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RECONSTRUCTION OF AN ELLIPTICAL INCLUSION IN THE INVERSE

CONDUCTIVITY PROBLEM

ANDREAS KARAGEORGHIS AND DANIEL LESNIC

Abstract. This study reports on a numerical investigation into the open problem of the unique
reconstruction of an elliptical inclusion in the potential field from a single set of nontrivial Cauchy
data. The investigation is based on approximating the potential fields of a composite material
as a linear combination of fundamental solutions for the Laplace equation with sources shifted
outside the solution domain and its boundary. The coefficients of these finite linear combinations
are unknown along with the centre, the lengths of the semi-axes and the orientation of the sought
ellipse. These are determined by minimizing the least-squares objective functional describing the
gap between the given and computed data. The extension of the proposed technique for the
reconstruction of two ellipses is also considered.

1. Introduction

One hundred years ago Johann Radon discovered the transform on which the principles of X-ray
tomography are based. However, it took fifty years for its importance to be realized and acknowl-
edged. The mathematical foundation of tomographic scanning was produced by A. Calderon in his
seminal presentation in 1980. Since then, numerous breakthroughs have occurred on establishing
the uniqueness of recovering the heterogeneous conductivity of a medium from the Dirichlet-to-
Neumann boundary map culminating with the proof in two dimensions [2] for the unique recovery
of L∞-conductivities. However, one of the drawbacks of the Calderon formulation is that infin-
itely dimensional input data are required. Therefore, in order to render the formulation more
practical, a series of papers was initiated by V. Isakov in the late eighties concerning the recovery
of a piecewise conductivity from a finite set of Cauchy data [7, 8]. This latter problem may be
reformulated as a transmission problem for determining the interface between materials having
different conductivities.

Convex or concave polygonal interfaces are uniquely identifiable from one or two sets of Cauchy
data [4, 26] but smooth surfaces are more difficult to investigate and, up to now, uniqueness with
one set of Cauchy data is only known for circular or spherical interfaces [12, 14]; also confirmed by
stability estimates [16, 27] and successful numerical reconstructions [15, 21]. However, for other
smooth shapes, e.g. ellipses, identification with one measurement is only known for perfectly
conductive or insulated interfaces, i.e. piecewise extreme conductivities of ∞ or 0, [13]. Therefore,
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encouraged by some successful numerical investigations in which arbitrary smooth inclusions were
recovered using either the boundary element method (BEM) [5, 6] or the method of fundamental
solutions (MFS) [17], see also [18, 19], it is the purpose of this study to investigate the numerical
identification of an elliptical interface from one measurement of Cauchy data in order to offer
insight into the uniqueness of the yet unsolved inverse elliptical conductivity problem [9]. We note
that the shape of an ellipse for an interface is typical for both damage and porosity geometries [3].

The paper is organized as follows. In Section 2 we provide the mathematical formulation of the
inverse conductivity problem for identifying an elliptical inclusion from one Cauchy boundary data
measurement. The approximation of the resulting transmission problem in a composite material
using the MFS is presented in Section 3 and the resulting nonlinear minimization problem is
described in Section 4. Several examples concerning the reconstruction of circular, elliptical and
bi-elliptical inclusions are presented and discussed in Sections 5 and 6. Finally, in Section 7 we
present some conclusions and ideas for future work.

2. Mathematical formulation

We consider the inverse conductivity problem of determining a piecewise constant isotropic con-
ductivity 1+(κ−1)X (D), where D is an unknown inclusion (in this paper an ellipse or a collection
of ellipses) compactly contained in a given planar bounded domain Ω ⊂ R

2, where X (D) is the
characteristic function of the domain D and κ ̸= 1 is a given positive constant, from a single
measurement of the current flux induced by a boundary potential prescribed on ∂Ω or vice versa.
This inverse problem represents the mathematical formulation of the continuous model of electri-
cal capacitance/impedance tomography. It can be recast as the following transmission problem
governed by the Laplace equations:

∆u1 = 0 in Ω\D, (2.1a)

∆u2 = 0 in D, (2.1b)

subject to the boundary conditions

u1 = f ̸≡ constant on ∂Ω, (2.1c)

∂u1

∂n
= g on ∂Ω, (2.1d)

and the transmission perfect contact conditions

u1 = u2 on ∂D, (2.1e)

∂u1

∂n−
= −κ

∂u2

∂n+
on ∂D, (2.1f)

where Ω ⊂ R
2 is a bounded simply-connected planar domain with smooth boundary ∂Ω and ∂D

is the ellipse defined by

x = X + r(ϑ) cosϑ, y = Y + r(ϑ) sinϑ, ϑ ∈ [0, 2π), (2.1g)
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and

r(ϑ) =
1

√

cos2(ϑ− φ)

a2
+

sin2(ϑ− φ)

b2

. (2.1h)

In (2.1g), (X, Y ) is the centre of the ellipse, 2a and 2b are the lengths of the major and minor axes
of the ellipse, respectively, and φ is the angle the major axis makes with the horizontal. Similar
considerations can be made for an ellipsoid in three dimensions using spherical coordinates.

3. The method of fundamental solutions (MFS)

The MFS for the Laplace equation in a bounded domain may be viewed as a numerical discretiza-
tion of a single-layer potential boundary integral representation in which the given boundary
values and the sought solution are defined on different curves [11]. Consequently, a solution to
the Laplace equation (2.1a) is given as a linear combination of fundamental solutions of the form

u1(c, ξ;x) =
M+N
∑

k=1

ck G(x, ξk), x ∈ Ω\D, (3.1)

where G is the fundamental solution of the two-dimensional Laplace equation, given by

G(ξ,x) = −
1

2π
log | ξ − x | . (3.2)

The sources (ξk)k=1,M are located outside Ω, while the sources (ξk)k=M+1,M+N are located in D.
The geometry of the problem and the location of the source points are sketched in Figure 1.
More specifically, the sources (ξk)k=1,M are located on a (moving) pseudo-boundary ∂Ω′ similar to

(dilation δ1 > 0) ∂Ω while the sources (ξk)k=M+1,M+N are located on a (moving) pseudo-boundary

∂D− similar to (contraction δ2 > 0) ∂D.
Similarly, we seek an approximation to the solution of the Laplace equation (2.1b) in the form

u2(d,η;x) =
N
∑

k=1

dk G(x,ηk), x ∈ D, (3.3)

where the sources (ηk)k=1,N are located outside D on a (moving) pseudo-boundary ∂D+ similar to

(dilation δ3 > 0) ∂D. The idea of using a fictitious moving pseudo-boundary in inverse geometric
problems was first proposed in [19].
Since we have 2M Cauchy boundary conditions (2.1c) - (2.1d) and 2N interface conditions (2.1e) -
(2.1f) we have a total of 2M + 2N equations. The unknowns consist of the M + N coefficients
(ck)k=1,M+N , the N coefficients (dk)k=1,N , the centre (X, Y ), the semi-axes of the ellipse a and b,

the angle φ and the three dilation/contraction coefficients δ1, δ2, δ3, yielding a total of M +2N +8
unknowns. In order to avoid an under-determined situation we require M ≥ 8.
We next define the collocation points (xℓ)ℓ=1,M+N , where xℓ = (xℓ, yℓ), the sources (ξk)k=1,M+N ,

where ξk = (ξxk , ξ
y
k), and the sources (ηk)k=1,N , where ηk = (ηxk , η

y
k). Without loss of generality,
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Figure 1. Geometry of the problem. The asterisks (∗) denote the source points
located on fictitious pseudo-boundaries ∂Ω′ (dilation of ∂Ω), ∂D− (contraction of
∂D) and ∂D+ (dilation of ∂D).

we shall assume that the (known) fixed exterior boundary ∂Ω is a circle of radius R. As a result,
the outer boundary collocation and source points are chosen as

xm = R (cos θm, sin θm) , m = 1,M, (3.4)

ξm = δ1R (cos θm, sin θm) , m = 1,M, (3.5)

respectively, where θm = 2π(m−1)
M

, m = 1,M , and the (unknown) parameter δ1 ∈ (1, S1) with
S1 > 1 prescribed.
We choose the inner boundary collocation and source points as

xM+n = X + r(ϑn) cosϑn, yM+n = Y + r(ϑn) sinϑn, (3.6)

ξxM+n = X + δ2 r(ϑn) cosϑn, ξ
y
M+n = Y + δ2 r(ϑn) sinϑn, (3.7)

and

ηxn = X + δ3 r(ϑn) cosϑn, η
y
n = Y + δ3 r(ϑn) sinϑn, (3.8)

n = 1, N where ϑn = 2π(n−1)
N

, n = 1, N , and the (unknown) parameter δ2 ∈ (S2, 1) (with 0<S2<1
prescribed) and the (unknown) parameter δ3 ∈ (1, S3) with S3 > 1 prescribed.
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4. Implementational details

The coefficients (ck)k=1,M+N in (3.1), the coefficients (dk)k=1,N in (3.3), the contraction coefficient

δ2 and the dilation coefficients δ1, δ3 in (3.5), (3.7), (3.8), the coordinates of the centre (X, Y ),
the half-lengths of the major and minor axes a and b in (2.1g) and the angle φ in (2.1g) can be
determined by imposing the boundary conditions (2.1c)-(2.1d) and the transmission conditions
(2.1e)-(2.1f) in a least-squares sense. This leads to the minimization of the functional

S(c,d, δ,C, a, b, φ) :=
M
∑

j=1

[u1(c, ξ;xj)− f(xj)]
2 +

M
∑

j=1

[

∂u1

∂n
(c, ξ;xj)− g(xj)

]2

+
N
∑

j=1

[u1(c, ξ;xM+j)− u2(d,η;xM+j)]
2 +

N
∑

j=1

[

∂u1

∂n−
(c, ξ;xM+j) + κ

∂u2

∂n+
(d,η;xM+j)

]2

, (4.1)

where c = (c1, c2, . . . , cM+N), d = (d1, d2, . . . , dN), δ = (δ1, δ2, δ3) and C = (X, Y ).

Remarks.

(i) In (4.1), the outward normal vector n is defined as follows:

n = cosϑ i+ sinϑ j , if x ∈ ∂Ω, (4.2)

n± = ±
1

√

r2(ϑ) + r′2(ϑ)

(

r′(ϑ) sinϑ+ r(ϑ) cosϑ, r(ϑ) sinϑ− r′(ϑ) cosϑ
)

, if x ∈ ∂D, (4.3)

where i = (1, 0) and j = (0, 1). Moreover, r is given by (2.1g) and

r′(ϑ) =
1

2

(

1

a2
−

1

b2

)

sin (2(ϑ− φ))
(
√

cos2(ϑ− φ)

a2
+

sin2(ϑ− φ)

b2

)3 . (4.4)

(ii) The minimization of functional (4.1) is carried out using the MATLAB c⃝ [22] optimiza-
tion toolbox routine lsqnonlin which solves nonlinear least squares problems. The routine
lsqnonlin does not require the user to provide the gradient and, in addition, it offers the
option of imposing lower and upper bounds on the elements of the vector of unknowns
x = (c,d, δ,C, a, b, φ) through the vectors lb and up. Such geometrical constraints include
a ∈ (0, R), b ∈ (0, R), φ ∈ [0, π], X ∈ (−R,R) and Y ∈ (−R,R).

(iii) Since the ellipse D is parametrised by a small number (five) of parameters there is no need
to regularize the least squares functional (4.1) in order to obtain a stable solution.
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5. Numerical examples

In all the figures presented in this section, the exact elliptic inclusion is plotted using a red dash-
dot line (– · –), while the numerically retrieved inclusion is plotted using a blue dashed line
( – – – ). We also take R = 1, i.e. Ω is the unit disk and chose κ = 10 in (2.1f). Also, we chose
S1 = S3 = 2, S2 = 0.1. We run the MFS inverse problem solver with M = 48 and N = 96. The
value of M is not so important but N should be sufficiently large to ensure that (3.6) represents a
"smooth" ellipse. We note that when D and κ are both unknown, uniqueness still holds with one
set of Cauchy data (2.1c)-(2.1d) of a special type (roughly speaking, the Dirichlet data f in (2.1c)
has only one maximum on ∂Ω), D is searched in the class of convex polygons and κ is an unknown
constant in the intervals (0,∞)\ {1}, as proved in Theorem 5.1 of [1]; however the numerically
accurate and stable recovery of κ is difficult [21, 5].

5.1. Example 1. We first tested the method by considering an example for which an exact
solution is known and given by, [17, 21],

u1(x, y) = x−
(1− κ)x

2

[

1−
r20

x2 + y2

]

, (x, y) ∈ Ω\D, (5.1)

u2(x, y) = x, (x, y) ∈ D, (5.2)

D = B(0; r0) =
{

(x, y) ∈ R
2 : x2 + y2 < r20

}

, (5.3)

where r0 ∈ (0, 1) (recall that κ = 10) and Ω = B(0, 1).
This exact solution satisfies problem (2.1) with

f(x, y) = x−
(1− κ)(1− r20)x

2
, (x, y) ∈ ∂Ω, (5.4)

and

g(x, y) =
(1 + κ+ (κ− 1)r20) x

2
(x, y) ∈ ∂Ω. (5.5)

We took the Cauchy data (5.4) and (5.5) given for r0 = 0.3, which constitutes the exact solution
for the circular inclusion (5.3). Note that since we are using the analytical expression (5.5) for the
Neumann data (2.1d) we also have some numerical noise included in the inverse problem which is
solved numerically.

The initial guesses for c, d and δ are taken to be c0 = 0, d0 = 0, δ0 = (1.8, 0.8, 1.2), and we
investigate two (different) arbitrary initial guesses for C, a, b and φ, namely,

C0 = (0.5, 0.3), a0 = 0.4, b0 = 0.2, φ0 = π/3, (5.6a)

and

C0 = (−0.5, 0.3), a0 = 0.3, b0 = 0.1, φ0 = π/2. (5.6b)

In Figure 2 we present the results obtained with various numbers of iterations niter, for both
cases of initial guesses (5.6a) and (5.6b). As may be observed from this figure, the case with initial
guess (5.6b) converges slower than the case with initial guess (5.6a). This is probably due to the
thinner shape of the initial ellipse in (5.6b).
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niter=1 niter=20

niter=30 niter=50

(a)

niter=1 niter=100

niter=500 niter=1000

(b)

Figure 2. Example 1: Identifications of the circular inclusion (5.3) with r0 = 0.3
for the initial guesses (5.6a) (in (a)) and (5.6b) (in (b)).

5.2. Example 2. The Dirichlet data (2.1c) on ∂Ω is taken as [10]

u(1, ϑ) = f(ϑ) = e− cos2 ϑ, ϑ ∈ [0, 2π). (5.7)

Since in this case no analytical solution is available, the Neumann data (2.1d) is simulated by
solving the direct well-posed problem (2.1a), (2.1b), (2.1c) and (2.1e)-(2.1f), using the MFS with
M = 200, N = 100 and δ1 = 2, δ2 = 0.9, δ3 = 1.1. An inverse crime is avoided since the inverse
solver is applied using N = 96,M = 48. This also generates some small numerical noise in the
data (2.1d) which is inverted. The initial values of the unknowns are taken as c0 = 0, d0 = 0,
δ0 = (1.6, 0.8, 1.2), C0 = (0, 0) , a0 = b0 = 0.3. We have also considered other initial guesses
for a0 = b0 = i/10 for i = 1, 2, . . . , 8, and convergent results to the exact target were obtained.
However, the routine employed requires a good initial guess for the angle φ in order to ensure
convergence. Such a good a priori initial guess can be provided either from the physics of the
problem or by running a prior global optimization based on an evolutionary search technique such
as the genetic algorithm [24] or the particle swarm algorithm [5].
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We considered the following cases:

(a) Ellipse to be reconstructed: C = (−0.4,−0.1), a = 0.4, b = 0.2, φ = π/3.
Initial guess for angle: φ0 = π/6.

(b) Ellipse to be reconstructed: C = (−0.5,−0.2), a = 0.3, b = 0.1, φ = π/6.
Initial guess for angle: φ0 = π/8.

(c) Ellipse to be reconstructed: C = (0.3, 0.1), a = 0.4, b = 0.1, φ = π/4.
Initial guess for angle: φ0 = π/5.

(d) Ellipse to be reconstructed: C = (0.4, 0.2), a = 0.4, b = 0.1, φ = π/4.
Initial guess for angle: φ0 = π/5.

The convergence of the objective function (4.1), as a function of the number of iterations is
presented in Figure 3, while the inclusion identifications at various iteration numbers, niter, for
cases (a)-(d) are presented in Figures 4(a)-4(d). We observe that the thinner the ellipse the slower
the convergence. Also, the greater the distance of the centre of the ellipse from the origin the
slower the convergence (compare cases (c) and (d)).

100 101 102 103 104

niter

10-8

10-6

10-4

10-2

100

102

O
bj

ec
tiv

e 
fu

nc
tio

n

(a)
(b)
(c)
(d)

Figure 3. Example 2: The objective function (4.1), as a function of the number
of iterations for cases (a)-(d). Note that in cases (a) and (c), the routine terminates
prior to reaching the maximum number of iterations which was set to 20000.
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niter=1 niter=10

niter=100 niter=1000

(a)

niter=1 niter=1000

niter=3000 niter=10000

(b)

niter=1 niter=2000

niter=5000 niter=7000

(c)

niter=1 niter=2000

niter=8000 niter=15000

(d)

Figure 4. Example 2: Identifications of the elliptical inclusions (a)-(d) at various
iteration numbers.

6. Extension to multiple inclusions

We now consider the following inverse boundary value problem with two inclusions:

∆u1 = 0 in Ω\
(

D1 ∪D2

)

, (6.1a)

∆u
(1)
2 = 0 in D1, (6.1b)

∆u
(2)
2 = 0 in D2, (6.1c)
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subject to the Cauchy data
u1 = f ̸≡ constant on ∂Ω, (6.1d)

∂u1

∂n
= g on ∂Ω, (6.1e)

and the transmission conditions
u1 = u

(1)
2 on ∂D1, (6.1f)

∂u1

∂n−
= −κ1

∂u
(1)
2

∂n+
on ∂D1, (6.1g)

u1 = u
(2)
2 on ∂D2, (6.1h)

∂u1

∂n−
= −κ2

∂u
(2)
2

∂n+
on ∂D2, (6.1i)

where Ω ⊂ R
2 is a bounded simply-connected planar domain with smooth boundary ∂Ω and

∂D1, ∂D2 are ellipses of conductivities 0 < κ1, κ2 ̸= 1 defined by

x = Xℓ + rℓ(ϑ) cosϑ, y = Yℓ + rℓ(ϑ) sinϑ, ϑ ∈ [0, 2π), ℓ = 1, 2, (6.1j)

where

rℓ(ϑ) =
1

√

cos2(ϑ− φℓ)

a2ℓ
+

sin2(ϑ− φℓ)

b2ℓ

, ℓ = 1, 2. (6.1k)

In (6.1j) and (6.1k), (Xℓ, Yℓ), ℓ = 1, 2, are the centres of the ellipses, 2aℓ and 2bℓ, ℓ = 1, 2, are the
lengths of the major and minor axes of the ellipses, respectively, and φℓ, ℓ = 1, 2, are the angles
the major axes of the ellipses make with the horizontal. We assume that D1 and D2 ⊂ Ω, and
that D1 ∩D2 = ∅.
In the MFS, we first seek an approximation to the solution of the Laplace equation (6.1a) as a
linear combination of fundamental solutions of the form

u1(c, ξ;x) =

M+N1+N2
∑

k=1

ck G(x, ξk), x ∈ Ω\ (D1 ∪D2) . (6.2)

The sources (ξk)k=1,M are located outside Ω, while the sources (ξk)k=M+1,M+N1
are located in

D1 and the sources (ξk)k=M+N1+1,M+N1+N2
are located in D2. More specifically, as described

in Section 3, the sources (ξk)k=1,M are located on a (moving) pseudo-boundary ∂Ω′ similar to

(dilation δ1 > 0) ∂Ω. The sources (ξk)k=M+1,M+N1
are located on a (moving) pseudo-boundary

∂D−
1 similar to (contraction δ

(1)
2 > 0) ∂D1, while the sources (ξk)k=M+N1+1,M+N1+N2

are located

on a (moving) pseudo-boundary ∂D−
2 similar to (contraction δ

(2)
2 > 0) ∂D2.

Similarly, we seek approximations to the solutions of the Laplace equation (6.1b)-(6.1c) in the
form

u
(ℓ)
2 (dℓ,ηℓ;x) =

Nℓ
∑

k=1

dℓk G(x,ηℓ
k), x ∈ Dℓ, ℓ = 1, 2, (6.3)
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where the sources
(

ηℓ
k

)

k=1,Nℓ

are located outside Dℓ on a (moving) pseudo-boundary ∂D+
ℓ similar

to (dilation δℓ(3) > 1) ∂Dℓ, ℓ = 1, 2.

Since we have 2M Cauchy boundary conditions (6.1d) - (6.1e) and 2(N1 + N2) interface con-
ditions (6.1f) - (6.1i), we have a total of 2M + 2(N1 + N2) equations. The unknowns consist
of the M + N coefficients (ck)k=1,M+N1+N2

, the Nℓ coefficients
(

dℓk
)

k=1,Nℓ

, ℓ = 1, 2, the centres

(Xℓ, Yℓ), ℓ = 1, 2, the semi-axes of the ellipses aℓ and bℓ, ℓ = 1, 2, the angles φℓ, ℓ = 1, 2, and the

five dilation/contraction coefficients δ1, δ
(ℓ)
2 , δ

(ℓ)
3 , ℓ = 1, 2, yielding a total of M + 2(N1 +N2) + 15

unknowns. We thus require M ≥ 15.
We next define the collocation points (xℓ)ℓ=1,M+N1+N2

, where xℓ = (xℓ, yℓ), the sources (ξk)k=1,M+N1+N2
,

where ξk = (ξxk , ξ
y
k), and the sources

(

ηℓ
k

)

k=1,Nℓ

, where ηℓ
k =

(

ηℓk
x
, ηℓk

y)

ℓ = 1, 2. As in Section 3,

we shall assume that the (known) fixed exterior boundary ∂Ω is a circle of radius R and the outer
boundary collocation and source points are chosen as in (3.4) and (3.5).
We choose the inner boundary collocation and source points as

xM+n = X1 + r1(ϑn) cosϑn, yM+n = Y1 + r1(ϑn) sinϑn, ϑn =
2π(n− 1)

N1

, n = 1, N1, (6.4)

xM+N1+n = X2 + r2(ϑn) cosϑn, yM+N1+n = Y2 + r2(ϑn) sinϑn, ϑn =
2π(n− 1)

N2

, n = 1, N2, (6.5)

ξxM+n = X1 + δ
(1)
2 r1(ϑn) cosϑn, ξ

y
M+n = Y1 + δ

(1)
2 r1(ϑn) sinϑn, ϑn =

2π(n− 1)

N1

, n = 1, N1, (6.6)

ξxM+N1+n=X2+δ
(2)
2 r2(ϑn) cosϑn, ξ

y
M+N1+n=Y2+δ

(2)
2 r2(ϑn) sinϑn, ϑn=

2π(n− 1)

N2

, n = 1, N2, (6.7)

and

η1n
x
= X1 + δ

(1)
3 r1(ϑn) cosϑn, η

1
n

y
= Y1 + δ

(1)
3 r1(ϑn) sinϑn, ϑn =

2π(n− 1)

N1

, n = 1, N1, (6.8)

η2n
x
= X2 + δ

(2)
3 r2(ϑn) cosϑn, η

2
n

y
= Y2 + δ

(2)
3 r2(ϑn) sinϑn, ϑn =

2π(n− 1)

N2

, n = 1, N2, (6.9)

with the (unknown) parameters δ
(ℓ)
2 ∈ (S(ℓ2), 1) ℓ = 1, 2, (with 0<S

(ℓ)
2 <1 prescribed) and the

(unknown) parameters δ
(ℓ)
3 ∈ (1, S

(ℓ)
3 ) with S

(ℓ)
3 > 1 prescribed.

The coefficients (ck)k=1,M+N1+N2
in (6.2), the coefficients

(

dℓk
)

k=1,Nℓ

ℓ = 1, 2, in (6.3), the con-

traction coefficients δ
(ℓ)
2 and the dilation coefficients δ1, δ

(ℓ)
3 in (3.5), (6.6)-(6.7), (6.8)-(6.9), the

coordinates of the centres (Xℓ, Yℓ), the half-lengths of the major and minor axes aℓ and bℓ and
the angle φℓ can be determined by imposing the boundary conditions (2.1c)-(2.1d) and the trans-
mission condition (6.1f)-(6.1i) in a least-squares sense. This leads to the minimization of the
functional

S(c,d1,d2, δ,C1,C2, a1, b1, a2, b2, φ1, φ2) :=
M
∑

j=1

[u1(c, ξ;xj)− f(xj)]
2
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+
M
∑

j=1

[

∂u1

∂n
(c, ξ;xj)− g(xj)

]2

+

N1
∑

j=1

[

u1(c, ξ;xM+j)− u
(1)
2 (d1,η1;xM+j)

]2

+

N1
∑

j=1

[

∂u1

∂n−
(c, ξ;xM+j) + κ1

∂u
(1)
2

∂n+
(d1,η1;xM+N1+j)

]2

+

N2
∑

j=1

[

u1(c, ξ;xM+N1j)− u
(2)
2 (d2,η2;xM+N1+j)

]2

+

N2
∑

j=1

[

∂u1

∂n−
(c, ξ;xM+N1+j) + κ2

∂u
(2)
2

∂n+
(d2,η2;xM+N1+j)

]2

, (6.10)

where c = (c1, c2, . . . , cM+N1+N2
), dℓ =

(

dℓ1, d
ℓ
2, . . . , d

ℓ
Nℓ

)

, δ =
(

δ1, δ
(1)
2 , δ

(2)
2 , δ

(1)
3 , δ

(2)
3

)

and

Cℓ = (Xℓ, Yℓ), ℓ = 1, 2.
The normal derivatives involved in (6.10) are defined as in Section 4. The minimization of func-
tional (6.10) is again carried out using the MATLAB c⃝ optimization toolbox routine lsqnonlin.
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6.1. Example 3. We investigate the retrieval of multiple elliptical inclusions and therefore con-
sider reconstructing two disjoint ellipses of conductivities κ1 = κ2 = 10 contained in Ω = B(0, 1).
The Dirichlet data (6.1d) is given by (5.7) and the Neumann data is generated using the MFS

with M = 200, 100 = N = N1 + N2 = 50 + 50, δ1 = 2 and δ
(ℓ)
2 = 0.9, δ

(ℓ)
3 = 1.1, ℓ = 1, 2, inside

and around each of the ellipses (6.1j). An inverse crime is avoided since the inverse solver is
applied using N1 = N2 = 48,M = 48. The initial guesses for the MFS parameters are taken as
c0 = 0,d1

0 = d2
0 = 0, δ0 = (1.6, 0.8, 0.8, 1.2, 1.2). We considered the following cases:

(a) Ellipses to be reconstructed:

{

D1 : X1 = −0.3, Y1 = 0, a1 = 0.3, b1 = 0.2, φ1 = π/6
D2 : X2 = 0.3, Y2 = 0, a2 = 0.3, b2 = 0.2, φ2 = π/2.

Initial guesses: C1
0 = (−0.5,−0.1), C2

0 = (0.5, 0.1), φ1
0 = π/5, φ2

0 = 4π/7,
a10 = a20 = b10 = b20 = 0.3.

(b) Ellipses to be reconstructed:

{

D1 : X1 = 0, Y1 = −0.4, a1 = 0.3, b1 = 0.2, φ1 = 3π/4
D2 : X2 = 0.3, Y2 = 0.3, a2 = 0.3, b2 = 0.2, φ2 = π/6.

Initial guesses: C1
0 = (−0.2,−0.3), C2

0 = (0.4, 0.4), φ1
0 = 3π/5, φ2

0 = π/5,
a10 = a20 = b10 = b20 = 0.3.

(c) Ellipses to be reconstructed:

{

D1 : X1 = −0.3, Y1 = −0.3, a1 = 0.3, b1 = 0.15, φ1 = π/3
D2 : X2 = 0.3, Y2 = 0.3, a2 = 0.3, b2 = 0.15, φ2 = π/6.

Initial guesses: C1
0 = (−0.2,−0.2), C2

0 = (0.2, 0.2), φ1
0 = π/4, φ2

0 = π/5,
a10 = a20 = b10 = b20 = 0.3.

(d) Ellipses to be reconstructed:

{

D1 : X1 = −0.4, Y1 = −0.2, a1 = 0.3, b1 = 0.15, φ1 = π/3
D2 : X2 = 0.4, Y2 = 0.2, a2 = 0.3, b2 = 0.15, φ2 = 5π/6.

Initial guesses: C1
0 = (−0.3,−0.3), C2

0 = (0.3, 0.3), φ1
0 = π/4, φ2

0 = 5π/5,
a10 = a20 = 0.2, b10 = b20 = 0.1.

The inclusion identifications at various iteration numbers, niter, for cases (a)-(d) are presented
in Figures 5(a)-5(d). For thinner ellipses the reconstruction becomes more difficult.
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niter=1 niter=20

niter=100 niter=2000

(a)

niter=1 niter=100

niter=500 niter=1000

(b)

niter=1 niter=500

niter=1000 niter=5000

(c)

niter=1 niter=100

niter=1000 niter=10000

(d)

Figure 5. Example 3: Identifications of the elliptical inclusions (a)-(d) at various
iteration numbers.

7. Conclusions

We have considered the reconstruction of one (or more) elliptical inclusion(s) in the potential field
from a single set of nontrivial Cauchy data using the MFS. The approximation led to a nonlinear
minimization problem which was solved using standard software. The results of several numerical
experiments revealed that the identification of an ellipse is possible and that the uniqueness result
with a single pair of non-trivial Cauchy data seems to hold.
A similar investigation can be carried out in three dimensions examining the unique reconstruction
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of ellipsoidal inclusions. Furthermore, the uniqueness issue examined in this work can also be
investigated for elliptical inclusions in elasticity [20] and acoustics. Finally, anisotropic materials
[23] and super-elliptical inclusions [25] could also be the subject of future work. Of course, there
is still work to be done theoretically for establishing the uniqueness of an elliptical inclusion and
other smooth shapes with one measurement (2.1c)-(2.1d) in the case 0 < κ ̸= 1 < ∞ and further
insight could perhaps be gained by applying the bifocal Newton algorithm of [28] to analyse
uniqueness in nonlinear inverse problems.
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