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 16 

Abstract 17 

Fluid catalytic cracking unit (FCCU) is an important refinery process by cracking heavy 18 

hydrocarbons to form lighter valuable products, including gasoline and diesel oil. However, the FCCU 19 

also generates the largest amount of CO2 emissions among all the refinery units. To solve this problem, 20 

solvent-based carbon capture can be introduced to capture CO2 in the flue gas from FCCU, but the 21 

energy consumption from the reboiler of the carbon capture plant will undoubtedly reduce the 22 

economic benefits of the refinery. In this paper, solvent-based carbon capture for an FCCU in a real 23 

life refinery is studied through process simulation. This study takes into account the process design 24 

and heat integration. An industrial FCCU with a feed capacity of over 1.4 million tons vacuum gas oil 25 

per year was modelled, and the process model was validated according to industrial operating data. A 26 

carbon capture plant model with MEA solvent was also developed in Aspen Plus® at pilot scale, and 27 

scaled up to match the capacity of the FCC unit. Case studies were performed to analyze the integration 28 

of the FCCU with commercial scale carbon capture plant, in which different heat integration options 29 

were discussed to reduce the energy consumption. The simulation results indicated that a proper design 30 

of heat integration will significantly reduce the energy consumption when the carbon capture plant is 31 

integrated with an industrial FCCU.  32 

 33 
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 36 



 

1. INTRODUCTION 37 

1.1. Background 38 

The emissions of CO2, known as one of major greenhouse gases, has a significant impact on the 39 

global warming and climate change. As a result of the world industry development, CO2 emissions 40 

keep increasing rapidly in the last two centuries. It is reported that if no action is taken to reduce the 41 

atmospheric concentration of CO2, it will rise to above 750 (ppmv) by 2100 [1]. As a response, the 42 

intergovernmental Panel on Climate Change (IPCC) indicated that CO2 emissions need to be cut by a 43 

minimum of 50% to limit the average global temperature increment to 2Ԩ in 2050 [2-4]. 44 

Fluid catalytic cracking unit (FCCU), known as the heart of the refinery by cracking heavy 45 

hydrocarbons to form lighter valuable products, on the other hand, generates the largest amount of CO2 46 

emissions among all the refinery units, about 20-30% of total CO2 emissions from a typical refinery 47 

[5]. Therefore, capturing CO2 from FCCU flue gas will be an important step in reducing the total CO2 48 

emissions from the refinery. 49 

In an industrial FCCU, most CO2 is released from its regenerator, which is a coke combustion 50 

process. Therefore, several carbon capture technologies such as oxy-firing, pre-combustion and post-51 

combustion carbon capture, could be applied to abate the CO2 emissions [6]. Among them, the solvent-52 

based post-combustion carbon capture (PCC), which commonly uses monoethanolamine (MEA) as 53 

the solvent, is the most promising and mature one. Compared with other technologies, it requires 54 

minimal modifications to FCCU, and has the most implementation cases in industry [7, 8]. Therefore, 55 

the solvent-based carbon capture with MEA is applied in this research. 56 

1.2. Previous research  57 

Solvent-based carbon capture has been studied by many researchers. Lawal et al. and Zhang et al. 58 



 

proposed rigorous plant models respectively, and validated the models according to operating data 59 

from pilot plants [9, 10]. Lawal et al. also analyzed different modelling methods, which showed that 60 

rate-based modelling for PCC process is more accurate than equilibrium-based model [11, 12]. 61 

Considering the high heat duty in the reboiler of PCC stripper will bring a significate energy penalty 62 

for commercial implementation, Wang et al. indicated that the energy consumption can be reduced by 63 

better process integration [6]. Liu et al. simulated the heat integration of a 600MWe supercritical coal-64 

fired power plant (CFPP) with PCC process, and several integration cases were analyzed accounting 65 

for energy from different positions of the CFPP [13]. Roberto et al. deployed a commercial scale 66 

carbon capture plant for a 250MWe combined cycle gas turbine (CCGT) power plant, and proposed 67 

exhaust gas recirculation to reduce penalty on thermal efficiency [14]. Luo et al. firstly studied on 68 

applying solvent-based carbon capture for cargo ships, and the cost degrees for the deployment were 69 

evaluated in different integration options [15]. 70 

The FCCU has also been widely investigated [16-19]. For the modeling of reaction kinetics, several 71 

methods were proposed by classifying the kinetics into different chemical lumps [20-23]. Among them, 72 

Aspen HYSYS®, a commonly used chemical engineering software, has also developed a 21-lump 73 

model to address heavier and more aromatic feeds [24, 25]. Flue gas from FCCU was analyzed by 74 

Fernandes et al. in detail, which indicated that the flue gas from FCCU regenerator contained a higher 75 

CO2 concentration compared with flue gas from power plants [26]. In industry, considering the fact 76 

that the temperature of flue gas released from the FCCU regenerator is quite high (usually over 900K), 77 

waste heat recovery is therefore an effective way to promote the economic benefits. In this area, 78 

Johansson et al. analyzed the excess heat in the view of a whole refinery [27]. Al -Riyami et al. 79 

discussed the heat integration of a heat exchanger network for the FCC plant, in which the energy 80 



 

efficiency and economic benefits were taken into account for estimating different heat integration 81 

options [28]. 82 

For the integration of FCCU with carbon capture plant, de Mello et al. deployed oxy-combustion 83 

technology for FCCU in large pilot scale to reduce CO2 emissions [29]. Furthermore, de Mello et al. 84 

also compared the CO2 capture performance between oxy-firing technology and solvent-based carbon 85 

capture for the FCCU at pilot scale, and concluded that oxy-firing concept would be an adequate 86 

technology for FCCU if ignoring the total capital cost and consequently FCCU modifications [30]. 87 

1.3. Motivation and novel contributions of this work 88 

From the previous studies reviewed in Section 1.2, it can be observed that the deployments of 89 

solvent-based carbon capture plant have been mainly focused on the power plants. To the best of our 90 

knowledge, few papers studied the integration of solvent-based carbon capture with FCCU for the 91 

industrial scale. Flue gas from an industrial FCCU, different from that in power plants, contains more 92 

CO2 and O2 so that the size of capture plant should be redesign to meet these requirements. Furthermore, 93 

considering the large amount of excess heat in FCCU, heat integration should also be analyzed to 94 

compensate the energy penalty from carbon capture plants.  95 

In summary, considering the mentioned problems, the novel contributions of this research are listed 96 

as follow: 97 

(1) A steady state model for FCCU is developed, the parameters of which are calibrated based on 98 

operating data from real industry; 99 

(2) Detailed study on scale-up of the solvent-based carbon capture process is discussed to match the 100 

flue gas requirements of the industrial FCCU; 101 

(3) Case studies are performed to compare the performance of deploying solvent-based carbon 102 



 

capture for FCCU with different heat integration options (in order to reduce energy consumption 103 

used for carbon capture). 104 

1.4. Outline of this paper 105 

This paper is organized as follows: the model development of the industrial FCCU is introduced and 106 

the model is also validated in Section 2. Section 3 describes the model development of the solvent-107 

based carbon capture plant. In Section 4, the process model integration is presented, including flue gas 108 

pre-processing, model interface, and scale-up of the capture plant model. In Section 5, two case studies 109 

are performed to test the performance of the carbon capture deployment. Conclusions were drawn in 110 

Section 6. 111 

2. Model development of the FCCU 112 

2.1 FCCU process description 113 

The reference plant selected in this work is an industrial UOP FCC unit in a Sinopec oil refinery 114 

with a feed capacity of over 1.4 million tons vacuum gas oil (VGO) per year. The unit has two major 115 

components: riser and regenerator. The simplified flow diagram of the FCCU is illustrated in Fig. 1. 116 
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Fig. 1. Simplified flow diagram of the FCCU in refinery. 118 



 

As presented in Fig. 1, the riser is the main reactor where most cracking reactions occur. As all the 119 

reactions are endothermic, the feedstock, before entering the riser, should be preheated to around 533-120 

644K by the feed preheat system. The preheated feed then comes in contact with a hot fluidized catalyst 121 

(over 811K) in the riser, and the components of the feed undergo several reactions on the catalyst 122 

surface. After that, the effluent from the riser is sent to the fractionator for the separation of liquid and 123 

the gaseous products. 124 

The spent catalyst, on the other hand, is sent to the regenerator, which is another major component 125 

in FCCU. It is used to remove coke on the catalyst surface by combustion with air so as to maintain 126 

the activity of the catalysts, and also supply heat to the riser. To reactivate the catalyst, coke is burned 127 

off in the regenerator by operating at about 988K and about 2.41 bar. In addition, a large amount of 128 

flue gas (flow rate over 30kg/s) at high temperature is produced because of the combustion in the 129 

regenerator of FCCU [28]. 130 

2.2 Model development for the FCCU 131 

Complex reaction kinetics are involved in FCCU modeling, which requires a proper reaction lump 132 

network and accurate thermodynamics. In addition, the integration of the FCCU with solvent-based 133 

carbon capture is to be considered in this work, the process model should also be able to describe the 134 

flue gas accurately (including flow rate, chemical compositions, pressure and temperature). Therefore, 135 

the Aspen HYSYS/Petroleum Refining FCCU model is applied in this research. It relies on a series of 136 

sub-models that can simulate an entire operating unit while satisfying the riser and regenerator heat 137 

balance. The main sections of the mentioned FCCU model is summarized in Table 1, for the detailed 138 

information, readers can refer to ref [31]. 139 

Table 1. Brief summary of Aspen HYSYS/Petroleum Refining FCC sub-models [31] 140 



 

Submodel Purpose unit operation 

riser  convert feed to product species using 21 lump kinetics modified plug-flow reactor 

reactor/stripper complete feed conversion and remove adsorbed hydrocarbons bubbling-bed reactor with two phases 

regenerator  combust coke present on the catalyst bubbling-bed reactor with two phases 

delumper 
convert lumped composition into a set of true boiling point 

(TBP) pseudo-components suitable for fractionation 
  

As listed in Table 1, the riser has been modeled with a plug-flow reactor (PFR) under pseudo-steady 141 

conditions. In the riser, the vapor hydrocarbon cracks on the solid catalyst surface. As cracking 142 

reactions involve large amount of species, it will be too complex to simulate each specie in the process 143 

model. Thus, a 21 lump kinetics reaction network is applied to deal with this complexity. All the 144 

species are represented by the 21 components as listed in Table 2. Furthermore, as the 21-lump model 145 

includes discrete lumps for the kinetic and metal coke, a coke-on-catalyst approach is used to model 146 

catalyst deactivation. In addition, a rate equation in the kinetic network for coke balance is also 147 

involved on the catalyst, which is formulated as follow [17] 148 

 
ex p ( ) ex p ( ( ))

co ke K C O K E M C O K E

K C O K E K C O K E M C O K E M C O K E M E TALS
a C a C f C

  

  
  (1) 149 

Where 
K C O K E

a  is the activity factor kinetic coke, 
M C O K E

a  is the activity factor for metal coke, 150 

K C O K E
C  is the concentration of kinetic coke on the catalyst, M C O K E

C  is the concentration of metal coke 151 

on the catalyst, and 
M E TALS

C  represents the concentration of metals on catalyst. 152 

Table 2. Summary of 21-lump kinetics (refer to [31]) 153 

boiling point range Lumps 

<C5 light gas lump 

C5 to 221Ԩ Gasoline 

221-343Ԩ light paraffin (PL) 

(VGO) light naphthene (NL) 

 light aromatics with side chains (Als) 

 one-ring light aromatics (ALr1) 

 two-ring light aromatics (ALr2) 

343-510Ԩ heavy paraffin (PH) 



 

(heavy VGO) heavy naphthene (NH) 

 heavy aromatics with side chains (AHs) 

 one-ring heavy aromatics (AHr1) 

 two-ring heavy aromatics (AHr2) 

 three-ring heavy aromatics (AHr3) 

Over 510Ԩ residue paraffin (PR) 

(residue) residue naphthene (NP) 

 residue aromatics with side chains (Ars) 

 one-ring residue aromatics (ARr1) 

 two-ring residue aromatics (ARr2) 

 three-ring residue aromatics (ARr3) 

coke kinetic coke (produced by reaction scheme) 

  metal coke (produced by metal activity on the catalyst) 

The regenerator is modelled by two separate phases, the dense phase and the dilute phase. The 154 

former is the bottom part of the regenerator where it is highly concentrated with catalyst, and the latter 155 

is the top part of the regenerator which contains a negligible amount of catalyst particles. Therefore, 156 

the regenerator is modelled as a bubbling-bed reactor with two phases.  157 

2.3 Model validation 158 

The proposed steady state model for FCCU is validated by mean values of industrial operating data. 159 

These data are collected over 30 days in a relative steady operating conditions. Table 3 gives the 160 

industrial operating conditions and the model predicted values in comparison with those data obtained 161 

from industry.  162 

Table 3. Validation results of the FCCU model 163 

Variable unit Value     

Fresh feed flow rate t/h 150.74   

Fresh feed temperature K 496.87   

Fresh feed pressure kPa 244.44   

Steam flow rate t/h 9.10   

Steam temperature K 640.90   

Steam Pressure kPa 0.97   

Riser outlet temperature K 783.84   

Dense Bed Temperature K 967.86   

Air Volume Flow Nm3/h 90000.00   



 

Reactor Pressure kPa 173.24   

Regenerator - Reactor  

Pressure Difference  
kPa 22.49   

    Model prediction Industry Data Relative Error 

Gas (C1, C2) t/h     2.96 4.91 65.97% 

LPG t/h     20.41 19.50 4.45% 

Gasoline t/h 73.96 74.36 0.55% 

Diesel Oil t/h 36.40 34.95 3.99% 

O2 and Ar (in flue gas) wt% 5.20 5.25 0.90% 

CO2 (in flue gas) wt% 12.78 13.32 4.23% 

CO (in flue gas) wt% 0 0   

As shown in Table 3, the relative error of gasoline and diesel oil, which are the main products of the 164 

FCCU, are all below 4%. Meanwhile, the proposed FCCU model also shows a good performance in 165 

predicting the flue gas compositions, as the relative error of O2 and CO2 concentration are 0.9% and 166 

4.23% respectively. It can also be observed that the error of GAS in products is as high as 65.97%. In 167 

fact, as GAS is a by-product for the FCCU and the mass flow rate is relatively small compared with 168 

the main products, the predicting error of GAS is also acceptable. Thus, it can be concluded that the 169 

proposed FCCU model is suitable for the following study on the model integration between the FCCU 170 

and the carbon capture plant. Furthermore, the model predicted flue gas compositions and flow rate 171 

are also listed in Table 4. 172 

Table 4. Flue gas composition and mass flow rate 173 

  Unit Flue gas 

O2 wt% 4.20 

N2 wt% 82.02 

CO2 wt% 12.78 

CO wt% 0.00 

Ar wt% 1.00 

Temperature K 993.07 

Flow rate kg/s 30.304  

3. Model development of solvent–based carbon capture plant using MEA 174 
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Fig. 2. Simplified flow diagram of the carbon capture plant with MEA solvent [9, 11, 12]. 176 

3.1. Solvent-based carbon capture plant description 177 

As shown in Fig. 2, a typical carbon capture plant with MEA solvent can be described as follow. 178 

Firstly, the pre-processed flue gas is sent to the bottom of the absorber, where most of the CO2 in the 179 

flue gas is chemically absorbed by the lean MEA solvent, and the scrubbed gas is released from the 180 

top. The rich solvent is then heated in a cross heat exchanger and pumped into the stripper. The stripper, 181 

on the contrary, is a place where CO2 is extracted from the rich solvent and collected with a high purity. 182 

At the same time, the regenerated solvent is pumped back to the absorber as the lean solvent through 183 

the cross heat exchanger to reduce the temperature. In the capture plant, the main energy consumption 184 

is the reboiler heat duty of the stripper. To describe the absorption performance of the process, several 185 

technical terms are defined as follows. 186 

CO2 loading 187 
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 In this work, the capture plant model we developed is based on the operating data from a pilot 191 

plant at the University of Texas, Austin [32]. The pilot plant is a closed-loop absorption and stripping 192 

facility as described above, where both the absorber and regenerator are 0.427m in diameter and packed 193 

with two sections of 3.05m packing. The MEA concentration in the lean solvent is 32.5wt%. The 194 

absorber is operated at atmospheric pressure with a random metal packing, IMTP no. 40, while the 195 

stripper is operated at a pressure of 1.7 bar and filled with a structured packing, Flexi Pac1Y [32]. 196 

  197 

Fig. 3. Flowsheet of the carbon capture plant model in Aspen Plus®. 198 

3.2 Model development of the capture plant 199 

The capture plant model has been developed in Aspen Plus®, which is shown as Fig. 3. Both the 200 

absorber and stripper are modeled using the rate-based model, which has been proved to have a better 201 

accuracy than an equilibrium model. 202 

For the physical property method, the Electrolyte Non-Random-Two-Liquid (ELECNRTL) model 203 

is selected for liquid, and RK equation of state for vapor [14]. Meanwhile, for the reaction kinetics, 204 



 

both equilibrium and rate-controlled reactions are used, and the kinetic models proposed by Aboudehir 205 

et al., and Aspentech were selected in this study, which are defined as follow [33, 34] 206 

The equilibrium reactions 207 

 2 3
2 H O H O O H

     (4) 208 

 2

3 2 3 3
H C O H O H O C O

       (5) 209 

 2 3
M E AH H O M E A H O

      (6) 210 

The rate-controlled reactions 211 

 2 3
C O O H H C O

     (7) 212 

 3 2
H C O C O O H

     (8) 213 

 2 2 3
M E A C O H O M E AC O O H O

      (9) 214 

 3 2 2
M E AC O O H O M E A C O H O

       (10) 215 

The equilibrium constants Keq for the reactions (4) to (6), on a molar concentration basis, can be 216 

determined as 217 

 ln ( ) ln ( )
eq

B
K A C T D T

T
        (11) 218 

The kinetic expressions (7) to (10) are governed by the power law expression 219 

 
1

ex p ( ) i

N
an

i
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E
r kT C

R T 

     (12) 220 

The values of the parameters A, B, C and D for the equilibrium reactions as well as the kinetic 221 

parameters are given in Table 5. 222 

The packing section of the absorber and stripper are specified with the same type of packing and 223 

with the same dimensions as the pilot plant. Readers can refer to studies [16, 32] for more details about 224 

the development of the absorber and stripper models. 225 



 

Table 5. Coefficient of equilibrium constants and kinetic parameters 226 

Equation 

no. 
A B C D 

1 132.889 -13455.9 -22.477 0 

2 216.049 -12431.7 -35.482 0 

3 -3.038 -7008.357 0 -0.003 

 k E (cal/mol) 

4 4.32E+13 13249 

5 2.381E+17 28451 

6 5.30E+10 9855.8 

7 2.183E+18 14138.4 

3.3 Model validation 227 

The accuracy of the proposed carbon capture plant model is validated by operating data from the 228 

same pilot plant which our plant model is based on. The operating data were collected from 48 229 

experimental cases with different operation conditions in a test campaign [32]. Among the 48 230 

experimental cases, Case 28 has relatively high liquid to gas (L/G) ratio and CO2 capture level, while 231 

the liquid to gas (L/G) ratio and CO2 capture level of Case 47 are much lower. These two cases were 232 

selected to test the performance of the proposed capture plant model with different operating conditions. 233 

The detailed information of the operating data are listed in Table 6.  234 

Figs. 4 and 5 show the validation results for the absorber and stripper temperature profiles of Cases 235 

28 and 47 respectively, where solid blue line indicates the model predicted data, and ‘x’ represents the 236 

operating data from pilot plant. It can be seen from the figures that the solid lines are very close to the 237 

‘x’ points, which shows that the developed model has selected proper physical properties and reaction 238 

kinetics to reflect the internal changes of the peaking columns. In Table 7, the simulation results are 239 

also compared with model from Canepa et al. [14], which has shown a good predicting accuracy. It 240 

can be observed that model in this work shows a better performance in predicting rich loading value. 241 

Thus, it can be concluded that, with different liquid to gas (L/G) ratios, the proposed solvent-based 242 



 

carbon capture plant model has a good predicting performance. Therefore, the proposed capture plant 243 

model is suitable for the integration of the FCCU with the carbon capture plant. 244 

Table 6. Process conditions for experimental Case 28 and Case 47 [32]  245 

  unit Case 28 Case 47 

Lean in flow rate L/min 81.92 30.13 

Lean in temperature K 313.14 313.32 

Flue gas flow rate m3/min 11.00 8.22 

Flue gas temperature K 321.08 332.38 

Flue gas pressure kPa 105.19 103.32 

Flue gas CO2 content mol% 16.54 18.41 

Regenerator pressure kPa 162.09 68.95 

Regenerator temperature K 345.21 354.33 

Condenser temperature K 287.79 297.14 

Reboiler temperature K 388.05 366.30 

 246 

Fig. 4. Temperature profile for Case 28 (solid blue lines represent model predictions while ‘×’ 247 

represents experimental data). 248 
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Fig. 5. Temperature profile for Case 47 (solid blue lines represent model predictions while ‘×’ 250 

represents experimental data). 251 

Table 7. Capture plant performance for Case 28 and Case 47 252 

  Unit   Case 28 Case 47 

lean loading  mol CO2/mol MEA Experimental 0.287 0.281 

rich loading mol CO2/mol MEA 

Experimental 0.412 0.539 

This work 0.405 0.487 

Canepa et al. [14] 

model 
0.409 0.467 

CO2 capture level  % 

Experimental 86 69 

This work 72.34 58.94 

Canepa et al. [14] 

model 
71 68.7  

4. Integration of the FCCU with carbon capture plant 253 

Both FCCU model and solvent-based carbon capture plant model have been described in Sections 254 

2 and 3 respectively. But, in fact, the flue gas released from the FCCU cannot be sent to the capture 255 

plant directly. Before integrating the two process models, several problems should be discussed first. 256 

4.1 Flue gas pre-processing 257 

For the industrial FCCU in refinery, the generated flue gas will go through a series of energy 258 

recovery equipment before entering chimney. A simplified diagram of the flue gas flow from the 259 

reference industrial FCCU to chimney is shown in Fig. 6. Firstly, as the flue gas at the outlet of the 260 

FCCU has a very high temperature (around 992K in Fig. 6), which means that it is the highest in heat 261 

grade, this part of energy is generally recovered by flue gas turbine to generate electric power. Then, 262 

the flue gas with temperature decreased to around 759K, enters the waste heat steam generator (WHSG) 263 

to achieve further heat recovery. Finally, the flue gas temperature drops to around 453K, and released 264 

through chimney. 265 
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Fig. 6. Process diagram of the reference industrial FCCU (Reference case). 267 

In this work, the flue gas from the outlet of the WHSG will be sent to a carbon capture plant, instead 268 

of being released through chimney directly. Before entering the absorber of the carbon capture plant, 269 

pre-processing should be done. First, the flue gas has to be cooled down to around 313-323K in order 270 

to improve the absorption efficiency and reduce solvent losses due to evaporation. The cooling system 271 

consists of direct contact cooler which is modelled as a two theoretical stages tower with Raschig rings 272 

packing. A spray of water at 298K has been used to cool down the flue gas to around 313K. The Aspen 273 

Plus® block RadFrac is used to fulfill this task [14]. 274 

Furthermore, acid gases, such as NOx and SOx, have to be taken out of the flue gas, as they tend to 275 

form teat stable salts that cannot be regenerated with the solvent, compromising its absorption capacity. 276 

This can be removed by either electrostatic precipitators or bag house filters. Oxygen content also has 277 

to be controlled to avoid corrosion of the equipment and solvent degradation. For simplicity, an ideal 278 

cleaning process has been considered and therefore all the unwanted species have been taken out, 279 

leaving a flue gas with only four species [14]. 280 

4.2 Interface of the FCCU model and carbon capture plant model 281 

As the two models are developed in different software, where the FCCU is modeled in Aspen 282 

HYSYS®, and the capture plant is modeled in Aspen Plus®, data transmission should be realized. In 283 



 

this work, an interface program is coded in Visual Basic to collect the model simulated flue gas 284 

information in Aspen HYSYS® and transfer it to the Aspen Plus® model. 285 

4.3 Water balance 286 

In the solvent-based carbon capture plant, as the absorption reaction is exothermic, some water will 287 

be evaporated with CO2 being absorbed into the MEA solvent. In this model, this part of water will be 288 

released with the pure flue gas from top of the absorber. Thus, the water balance cannot be maintained 289 

because of the capture plant model is a closed-loop system. This problem was also discussed by Lawal 290 

et al. [9] and Canepa et al. [14] when dealing with flue gas from different power plants.  291 

In this study, as less water contained in the flue gas from FCCU, the water balance issue should also 292 

be taken into account. Therefore, a make-up water stream is added into the capture plant model to 293 

compensate the water loss. The flowrate of the make-up water is determined according to the operating 294 

conditions of the capture plant.  295 

4.4 Scale-up of the solvent-based carbon capture process 296 

The model scale-up is a key step for the integrating simulation, the aim of which is to redesign the 297 

size of the capture plant model to match the requirements of the flue gas from FCCU. It includes the 298 

design of the number and size of the absorber and stripper, as well as the solvent flow rate. In this 299 

work, the following assumptions should be taken into account: 300 

(a) Solvent is 32.5wt% MEA; 301 

(b) 90% capture level; 302 

(c) The same operating pressure for absorber and regenerator in the pilot plant will be used at full scale 303 

(i.e. 1 and 1.6 bar, respectively); 304 

(d) Adiabatic absorption process; 305 



 

(e) Acid gases have been removed from the flue gas; 306 

(f) No water wash section in the absorber. 307 

 308 

Fig. 7. Generalized pressure drop correlation, adapted from a figure by Koch-Glitsch, LP, with 309 

permission (This figure was published in [35]). 310 

For scale-up, it is important to calculate the cross-sectional areas of absorber and stripper. The 311 

methodology is adopted from [14]. For the absorber, given the flus gas mass composition and flow 312 

rate in Table 4 and assuming capture level of 90%, and the MEA solvent absorption capacity is 0.18 313 

mol CO2/mol MEA. Thus, the required solvent mass flow rate is calculated to be 82.63kg/s (with 314 

32.5wt% MEA).  315 



 

Then, the required column diameter can be estimated through a generalized pressure drop correlation 316 

(GPDC) given by Sinnot [35]. As shown in Fig. 7, with the lines of constant pressure drop as a 317 

parameter, the relationship between the flow parameter FLV and the modified gas load K4 is given, and 318 

both of the terms are defined respectively as follow 319 
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Where,  
L V

F  = the flow parameter which is related to L/G ratio; 322 

4
K  = a modified gas load; 323 

p
F  = packing factor, characteristic of the size and type of packing, 1

m
 ; 324 

*

w
V  = vapor mass flow rate per unit cross-sectional area, 2

/kg m s ; 325 

L
  = liquid viscosity, 2

/N s m ; 326 

L
 ,

v
  = liquid and vapor densities, 3

/kg m . 327 

In engineering practice, the column will be designed to operate at the highest economical pressure drop, 328 

to ensure good liquid and gas distribution. A recommended value for the absorber and stripper is 329 

between 15 to 50 mm H2O per meter packing. In this paper, the pressure drop of 42 mm H2O per meter 330 

packing is selected for the scale-up. It can be observed from Equations (13) and (14) that once the 331 

liquid and gas flow ratio and 
L

  , v
   are given, the term FLV can be calculated. Then, with the 332 

assumed pressure drop, the gas load K4 can be estimated from Fig. 7. From Equation (14), the gas mass 333 

flow rate per unit column cross-sectional area is obtained. The total area required can be evaluated 334 

given the flue gas flow rate that has to be processed.  335 



 

The same procedure was adopted for the scale-up of stripper. The liquid flow is equal to the sum of 336 

the rich solvent mass flow rate plus the reflux rate while the gas flow is equal to the boiled-up rate. 337 

The adopted values as well as the obtained results are presented in Table 8. 338 

Table 8. Sizing first guess solution: Assumption and results 339 

Assumptions unit Absorber Stripper 

Lw*/V w*  2.73 12.67 

pv  kg/m3 1.364 1.022 

pL kg/m3 1084.01 1023.69 

Pressure drop 
mm 

H2O/packing 
42 42 

Fp  L/m 78.74 168.2 

uL  Pa S 0.00355 0.000969 

FLV    0.097 0.403 

K4  1.4 0.7 

Cross section area required  m2 11.38 6.09 

diameter required m 3.81 2.78 

A first guess diameter of the absorber and stripper has been estimated according to the methods 340 

mentioned above. The information of the scaled up capture plant model is listed in Table 9. The 341 

estimated sizing values have been simulated with the previously developed model for capture plant in 342 

Aspen Plus®. In the simulation, lean loading is an important value that influences the reboiler duty of 343 

the stripper. In this work, lean loading of 0.30 mol CO2/ MEA is selected to deal with 12.78wt% CO2 344 

concentration in the flue gas, which is a relatively high value compared with that in the power plants. 345 

The overall performance of the scaled up capture plant is shown in Table 10. 346 

Table 9. Capture plant equipment design 347 

  unit Absorber Stripper 

Column number  1 1 

Column packing  IMTP no.40 Flexipack 1 Y 

Column diameter m 3.81 2.78 



 

Column packing height m 30 30 

Column pressure  kPa 101 162 

Table 10. The overall performance of the scaled up capture plant model 348 

  unit model scale up  

Flue gas flow rate  kg/s 30.304 

Flue gas CO2 content  wt% 12.78 

Solvent MEA content  wt% 32.50 

Capture level  % 90 

CO2 captured kg/s 3.491 

L/G ratio kg/kg 2.507 

Lean loading mol CO2/mol MEA 0.30 

Rich loading mol CO2/mol MEA 0.496 

Stripper heat duty MW 14.677 

Specific duty GJ/ton CO2 4.204 

5. Case studies and discussions 349 

Three case studies are presented to test the performance of the integration of the industrial FCCU 350 

with solvent-based carbon capture. As introduced in Fig. 6, excess heat from the reference FCCU can 351 

be summarized as: (1) excess heat entering chimney. As the flue gas temperature entering chimney is 352 

around 453K, while the stripper reboiler temperature is around 393K, energy from 453K to 403K, with 353 

10K mean temperature difference, can be recovered to heat the stripper reboiler; (2) heat recovered by 354 

WHSG; (3) heat used by Flue Gas Turbine; (4) refinery excess heat from steam network. Thus, case 355 

studies are simulated and discussed with the consideration of different heat integration options. 356 

5.1 Justification of case studies 357 

5.1.1 Case 1: Only FCC excess heat are supplied to the CO2 capture process 358 

In Case 1, the heat required by carbon capture plant is totally supplied by the excess heat of the 359 

FCCU itself. Considering that electricity is more expensive, heat used by Flue Gas Turbine (i.e. (3)) is 360 

still used for electricity generation. Therefore, only heat from (1) and (2) is used for carbon capture in 361 



 

this case. To utilize this part of energy, modifications should be done for both FCCU and carbon capture 362 

plant. A heat exchanger is added to collect the excess energy from chimney. A multiple-shell kettle 363 

reboiler [36], which can mix energy from different sources, is equipped in the stripper of the carbon 364 

capture plant. The heat integration of Case 1 is illustrated in Fig. 8. 365 
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Fig. 8. Process diagram of Case 1. 367 

5.1.2 Case 2: guarantee 90% CO2 capture level with FCCU excess heat only 368 

In this case, a 90% CO2 capture level, which is the designed value of the solvent-based carbon 369 

capture plant, is attempted to guarantee. In this sense, part of energy in Flue Gas Turbine (i.e. (3)) 370 

should be used for carbon capture. As shown in Fig. 9, the outlet temperature of the Flue Gas Turbine 371 

is raised to 854.1K, which means that the amount of electricity generated from (3) is decreased. This 372 

part of heat is added to the WHSG to guarantee the CO2 capture level. 373 
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Fig. 9. Process diagram of Case 2. 375 

5.1.3 Case 3: guarantee 90% CO2 capture level with additional heat supply 376 

The aim of heat integration in this case is also to guarantee 90% CO2 capture level. An additional 377 

heat supply from steam network (i.e. (4)) is introduced to replace the amount of heat taken from Flue 378 

Gas Turbine (i.e. (3)). In this way, electricity generated by Flue Gas Turbine will not be influenced. In 379 

refinery, the steam network is used to collect the excess energy from different units and supply heat to 380 

the carbon capture plant. The process diagram of this case is shown in Fig. 10. 381 
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Fig. 10. Process diagram of Case 3. 383 

5.2 Results and discussion 384 

The results of all the three case studies are listed in Table 10. In Case 1, considering the flue gas 385 

temperature reduced from 759K to 453K (previously used by WHSG), 9.96MWth heat can be provided 386 

to the carbon capture stripper reboiler. Furthermore, the energy in (1) collected by heat exchanger is 387 

1.56MWth. These two parts of heat are mixed by the multiple-shell kettle reboiler. As a result, 78.02% 388 

CO2 in flue gas can be captured through this heat integration option. In fact, as the designed capture 389 

level is 90%, Case 1 cannot support the capture plant to reach that value. In summary, using the excess 390 

heat in the FCCU alone needs the minimal process modification for the industrial FCCU, but at the 391 

cost of reducing CO2 capture level. 392 

In Case 2, the inlet temperature of WHSG is raised to 851K, which enables WHSG to collect more 393 

heat, as high as 13.11MWth as shown in Fig. 9. It can be observed from Table 10 that the electricity 394 

generated by the Flue Gas Turbine will decrease, from 7.94MWe to 4.79MWe as shown in Fig. 9. 395 

Compared with the reference case, the electricity power decreased by 39.67%. However, the CO2 396 



 

capture level reaches 90%.  397 

In Case 3, the capture plant needs no energy from the Flue Gas Turbine any more. Instead, this part 398 

of energy is replaced by excess heat from refinery steam network. It can be seen from Fig. 10, the inlet 399 

and outlet temperatures of the Flue Gas Turbine keep the same as the reference case, which means that 400 

the electricity generated by Flue Gas Turbine will not be affected. Besides, an additional heat stream 401 

is equipped to supply the excess heat from refinery. With the help of multiple-shell kettle reboiler, three 402 

heat streams from different sources are mixed to maintain 90% capture level of the capture plant. 403 

Table 10. Summary of the results of the three case studies 404 

  Unit Ref Case  Case 1  Case 2 Case 3 

Flue gas flow rate  kg/s 30.300 30.300 30.300 30.300 

Flue gas CO2 content  mol% 12.780 12.780 12.780 12.780 

Solvent MEA content  wt% 32.500 32.500 32.500 32.500 

Capture level  % 90.000 78.021 90.049 90.000 

CO2 captured kg/s 3.490 3.030 3.490 3.490 

L/G ratio kg/kg 2.492 1.989 2.492 2.492 

Lean loading mol CO2/mol MEA 0.300 0.300 0.300 0.300 

Rich loading mol CO2/mol MEA 0.500 0.515 0.497 0.497 

WHSG MW 9.960 - - - 

Electric power MW 8.080 8.080 4.920 8.080 

Steam network energy MW 0.000 0.000 0.000 3.150 

Stripper heat duty MW 14.671 11.533 14.671 14.671 

Specific duty GJ/ton CO2 4.200 3.803 4.200 4.200 

Make up water kg/s 3.037 3.068 3.037 3.037 

6. Conclusions 405 

The integration of an industrial FCCU with solvent-based carbon capture was investigated through 406 

process simulation in this work. A steady state model for FCCU was developed using Aspen 407 

HYSYS/Petroleum Refining sub-models, and validated based on operating data from a real life 408 

refinery in China. A steady state model for carbon capture plant with MEA solvent was also developed 409 

in Aspen Plus®. The model was validated with operating data from a pilot plant. For the process 410 



 

integration, considering the CO2 concentration and flow rate of the flue gas from FCCU, the capture 411 

plant model is scaled up, especially for the design of the diameter and height of the packed columns, 412 

to match the capacity of the FCCU. 413 

Three case studies were performed to analyze the performance of deploying solvent-based capture 414 

plant for the industrial FCCU, in which different heat integration options were used to reduce the 415 

energy consumption of the capture plant. The simulation results presented in this paper indicated that 416 

a proper design of heat integration will significantly improve the carbon capture and save energy when 417 

the carbon capture plant is applied for an industrial FCCU.  418 
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