

critical systems such as flight control, autopilot, autonomous

cars and human interactive robots whereby systems stability

and performance will be more robustness and safer. We also

think that information from control theory can be translated

into formal mathematical and logical concepts. These concepts

then can be proved using proof assistants which can be used

later in control systems verification. In particular, for complex

systems where computations are very complicated and they

are difficult to be handled by a human while it could be done

by computer more easily and accurately. To prove that this

is applicable, the Small-gain theorem is formally proved in

Isabelle/HOL proof assistant.

Due to the importance of the verification of engineering

systems in general and on control systems stability and perfor-

mance using formal methods in particular, some related works

in this area are mentioned. Hardy [12] evolved and performed

a decision procedure to justify about a function that has a

finite number of inflection points. This method carried out in

the Nichols plot Requirements Verifier (NRV) to implement

an automated formal Nichols plot analysis using computer

algebra system (Maple) and PVS proof assistant in addition

to other tools. NRV used to verify two control systems: an

inverted pendulum and a disk drive reader. Akbarpour and

Paulson [13] were also formally proved these two systems later

using MetiTarski ATP also relying on Maple and Nichols plot

analysis. In [14] authors presented an approach and tools to

translate discrete-time Simulink models to the LESAR model

checker. These tools have been applied to translate part of

Audi’s automotive controller. An extension of this work can be

found in [15] where further analysis methods are introduced to

define a subset of Stateflow for which synchronous semantics

can be defined. In [16], Denman and his colleagues presented a

method to implement formal Nichols plot analysis by using the

MetiTarski automated theorem prover for stability verification.

They extracted the transfer function of a flight control system

from Simulink. Then, they defined an exclusion region of the

Nichols Plot and proved the unreachability of the exclusion

region using MetiTarski. Finally, they applied their proposed

method into an autopilot model to check its validity.

Some verification processes can be done at the design level

such as in SimCheck [17] where an implementation of type

checking with custom annotations in Simulink blocks was

presented. Similar work can be found in Araiza-Illan and her

colleagues work [18] where they developed a new approach

to automatic translating system’s block diagrams modelled

in Simulink into the Why3 [19] platform to verify their

corresponding properties. The modelled system in Simulink

represented high-level properties of stability (Lyapunov sta-

bility [20]), feedback gain and robustness. In [21], same

authors presented a different approach by performing checking

and comparing the results produced by a simulation through

assertion checks and the results produced from the Why3 to

determine the advantages of the latter. On the other hand, other

verification processes can be accomplished at the code level

such as in Feron work [22]. He developed a credible autocoder

tool to produce target C code from Simulink that represent the

system specifications in addition to documents that associated

with the target code which represents properties of their proofs.

Jobredeaux [23], proposed in his thesis an extension of [22] by

a credible autocoding framework and tools used to develop the

state of formal analysis of control software. The framework

produced and proved high-level properties of control laws

using PVS, such as closed-loop stability, in code level using

the C code.

There have been many attempts made in the same direction

of the previously presented works but using different method-

ologies and various formal methods such as in [24]–[26].

III. FORMAL PROOF OF THE SMALL-GAIN THEOREM

A. Mathematical Proof of the Small-Gain Theorem

In order to prove the Small-gain theorem in a general way,

we relied on the version and proof of the theorem presented

in Khalil’s book [27, Sec 5.4]. Our review has found that

this version was one of the most general proofs using general

nonlinear operators and stability concepts.

The following are the mathematical procedures of the proof,

which we need to present first to enable us to comment on the

respective steps of a computer-based proof procedure.

If we consider the relation of an input/output system as

y = Hu, (1)

where H : u ! y is an operator that maps the signal u onto

the signal y. The input signal u belongs to a space of signal

functions over the time interval [0,1] into the Euclidean

space Rm (u : [0,1] ! Rm). For the space of piecewise

continuous, bounded and square integrable functions, the norm

can be defined by

kukL2 =

s

Z

∞

0

uT (t)u(t)dt < 1, (2)

where the norm function, which is used to measure the size

of the signal, should satisfy the following properties:

• u = 0 () kuk = 0 else kuk > 0,

• kauk = akuk for 8a 2 < and a > 0,

• ku1 + u2k ku1k+ ku2k.

We assumed that the input and output signals belong to the

same space so that

L = {u, y , uτ , yτ | 8τ 2 [0,1]}, (3)

where L is a linear space and uτ , yτ are input and output

truncated signals, respectively. The uτ is a truncation of u

that is defined by

uτ (t) =

(

u(t), 0 t τ

0, t > τ
(4)

The proof required some definitions such as system’s causal-

ity and stability, see [27, Sec. 5.1]. The causality property of

an operator H : L ! L is defined by (Hu)τ = (Huτ)τ for

all τ ≥ 0. Using this property we can define the stability

k(Hu)τk γkuτk+ β, (5)

where γ, β 2 < and γ, β > 0, for all u 2 L and τ 2 [0,1].
For the proof of the SGT, suppose we have two systems H1 :
L ! L and H2 : L ! L, which are both finite-gain stable so

that:

ky1τk γ1ke1τk+ β1, 8e1 2 L, 8τ 2 [0,1), (6)

ky2τk γ2ke2τk+ β2, 8e2 2 L, 8τ 2 [0,1), (7)

and we also assume that for each input u1, u2 2 L, there exist

unique outputs e1, y1, e2, y2 2 L where u = [u1 u2]
T , y =

[y1 y2]
T , e = [e1 e2]

T . The corresponding feedback system

is illustrated in [27, Fig. 5.1].

Theorem: Under the above assumptions with finite gains

γ1 for H1 and γ2 for H2, the feedback system is finite-gain

stable if γ1γ2 < 1.

Proof: Assuming existence of the solution, we can write

e1τ = u1τ − (H2e2)τ , e2τ = u2τ + (H1e1)τ , (8)

then,

ke1τk ku1τk+ k(H2e2)τk ku1τk+ γ2ke2τk+ β2

 ku1τk+ γ2(ku2τk+ γ1ke1τk+ β1) + β2

= γ1γ2ke1τk+ (ku1τk+ γ2ku2τk+ β2 + γ2β1),

(9)

since γ1γ2 < 1,

ke1τk
1

1− γ1γ2
(ku1τk+ γ2ku2τk+ β2 + γ2β1). (10)

ke2τk
1

1− γ1γ2
(ku2τk+ γ1ku1τk+ β1 + γ1β2). (11)

for all τ 2 [0,1). Finally, using the triangle inequality, we

have

kek ke1τk+ ke2τk. (12)

B. Isabelle/HOL Overview

Isabelle is a generic interactive theorem prover which sup-

ports a variety of logics and provides interactive reasoning to

prove formal mathematical theories or expressions using logi-

cal calculus. It is a specification and verification system written

in the ML programming language [28] that represents rules

as propositions (not as functions) and constructs proofs by

combining rules that comprise a meta-logic based on lambda-

calculus [29]. Isabelle provides useful proof procedures such

as First-Order Logic (FOL), constructive type theory, Zermelo-

Fraenkel set theory (ZF) [30], which offers a formulation of

ZF on the top of FOL, and HOL.

The most common platform of Isabelle is Isabelle/HOL,

which provides a higher-order logic theorem prover environ-

ment. Isabelle has a structured proof language called Isar

in which proofs are conducted. Isar is a mathematics-like

proof language that allows proofs to be easily readable and

understandable for both users and computers.

Isabelle has been chosen by us due to its powerful log-

ical techniques and its large library produced by a broad

community of applied mathematicians. The most competitive

alternative tool to Isabelle is Coq. The difference between them

is minor from the technical point of view but Isabelle has more

interesting and larger set of background theories in its library.

For instance, Isabelle’s library includes theorems ranging from

logics, algebra and type theory such as HOL theory, reals,

integers, complex numbers, and functions through spaces

definitions such as topological spaces, Euclidian space, vector

space and normed space to more complex theories such as

derivative, integration, differential equations, high order func-

tions, complex transcendental and operator norm. In addition

to other features, for example, there is a code generation

feature that allows to transfer the proven specifications from

HOL syntax into a corresponding executable code in SML,

OCaml, Haskell or the Scala programming languages [28],

[29].

C. Formal Proof of the Small-Gain Theorem in Theorem

Prover

To describe how SGT has been proved in Isabelle/HOL,

this section will show the major steps of the proof procedures

starting form definitions of time intervals, signals, truncations

of signals, operators causality and stability. A signal’s domain

and range spaces are also declared in addition to a so-called

truncation space and some properties and operations on signals

which are also declared on these spaces. The definition of

an operator space includes the declaration of their properties,

which are defined in a general way to provide flexibility and

re-usability for the development of other theories in the future.

In this work, some theories, which already exist and for-

mally proven in Isabelle, have been exploited and used such

as ”HOL.thy”. HOL theory includes the axioms of logic in

the higher-order form, the ”Multivariate Analysis.thy”, which

contains, for example, integrations, extended real and algebra

theories, ”Bochner Integration.thy”, which includes Lebesgue

integration definition with their properties that are used in

this work, ”set integral.thy” which is used for the integra-

tion over a specific set or intervals, ”Function Algebras.thy”

that includes the properties of functions, for instance, point-

wise addition, scalar multiplication, functions addition and

multiplication, etc. As theories call other related theories

automatically, there are several related theories called and used

to carry through the proof of the theorem. All the codes that

we are formalized to prove the SGT can be found in our web-

repository1, as it is too long to be included in this paper.

The steps described previously in Section III.A are formal-

ized in Isabelle as follows:

• Time interval: Before formalizing the theorem, some

definitions are needed to be completed such as definition

of time interval bounds. The overall time interval (T) is

defined as a real set [0,1) such that t 2 T where t is a

real variable, that is T = {t |0 t < 1}. The truncation

time interval (Tτ) which is a subset of T and τ 2 Tτ is

the period between 0 and τ , where τ is the truncation

point, such that Tτ = {τ 2 T | 0 t τ}.

• Signal bounds: The signal value range is defined over

(−1,1) as R = {r| −1 < r < 1}.

• Signal definition: The first attempt to define input sig-

nals was by using ordered pair theory. It was soon

discovered that Isabelle does not support working with

a set theory (which defined under Isabelle/ZF platform)

under Isabelle’s HOL platform as they are two distinct

approaches. Therefore, this work relied on the set theory

axioms defined in the Isabelle/HOL theory. The problem

is that set theory in HOL is abstracted from Zermelo-

Fraenkel (ZF) theory, which is under FOL, and it does

not support functions as ordered pairs. For example, the

first trial to define a signal was as u ✓ (T ⇥ R) and

(t, x) 2 u where x belonged to the range set of the signal

u. Therefore, here u is of a type ((real⇥real)set) which

means a set of real ordered pairs. However, the input

signal then needs to be defined as a piecewise continuous

function by the following general formula:

u : T ! R ; u = (8t 2 T, 91u(t) : u(t) 2 R)

• Domain and range space definition: The domain and

range spaces contain a set of signals, which are declared

using ”locale” feature in Isabelle which dealing with

parametric theories. This feature enables us to form a

definition with a set of assumptions in Isabelle. It is also

gives a flexibility in dealing with spaces under certain

constraints and properties and provides the possibility

to add additional properties when the theory is called

and used later. However, the domain space D and range

space G have the same definitions and properties, each

of which is defined as a set of signals (functions) under

the properties of associativity, commutativity of addition,

pointwise addition, distributivity of scalar multiplication

and scalar multiplication over addition.

• Signal truncation and truncation space definition: The

truncation of a signal is defined starting from declaring

a definition that states what truncation means. It is

represented as if there is an input signal u and there is

a truncation point τ which belong to the interval [0,1)
such that all the values in the interval [0, τ) are valid and

the values out of this interval are all set to zero. After that,

1https://github.com/Formal-Methods-of-Robotics/Small-Gain-theorem

truncation space TR is declared under specific constraints

and all truncated signals should belong to this space.

• Operator causality definition: Because system stability

is required for the proof of the SGT and from the fact that

the system to be stable should be causal, system causality

is defined. Causality is an important property of dynam-

ical systems, which is needed to describe practical real-

time feedback systems. A system is said to be causal if its

output, y(t), at any point depends only on its input, u(t),
up to that point. Therefore, with the truncation property

the statement will be equivalent to (Hu)τ = (Huτ)τ ,

which is easily stated in Isabelle.

• L2 norm - Cauchy-Schwarz and Minkowski integral

inequalities: Before defining system stability, there is a

need to measure the norm of a signal with its specific

properties. Because there is no norm definition in Is-

abelle/HOL that is suitable for SGT’s proof, it was neces-

sary for us to formalize and define a norm function. The

norm function which should satisfy the properties men-

tioned in (2) is defined with the need to define Minkowski

and Cauchy-Schwarz integral inequalities [31] to satisfy

the required inequality property.

• Input/output stability definition: Input/output (I/O) sta-

bility is an essential aspect in the study of interconnected

systems stability, where the increasing or decreasing

nature of the signals norm can be tracked from the gain

of the system. A system is said to be stable if it produces

a bounded output for a bounded input. Therefore, I/O

stability is an important part of the SGT. After completing

the definitions of signals, truncation of signals, operators

causality, and the norm function, it is possible to define

the I/O stability as in (5).

• Small-gain theorem formal proof: After completing

the required definitions for formalizing the proof of the

theorem, it is possible now to apply the prove procedures

step-by-step. The proof steps (8-12) can be applied in

Isabelle/HOL under the same assumptions as in [27]

in addition to other assumptions listed to perform the

proof in Isabelle/HOL. Examples of such assumptions are

signals u1 and u2 with their truncation, domain space,

range space, truncation and operator spaces, causality

and stability, and the integrable functions (signals). The

proof steps need simple algebra, inequalities, substitu-

tions and some arithmetic operations, which are proved

in Isabelle/HOL platform.

IV. SHORTCOMINGS OF AVAILABLE METHODS

Although Isabelle/HOL has an extensive list of proved

theories, there was a need for more theories and formalizations

to model control systems and their properties. Therefore, some

theories and formulas were proved first before proving the

SGT. The reason for this is that the library of Isabelle is still

under development like other interactive theorem prover sys-

tems. For instance, the Cauchy-Schwarz’s integral inequality,

Minkowski’s integral inequality and the norm of square inte-

grable function are needed in the proof steps. Therefore, these

theories in addition to some related lemmas are formalized

and proved (See our web-repository). These theories have been

proved by us because in the proof of the SGT, the norm with

the integration of a function is needed and the norm definition

that already exists in Isabelle library is not applicable. Also,

formalizing and proving ZF over HOL platform are needed to

work on signals and operators sets. These are just examples

of the current limitations of ITPs for proving control theories.

Other mathematical concepts are needed to formally prove

such theories especially for those dealing with inequalities,

which are considerably used in control theory. These concepts

are utilized to formalize and prove control theory statements

in the formal verification process.

Inequalities involving real-valued special functions are more

effective to prove in the MetiTarski theorem prover but it

has not yet been integrated with Isabelle/HOL. Moreover, we

cannot easily use MetiTarski in association with Isabelle as it

is an automated theorem prover (ATP). We have had to add

theories to Isabelle to deal with control engineering problems.

Examples of such improvements are by proving mathemat-

ical concepts related to control aspect such as inequalities,

convergence concepts, norms, extending ordered-pair theory

over HOL, improving set theory over HOL, function algebras,

operators, operator norm, etc. Also, there is a need for a col-

laboration between computer scientists and control engineers

to develop and extend theories in theorem proving to improve

the formal verification process and this will ultimately lead to

assure the robustness of control systems.

V. CONCLUSIONS

The work carried out so far has indicated that even the most

theoretical control concepts involving nonlinear operators,

causality and normed spaces of signals over the infinite semi-

axis of time can be handled by formal languages and theorem

proving techniques in higher-order logic using Isabelle/HOL

and associated tools. The proof of the Small-gain theorem in

Isabelle/HOL indicated that the highly abstract and general

control systems can be handled by automated reasoning. We

also found that there is a possibility to formulate and prove

other control theories using ITPs. This may need to formalise

some related mathematical concepts to prove the intended

control theories. The ultimate aim of our research is to achieve

practical industrial benefits of this emerging computational

technology to support certification of the safety and quality

of future control systems.

REFERENCES

[1] T. F. Melham, Higher order logic and hardware verification. Cambridge
University Press, 2009, vol. 31.

[2] R. C. Dorf and R. H. Bishop, Modern control systems, 11st ed. New
Jersey: Pearson Prentice-Hall, 2008.

[3] M. Green and D. J. Limebeer, Linear robust control. Courier Corpo-
ration, 2012.

[4] M. Fitting, First-order logic and automated theorem proving. Springer
Science & Business Media, 2012.

[5] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories.” Handbook of satisfiability, vol. 185, pp. 825–885,
2009.

[6] R. Sebastiani, “Lazy satisfiability modulo theories,” Journal on Satisfi-

ability, Boolean Modeling and Computation, vol. 3, pp. 141–224, 2007.
[7] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. London:

MIT press, 1999.
[8] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof

assistant for higher-order logic. Springer Science & Business Media,
2002, vol. 2283.

[9] G. K. G. Huet and C. Paulin-Mohring, “The Coq proof assistant: A
tutorial,” in INRIA [Online]. Available: http://coq.inria.fr. INRIA,
2016.

[10] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verifi-
cation system,” in International Conference on Automated Deduction.
Springer, 1992, pp. 748–752.

[11] L. C. Paulson, “Metitarski: Past and future,” in International Conference

on Interactive Theorem Proving. Springer, 2012, pp. 1–10.
[12] R. Hardy, “Formal methods for control engineering: A validated decision

procedure for nichols plot analysis,” Ph.D. dissertation, University of St
Andrews, 2006.

[13] B. Akbarpour and L. C. Paulson, “Applications of MetiTarski in the
verification of control and hybrid systems,” in International Workshop

on Hybrid Systems: Computation and Control. Springer, 2009, pp.
1–15.

[14] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis, “Trans-
lating discrete-time Simulink to Lustre,” in International Workshop on

Embedded Software. Springer, 2003, pp. 84–99.
[15] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi,

“Defining and translating a ”safe” subset of Simulink/Stateflow
into Lustre,” in Proceedings of the 4th ACM International

Conference on Embedded Software, ser. EMSOFT ’04. New
York, NY, USA: ACM, 2004, pp. 259–268. [Online]. Available:
http://doi.acm.org/10.1145/1017753.1017795

[16] W. Denman, M. H. Zaki, S. Tahar, and L. Rodrigues, “Towards flight
control verification using automated theorem proving,” in NASA Formal

Methods Symposium. Springer, 2011, pp. 89–100.
[17] P. Roy and N. Shankar, “Simcheck: a contract type system for Simulink,”

Innovations in Systems and Software Engineering, vol. 7, no. 2, pp. 73–
83, 2011.

[18] D. Araiza-Illan, K. Eder, and A. Richards, “Formal verification of
control systems’ properties with theorem proving,” in 2014 UKACC

International Conference on Control (CONTROL), July 2014, pp. 244–
249.

[19] F. Bobot, J.-C. Filliâtre, C. Marché, G. Melquiond, and A. Paskevich,
“The Why3 platform,” LRI, CNRS & Univ. Paris-Sud & INRIA Saclay,

version 0.87.3 edition, 2016.
[20] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. Prentice hall

Englewood Cliffs, NJ, 1991, vol. 199, no. 1.
[21] D. Araiza-Illan, K. Eder, and A. Richards, “Verification of control

systems implemented in Simulink with assertion checks and theorem
proving: A case study,” in 2015 European Control Conference (ECC),
July 2015, pp. 2670–2675.

[22] E. Feron, “From control systems to control software,” IEEE Control

Systems, vol. 30, no. 6, pp. 50–71, 2010.
[23] R. J. Jobredeaux, “Formal verification of control software,” Ph.D.

dissertation, Georgia Institute of Technology, 2015.
[24] G. Brat, D. Bushnell, M. Davies, D. Giannakopoulou, F. Howar, and

T. Kahsai, “Verifying the safety of a flight-critical system,” in Interna-

tional Symposium on Formal Methods. Springer, 2015, pp. 308–324.
[25] R. J. Boulton, H. Gottliebsen, R. Hardy, T. Kelsey, and U. Martin, “De-

sign verification for control engineering,” in International Conference

on Integrated Formal Methods. Springer, 2004, pp. 21–35.
[26] A. Cavalcanti and P. Clayton, “Verification of control systems using

Circus,” in 11th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS’06), 2006, pp. 10 pp.–.
[27] H. K. Khalil, Nonlinear Systems. Prentice-Hall, New Jersey, 1996.
[28] R. Milner, The definition of standard ML: revised. MIT press, 1997.
[29] G. Michaelson, An introduction to functional programming through

lambda calculus. Courier Corporation, 2011.
[30] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy, Foundations of set theory.

Elsevier, 1973, vol. 67.
[31] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Cambridge

university press, 1952.

