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Discriminating between Imagined Speech and Non-Speech Tasks using

EEG

Mashael AlSaleh,1 Roger Moore1, Heidi Christensen1, Mahnaz Arvaneh2

Abstract— People who are severely disabled (e.g Locked-in
patients) need a communication tool translating their thoughts
using their brain signals. This technology should be intuitive
and easy to use. To this line, this study investigates the
possibility of discriminating between imagined speech and two
types of non-speech tasks related to either a visual stimulus or
relaxation. In comparison to previous studies, this work exam-
ines a variety of different words with only single imagination
in each trial. Moreover, EEG data are recorded from a small
number of electrodes using a low-cost portable EEG device.
Thus, our experiment is closer to what we want to achieve in the
future as communication tool for locked-in patients. However,
this design makes the EEG classification more challenging
due to a higher level of noise and variations in EEG signals.
Spectral and temporal features, with and without common
spatial filtering, were used for classifying every imagined word
( and for a group of words) against the non-speech tasks.
The results show the potential for discriminating between each
imagined word and non-speech tasks. Importantly, the results
are different between subjects using different features showing
the need for having subject specific features.

I. INTRODUCTION

A Brain Computer Interface (BCI) is a communication

system that directly translates brain signals to control com-

mands without requiring any muscular activities. BCI can

be potentially the only communication option for people

who suffer from severe neuromuscular impairments such as

locked-in patients. Many instructed cognitive tasks have been

explored for BCI ranging from selective attention, motor

imagery, words associations, to mental arithmetic [1]. The

use of these modalities for communication can be limiting

as they are unintuitive [1], limited in the number of classes

that can be provided (e.g. only four classes from motor

imagination studies [2], and/or requiring external stimuli

(e.g. P300-based BCIs)). In order to have a communica-

tion technology that is more close to reading thoughts, a

considerable literature has grown up recently around the

theme of detecting imagined speech. Imagined speech can

be defined as asking subjects to imagine the pronunciation

of words as if they were pronouncing it aloud, but without

any articulator movements. On contrast to other instructed

cognitive tasks such as motor imagery, detecting speech

imagination is still a new research domain and a lot of
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questions were not completely answered and identified. This

includes: the optimal experimental design, important brain

areas to capture brain activities related to speech, and the

effect of phonological and semantic differences between

words in the recognition.

In majority of BCI studies, electroencephalogram (EEG)

was used as a non-invasive tool to record brain activities.

EEG is portable, relatively affordable, and has a good tem-

poral resolution. However, EEG signals include superfluous

noise, redundant unwanted information and a poor spacial

resolution. Importantly, these weaknesses are even more pro-

nounced when using non-gel wireless EEG devices. Studies

in the area of imagined speech using EEG technologies, can

be divided into three types, based on the type of imagined

speech used, namely word imagination [3], [4], [5], [6], [7],

syllable imagination [8], [9] and vowel imagination [10],

[11].

Few studies have focused on discriminating between

imagined speech and non-speech. One study included a

comparison between the imagination of two vowels (/a/,/u/)

by imagine lips movement and ‘no imagination’ as a control

state [10], [12]. In Zhao et al. [9], the authors investigated

three mental states related to speech imagination, actual

speech and stimulus presentation (a word presented on the

screen and a sound utterance played). This study facial

expressions and audio signals were combined with EEG

signals for improving classification results. In [7], [13], the

authors used EEG recorded from 10 seconds word repetitions

of yes and no versus unconstrained rest time.

On contrary to literature, this paper targets a more intuitive

imagined speech procedure. This includes imagining words

once rather than several times in a fixed time window.

Moreover, the imagination involves a larger variety of words

(i.e. 11 words and syllables). Finally, a low cost wireless

EEG head set is used for recording brain signals. All these

factors imply larger variations in imagined speech EEG

signals making it more difficult to classify. To this line, this

paper focuses on classification between the imagined words

versus either relaxation or the attention to a visual stimulus.

Spatio-spectral and time domain features are examined for

each subject to extract the information form EEG signals.

We explore different time intervals for feature extraction.

The results are presented as first how words as a group can

be classified from the non-speech class using the proposed

features and classification algorithms. Then, the potential

of classifying each individual word versus relaxation is

discussed.



II. EXPERIMENT

A. Participants

Nine males ranging in age from 18 to 36 participated

in this study. Participants with any neurological disorders,

a history of brain injury, a personal or family history of

epilepsy or those who had consumed alcohol or any types of

drug in the previous 12 hours were excluded from the study.

B. EEG data acquisition

The acquisition of brain signals was done by using the

Emotiv EEG neuro-headset. This headset has a total of 16

channels; 14 channels were used for data recording (i.e. AF3,

F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) and

two were inactivated as the ground and reference channels.

C. Stimuli

In this study, eleven words were selected based on varia-

tions in their semantic meaning. Several neuroscience studies

have examined the impact of the emotional implications of

words on neural activities as represented by cortical poten-

tials [14], [15]. Syllables were chosen for the ‘no semantic’

stimuli, which is the approach used in previous studies [8]. In

the present study, the word stimuli were selected to include

emotional words, words with neutral meaning (directions and

responses) and syllables, as follows:

• Syllables: ”/ba/” and ”/ka/”.

• Directions:”Left”, ”Right”, ”Up”, ”Down”.

• Responses: ”Yes”, ”No”.

• Emotions: ”Happy”, ”Sad”, ”Help”.

D. Task

Before starting to record the EEG signals, the experimen-

tal instructions were explained to each participant. These

instructions were written out as a script to ensure consis-

tency between all nine participants. The instructions asked

the participants to minimise their body movements during

the experiment. It was explained that this included hand

movements, jaw movements and any other kind of physical

movement. The task steps and the stimuli presented are

summarised below:

1) Visual attention(fixation): The symbol, ’+’, was pre-

sented on a screen for one second. The participants

were instructed to focus on the symbol.

2) Relaxation (black screen): In this task, the participants

were instructed to relax (be silent) and clear their

minds from any type of thinking as much as possible.

This task lasted two seconds.

3) Word presentation: In this task, a word was presented

on the screen for two seconds. The presentation of

words from this list was done randomly to avoid the

effect of word order.

4) Word imagination (black screen): Once the screen

gets blank, the participants were instructed to imme-

diately imagine the previously presented word for one

time. This task lasted two seconds.

A total of 11 imagined speech stimuli were used. The

recording was done as blocks. Six blocks were recorded for

each subject. During each block, each word was presented

in random order eight times. Hence, a total of 88 fixations

and relaxation tasks were conducted for each block (they

were presented before and after each word). A total of 48

trials were recorded for each word; and all the stimuli in the

experiment consisted of 1584 trials.

III. DATA ANALYSIS

A. Data pre-processing

High-pass and low-pass zero-phase filters were applied

in the range of 1–30 Hz to remove power line noise, and

attenuate noise caused by body movements. For all nine

subjects, the F7 and F8 channels were used as the ground

channels and the AF4 and AF3 channels were removed

because they are near the eyes, and most signals recorded

from them were related to eye blinking and movement [16].

Moreover, baseline correction was done to remove the effects

that occurred prior to the presentation of each stimulus. The

baseline can be defined as the time preceding the stimulus.

Here, we removed -200 ms to 0 ms with respect to the

stimulus onset [17].

B. Feature extraction

In the feature extraction stage, we investigated the spatio-

spectral and temporal features. Time domain features were

extracted by computing four features from each channel:

Standard Deviation (SD), Mean, Sum of Values (SUM), Root

mean Square (RMS). Spatial features were computed using

the Filter-bank Common Spatial Patterns (CSP) algorithm.

Both spatio-spectral and temporal features were calculated

for three different time intervals after the start of the task:

[0-1s], [0-1.5 s], and [0- 2 s].

1) Time domain features: The proposed time domain

features have been used in the literature in several EEG

studies. For example, in [18], SD, RMS, SUM, and Energy

have been used to classify envisioned speech.

In this study SD, RMS, SUM, and mean are calculated

for the samples resulting in 4 features from each channel.

As we used 12 channels, it led to 48 time domain features.

2) Spatio-spectural features: EEG data have poor spatial

resolution; therefore, in order to discriminate between the

two classes it was necessary to design some spatial filters.

Common spatial patterns (CSP) is a well-known spatial

filtering algorithm that are based on maximising the variance

of one class while minimising it for the other class [19].

Let a single trial EEG be represented as EǫRc×s, where

c denotes the channels and s samples. The CSP algorithm

filters the matrix E to X , given as:

X = EW (1)

The spatial filter W is a projection matrix that was computed

based on simultaneous diagonalization of the covariance

matrices from both classes [19]. As in [19], not all the spatial

filtered signals were used for extracting features. Instead,

only a defined number, m, of the first and last rows of X in



(1) are used for feature extraction. In the present study, m

is equal to 2. Assuming the signals Xp (p = 1......2m) are

given, the feature vector F is calculated as:

Fp = log(var(Xp)/
2m∑

i=1

var(Xp)) (2)

However, CSP may lead to poor classification accuracies if

the data is inappropriately filtered with the wrong frequency

bands. In [20], Ang et al. proposed that applying a filter

bank that filters EEG data into multiple bands can improve

the results. Seven filters were included in the bank to obtain

data ranging between 1 Hz and 30 Hz. This frequency range

represents the well-known bands in the literature, and it

has been interpreted as delta, theta, alpha, low beta, mid-

beta, high beta and low gamma. Since the EEG data was

filtered using seven frequency bands, and four rows of the

CSP filtered signals were considered for each band, the total

number of spatio-spectral features was 28.

C. Classification

The two groups of proposed features (i.e. time domain and

spatio-spectral) were evaluated separately in different trial

length: [0- 1s], [0- 1.5s], [0- 2s]. For both groups, using train

data, Pearson correlations between features and class labels

were calculated to rank features. For the classification, 8-fold

cross validation was applied to divide the data into training

(80%), (10%) development data and (10%) testing data. The

development set was used to identify the best number of

features for every subjects. The linear discriminant analysis

(LDA) algorithm and Linear Support Vector Machine (SVM)

were used as classification algorithms.

IV. RESULTS AND DISCUSSION

A. Speech vs non-speech for group of words

EEG trials related to word imagination were labeled as

one group and classified against the non-speech tasks (either

visual attention or relaxation). The number of speech trials is

528 trials and the same number is for each of the non-speech

tasks. The visual attention is related to two stimuli, ’+’ and

word presentation.

As shown in Table I and II, on average the classification

accuracies between visual attention and imagined speech

was better than the classification accuracies between the

imagined speech and relaxation across all classifiers in all

time intervals when filter bank CSP features were used. This

makes sense as visual attention provokes visual processing

in brain that is absent in speech imagery and relaxation. The

maximum classification accuracy for visual attention is in the

time [0-1 s]. Importantly, in the classification between speech

and relax state, all subjects except S3, S4, and S9 achieved

classification accuracies above %60 using filter-bank CSP.

B. Spatio-spectural features vs Time domain features to

classify imagined words vs relaxation

In Table III, we computed time domain features to classify

between imagined words versus relaxation. The average

TABLE I

AVERAGE CLASSIFICATION ACCURACY (%) BETWEEN RELAXING

(NON-SPEECH) AND ALL IMAGINED WORDS USING FILTER-BANK CSP

FEATURES

Subject
SVM LDA

[1s] [1.5s] [2s] [1s] [1.5s] [2s]

S1 69 70 70 70 70 72

S2 68 68 62 68 66 62

S3 57 58 58 55 57 58

S4 57 58 58 55 57 58

S5 61 62 60 61 62 59

S6 66 65 66 67 65 67

S7 62 59 61 62 59 59

S8 63 61 59 63 60 60

S9 59 57 59 58 57 58

Average 62.1 62 61.3 62.1 62 61.3

SD 4.72 4.53 3.94 5.17 4.22 4.71

TABLE II

AVERAGE CLASSIFICATION ACCURACY (%) BETWEEN VISUAL

ATTENTION (NON-SPEECH) AND ALL IMAGINED WORDS USING

FILTER-BANK CSP FEATURES

Subject
SVM LDA

[1s] [1.5s] [2s] [1s] [1.5s] [2s]

S1 67 67 65 67 66 65

S2 75 77 73 75 78 72

S3 71 67 65 71 67 65

S4 58 56 55 59 58 55

S5 73 66 59 72 62 58

S6 69 65 65 69 65 64

S7 62 61 59 60 60 60

S8 68 70 67 65 70 67

S9 60 56 55 58 56 54

Average 67 65 62.6 66.2 64.7 62.2

SD 5.9 6.7 6 6.1 6.7 5.9

accuracy across subjects in both classifiers and all time

intervals was less than the classification of filter-bank CSP

features. However, the results was different between subjects.

For example, for S1, S2 and S3 time domain features yielded

less accurate results, whereas for S4 time domain features

yielded better results. This suggest that applying feature

selection method to select between time-domain and spatio-

spectral features would further enhance the results.

TABLE III

AVERAGE CLASSIFICATION ACCURACY (%) BETWEEN RELAXING

(NON-SPEECH) AND ALL IMAGINED WORDS USING TIME DOMAIN

FEATURES

Subject
SVM LDA

[1s] [1.5s] [2s] [1s] [1.5s] [2s]

S1 48 49 49 56 54 53

S2 63 66 64 70 67 65

S3 52 48 53 52 48 53

S4 59 57 57 63 65 66

S5 59 57 57 63 65 66

S6 61 63 61 63 62 63

S7 51 52 53 57 55 56

S8 67 66 67 67 65 67

S9 51 53 50 53 54 50

Average 56.3 56.3 56.4 59.4 58.4 58.7

SD 6.5 7 6.3 6.5 6.5 6.5



C. Classification of individual words versus relaxation

Each individual word was imagined in 48 trials during

the experiment. In the classification of each word versus

relaxation, classification between the 48 trials of the imag-

ined word were compared with the 48 trials of relaxation

that happened before the same word. Table IV and Table

V show the classification accuracies using CSP and time

domain features using SVM and LDA and different trials

lengths. The results are very encouraging as we used only a

small number of training trials, a low-cost EEG device, and

single imagination repetition. In comparison with the results

in Table I and III, interestingly the classification of all words

as one group can help in identifying the best classifier and

type of best features for each subject. For example, for S1

form Table I we can find that the best time interval is [0-

1 s] which is consistent with Table IV. For S4, S2 we can

conclude that time domain features using LDA can give best

number of classified words.

TABLE IV

NUMBER OF WORDS THAT PROVIDE ABOVE CHANCE LEVEL

CLASSIFICATION ACCURACY (%60) AGAINST RELAXATION USING

FILTER-BANK CSP FEATURES

Subject
SVM LDA

[1s] [1.5s] [2s] [1s] [1.5s] [2s]

S1 4 4 11 2 7 7

S2 4 3 3 5 4 3

S3 0 1 2 0 0 2

S4 0 1 0 1 3 0

S5 2 1 1 5 1 1

S6 3 3 2 5 3 3

S7 3 2 3 4 1 2

S8 3 4 4 4 4 3

S9 0 1 2 1 1 2

TABLE V

NUMBER OF WORDS THAT PROVIDE ABOVE CHANCE LEVEL

CLASSIFICATION ACCURACY (%60) AGAINST RELAXATION USING TIME

DOMAIN FEATURES

Subject
SVM LDA

[1s] [1.5s] [2s] [1s] [1.5s] [2s]

S1 0 1 1 3 2 5

S2 3 4 4 7 7 6

S3 0 1 2 1 1 2

S4 2 0 1 4 5 4

S5 0 1 1 1 2 1

S6 8 4 2 5 8 5

S7 2 1 3 4 3 3

S8 9 9 10 11 9 9

S9 1 0 0 3 2 2

V. CONCLUSION AND SUMMARY

This study is a first step in understanding how imagined

speech can be recognised from another tasks using only EEG

data and single imagination of the word. The study examined

listed of varied stimuli. We have shown that the results vary

across subjects and according to different types of tasks.

Moreover, the contribution of features is different depending

on the task. In this study we have not find any differences

between stimuli in terms of classification accuracy. In future

work, we will examine different types of features and their

combinations to improve the results.
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