
This is a repository copy of Collaborative Multi-Objective Optimization for Distributed
Design of Complex Products.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/129994/

Version: Accepted Version

Proceedings Paper:
Duro, J., Yan, Y., Purshouse, R. orcid.org/0000-0001-5880-1925 et al. (1 more author)
(2018) Collaborative Multi-Objective Optimization for Distributed Design of Complex
Products. In: Proceedings of the Genetic and Evolutionary Computation Conference 2018.
GECCO '18 Genetic and Evolutionary Computation Conference, 15-19 Jul 2018, Kyoto.
ACM . ISBN 978-1-4503-5618-3

https://doi.org/10.1145/3205455.3205579

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Collaborative Multi-Objective Optimization for Distributed
Design of Complex Products

João A. Duro
Department of Automatic Control & Systems

Engineering, University of She�eld, UK
j.a.duro@she�eld.ac.uk

Yiming Yan
Department of Automatic Control & Systems

Engineering, University of She�eld, UK
yimingyan.me@gmail.com

Robin C. Purshouse
Department of Automatic Control & Systems

Engineering, University of She�eld, UK
r.purshouse@she�eld.ac.uk

Peter J. Fleming
Department of Automatic Control & Systems

Engineering, University of She�eld, UK
p.�eming@she�eld.ac.uk

ABSTRACT

Multidisciplinary design optimization problems with competing

objectives that involve several interacting components can be called

complex systems. Nowadays, it is common to partition the opti-

mization problem of a complex system into smaller subsystems,

each with a subproblem, in part because it is too di�cult to deal

with the problem all-at-once. Such an approach is suitable for large

organisations where each subsystem can have its own (specialised)

design team. However, this requires a design process that facili-

tates collaboration, and decisionmaking, in an environment where

teams may exchange limited information about their own designs,

and also where the design teams work at di�erent rates, have dif-

ferent time schedules, and are normally not co-located. A multi-

objective optimization methodology to address these features is

described. Subsystems exchange information about their own op-

timal solutions on a peer-to-peer basis, and the methodology en-

ables convergence to a set of optimal solutions that satisfy the over-

all system. This is demonstrated on an example problemwhere the

methodology is shown to perform as well as the ideal, but “unreal-

istic” approach, that treats the optimization problem all-at-once.

CCS CONCEPTS

• Computing methodologies → Search methodologies; Co-

operation and coordination;Modeling and simulation; • Ap-

plied computing→Multi-criterionoptimization and decision-

making;

KEYWORDS

Collaborativemultidisciplinary optimization, Complex systems, Multi-

objective evolutionary algorithms,Multiple-criteria decision-making

ACM Reference Format:

João A. Duro, Yiming Yan, Robin C. Purshouse, and Peter J. Fleming. 2018.

CollaborativeMulti-Objective Optimization for DistributedDesign of Com-

plex Products. In GECCO ’18: Genetic and Evolutionary Computation Con-

ference, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION

The design of a large complex engineering system, such as an au-

tomotive vehicle, usually involves the design of multiple individ-

ual subsystems (or components), often mutually interdependent.

Other terms used to refer to such systems include systems of sys-

tems [6] and interwoven systems [5]. For such a complex design, it

is common for organisations to assign individual design teams to

each subsystem, often arranged along disciplinary lines or a com-

pany’s own organisation structure, where each team has its own

speci�c expertise on a particular science or engineering discipline.

This requires the design teams to collaborate, but often the teams

work at di�erent speeds, have di�erent time schedules and di�er-

ent work locations. Each design team is expected to satisfy multi-

ple design criteria.

It is often the case that the subsystems are coupled,whichmeans,

for example, that there are (shared) design variables controlled by

more than one subsystem at a time. The existence of interactions

between the subsystems thus makes it di�cult to predict the be-

haviour of the entire system. Also, the design of such systems is

frustrated by con�icting demands when attempts are made to sat-

isfy the multiple criteria of all of the subsystems simultaneously.

This paper presents amethodology to support collaborativemulti-

objective optimization for the distributed design of complex prod-

ucts. The remainder of the paper is organised as follows. Section 2

describes related literature and presents the novelty of the pro-

posed methodology. In Section 3, a simple representative model of

a complex system is presented, which consists of two interacting

subsystems where each subsystem is modelled as a multi-objective

optimization problem. A new methodology for distributed multi-

objective optimization is proposed in Section 4, and in Section 5, it

is exercised on the simple representative model and the experimen-

tation is discussed. Section 6 summarises the methodology and the

results of the experiment.

2 RELATED LITERATURE

This work focuses on solving a certain class of optimization prob-

lems, known here as distributed multi-objective problems. These

are problems that are composed of multiple smaller subproblems,

and each subproblem represents the design problem of an indi-

vidual subsystem (or component) in a product. A related �eld of

interest which deals with design problems that incorporate sev-

eral disciplines is known as multi-disciplinary design optimization

(MDO). The main challenge in MDO is to manage the coupling of

the system that is being handled, by recognising that the analyses

conducted per discipline are mutually interdependent.

GECCO ’18, July 15–19, 2018, Kyoto, Japan J. A. Duro et al.

An unrealistic, but often mentioned approach for dealing with a

multi-disciplinary design problem inMDO, is the all-at-once (AAO)

problem [8] (also referred to as monolithic approach). The formula-

tion of AAO consists of the problem statement from all disciplines,

including all local and shared variables. This is unrealistic because

(i) it does not allow the teams to work independently on their own

problems and, (ii) it assumes that all design teams are available

to engage in decision-making at the same time. To allow teams of

designers to work independently on their own discipline-related

problems, one approach is to rely on the decomposition of the prob-

lem into smaller problems, called subproblems. Each design team

is then assigned to a particular subsystem according to its own

expertise, and can make decisions about speci�c analytical tools

used and mathematical modelling techniques that are considered

more suitable for their own problem analysis, independently from

the other design teams. This requires some form of coordination

among the subsystems for �nding the same solutions as those that

would be found, had the AAO problem been used instead. The co-

ordination can be arranged either on a peer-to-peer basis between

the subsystems, or using some form of central coordination unit.

Early MDO approaches that employ decomposition, deal with

the design problem by using a single-objective formulation. These

approaches are not suitable for dealing with design problems with

competing objectives, since the design solutions that produce trade-

o�s among di�erent objectives cannot be captured. Given that the

target application of this work is a multi-objective design problem,

the main focus of this section is on MDO approaches speci�cally

for multi-objective problems. For approaches that deal only with

single-objective problems, there is a helpful review in [8].

Multi-objective Collaborative Optimization (MOCO) [15], is a

multi-level approach comprised of subsystem and system level. The

objectives are all formulated at the system level together with cu-

mulative compatibility constraints. The optimization task is con-

ducted at the system level to coordinate the subsystems, and the

task of each subsystem is only to enforce interdisciplinary and

multilevel compatibility. InMulti-objective Pareto Concurrent Sub-

spaceOptimization (MOPCSSO) [4], optimization is only conducted

for each subproblem and not at system level as in MOCO. The task

of the system level is to coordinate the optimizations of the sub-

problems; this includes (i) distributing the design variables among

subproblems where they have most impact and, (ii) the applica-

tion of a constraint handling technique that ensures the reduction

of constraint infeasibility before the optimization of the subprob-

lems. The formulation of each subproblem, besides having a single

objective, also includes the objective functions from the other sub-

problems, formulated as constraints.

Extensions to the above approaches can be found in the litera-

ture. For instance, goal programming and linear physical program-

ming (LPP) approaches [9, 10] are based on MOCO and allow the

speci�cation of multiple objectives at both levels, although this

requires priorities to be set for the objectives at subsystem level.

Other approach that allows the speci�cation of multiple objectives

at both levels is known as COSMOS [12], where a multi-objective

evolutionary algorithm (MOEA) is used to generate a population

of solutions to identify the trade-o�s of the system problem. How-

ever, this requires that an optimization task is conducted not just

for each subproblem, but also at the system level. An approach that

is an extension of MOPCSSO and also uses an MOEA [11] is capa-

ble of generating a large number of non-dominated solutions in

each cycle, as opposed to the original MOPCSSO that only gener-

ates one solution per cycle. One of the drawbacks of this approach,

and likewise the original MOPCSSO, is the lack of independence

of each subproblem, since the ownership of a decision variable can

change from one subproblem from cycle to cycle.

Dandurand et al. [1], work with the individual subproblems to

compute the Pareto-optimal solutions. For this, consistency con-

straints are used which rely on the existence of copies of the com-

mon variables and linking variables from the subproblems. The

formulation at each subproblem also includes a single scalarised

objective function, comprising all of the objectives in the subprob-

lem. The solutions obtained by one of the subproblems are then

treated as targets by the other subproblems. This implies that af-

ter each subproblem completes a run, the solutions are passed to

the other subproblems, and this process is repeated until the con-

sistency constraints are satis�ed. However, this method requires

penalty parameters to be de�ned to balance the consistency con-

straint directly on the objective function of the subproblems.

Having taken account of earlier research, we propose a new

methodology for distributed multi-objective optimization that in-

cludes the following set of features:

(1) Asynchronicity: is accounted for in the design process, thus

allowing for the likelihood that di�erent design teams work

at di�erent rates.

(2) Con�dentiality: the subsystems do not have access to each

other’s design problems, and only limited information is

shared between them. This may appeal to organisations that

require each design team’s data to remain private.

(3) Flexibility: the methodology is agnostic to the choice of op-

timization algorithm deployed within each subproblem, en-

abling each team to use the most appropriate algorithms.

3 A DISTRIBUTED MULTI-OBJECTIVE
OPTIMIZATION PROBLEM

Adistributedmulti-objective optimization problem is used to demon-

strate our proposed methodology. This problem is composed of

two interacting subsystems, where the subproblem in each sub-

system is modelled as a multi-objective optimization problem. The

formulation of each subproblem is based on an application for lo-

cation of facilities, proposed in [5]. This problem is chosen because

it contains the minimal set of components that allow us to demon-

strate the main features of our proposed methodology. The prob-

lem description is as follows.

The subproblems have a K ×2 matrix of parameters in common,

denoted by A = (a1, . . . ,aK)
⊺ where ai ∈ R

2 ∀i=1, ...,K . For Sub-

system 1 the subproblem formulation is

min f11 (x1) =

K
∑

k=1

bkd (x1,ak) − d (x1,y21)

min f12 (x1) = d (x0,x1)

such that x0 ∈ X0 and x1 ∈ X1

(1)

The subproblem contains two decision variables, x0 and x1, where

X0, X1 ⊆ R
2. A solution to the subproblem is given by x1 =

Collaborative Multi-Objective Optimization for Distributed Design of Complex Products GECCO ’18, July 15–19, 2018, Kyoto, Japan

Subsystem 1 Subsystem 2

Figure 1: Representation of the interactions (y12 and y21), de-

cision variables (x0, x1 and x2), and objectives (f11, f12, f21,

and f22) in the selected complex system.

(x0 ,x1,y21), and the two objective functions f11 (·) and f12 (·) are to

be minimised. There is a K-dimensional vector of parameters de-

noted by b = (b1, . . . ,bK)
⊺ , where each element is a weight, such

that bk ≥ 0 ∀k=1, ...,K . The function d (·) determines the Euclidean

distance between the two points given as argument.

For Subsystem 2 the subproblem formulation is

min f21 (x2) = max

{

max
k=1, ...,K

ckd (x2,ak),d (x2,y12)

}

min f22 (x2) = d (x0,x2),

such that x0 ∈ X0 and x2 ∈ X2

(2)

There are two decision variables, x0 and x2, where x0 is shared,

implying that it exists in both subproblems. The local variable x2
takes values in X2 ⊆ R

2. A solution to the above subproblem is

x2 = (x0,x2,y12), and the two objective functions, f21 (·) and f22 (·),

are to beminimised. There is aK-dimensional vector of parameters

denoted by c = (c1, . . . ,cK)
⊺ , where each element is a weight, such

that ck ≥ 0 ∀k=1, ...,K .

The interaction between the subsystems is captured by the link-

ing functions, l1 and l2, which leads to the following interacting

equations
y12 = l1 (x0,x1,y21) := x1

y21 = l2 (x0,x2,y12) := x2,
(3)

It is then possible to say that y12 is an output of Subsystem 1

and an input for Subsystem 2; on the other hand, y21 is an output

of Subsystem 2 and an input for Subsystem 1.A diagram that shows

the inputs and outputs of the subproblems is shown in Figure 1.

In the following de�nitions, adapted from [5], we introduce the

terms subsystem solution and system solution. The former is a so-

lution obtained from the perspective of one subsystem, while the

latter is a solution for the entire system, in that:

De�nition 3.1. (Subsystem-feasible). A subsystem solution for

Subsystem 1 is x1 = (x0,x1,y21)
⊺ , and it is called a subsystem-

feasible solution if (i) xi ∈ Xi ⊆ R
ni for some ni ∈ N and i = 0,1,

(ii) y21 satis�es the interaction equation y21 = l2(x0 ,x2,y12), for

some x2 ∈ X2 ⊆ R
n2 and n2 ∈ N, where y12 = l1 (x0,x1,y21). A

similar de�nition applies to a subsystem solution for Subsystem 2

by swapping the indices of the variables.

De�nition 3.2. (System-feasible). A system solution is denoted

by x = (x0,x1,x2,y12,y21)
⊺ , and it is called a system-feasible so-

lution if (i) xi ∈ Xi ⊆ R
ni for some ni ∈ N and i = 0,1,2,

and, (ii) both y21 and y12 satisfy the interaction equations y21 =

l2 (x0,x2,y12) and y12 = l1(x0 ,x1,y21), respectively.

4 A NEW METHODOLOGY FOR
DISTRIBUTED MULTI-OBJECTIVE
OPTIMIZATION

A summary description of the steps in the proposed newmethodol-

ogy is shown below, where Niter denotes the number of iterations.

Assumptions are (i) that the original multi-objective optimization

problem of the system has been decomposed into single- or multi-

objective optimization subproblems and, (ii) for each pair of inter-

acting subsystems, there is at least one shared decision variable.

A diagram that illustrates the working of the methodology is

shown in Figure 2. Note that there is a division between subsys-

tem unit and system unit. In the former, the subsystems conduct

their optimization tasks and exchange information via subsystem

solutions. In the latter, the task is to aid the subsystems to generate

subsystem-feasible solutions, eventually leading to system-feasible

solutions. For this, the system unit is responsible for the genera-

tion of system solutions, to identify system-feasible solutions and,

to in�uence the optimization task in the subsystem unit.

Summary: Proposed methodology to support distributed col-

laborative multi-objective optimization

Input: Let t = 1, and specify a probability distribution for the linking variables.
1 Subsystem optimization: Run an optimizer until the budget is exhausted on

the subproblem of each subsystem, with an initial randomly generated
population. For each case, obtain a set of subsystem solutions with a
population of size N (Section 4.1).

2 Information exchange: For each pair of interacting subsystems with their
optimizer runs completed, update the prediction model of their linking
variables. For this, the subsystems exchange information about their linking
variables and shared decision variables (Section 4.2).

3 Generation of system solutions: Generate system solutions by combining
subsystem solutions from each subsystem and store them (both subsystem and
system solutions) in an archive (Section 4.3).

4 Selection of system solutions: Select a subset of system solutions from the
archive, where the selection is based on a relaxed consistency constraint that
becomes tighter with successive iterations (Section 4.4).

5 Convert system solutions to subsystem solutions: Extract the subsystem
solutions from the selected system solutions. The obtained subsystem solutions
replace a fraction of the initial randomly generated population in step 1
(Section 4.5).

6 Let t = t + 1. If t > Niter then stop, otherwise, go back to step 1.

An important feature of the methodology relates to its ability

to support asynchronicity during the design process. Depending

how the optimization task of the subsystems is coordinated, an

approach can be categorised as synchronous or asynchronous. In

a synchronous approach the subsystems conduct their optimiza-

tion tasks in parallel and advance in lock-step fashion. This means

that at every step, the whole system has to wait until the most

time-consuming optimization task completes. In an asynchronous

approach, each design team works in parallel and information is

communicated with other teams whenever it is generated. In Fig-

ure 2, although all subsystems need to complete their optimizer

runs for the system unit to generate system solutions, after the

�rst iteration, the system unit operates asynchronously—a new set

of system solutions is generated whenever at least one subsystem

updates the generated solutions. This means that updated system

solutions can be generated at a faster rate. Exploiting asynchronic-

ity can be bene�cial for systems with design teams that work at

di�erent rates, allowing the design process to move faster for more

GECCO ’18, July 15–19, 2018, Kyoto, Japan J. A. Duro et al.

Figure 2: Diagram of the proposed methodology. A grey box represents a population of solutions, and the other boxes are tasks.

critical components of the system. The major steps of the method-

ology are described in more detail in the following sections.

4.1 Subsystem optimization

For the subsystems to be able to conduct their optimization tasks

independently, the values of the linking variables have to be known

before evaluating a solution. For instance, for Subsystem 1 to eval-

uate a solution, it needs to know the value of y21 (see Section 3).

However, this value is provided by the linking function l2, which is

only accessible to Subsystem 2. This means that without any infor-

mation from Subsystem 2, Subsystem 1 needs to predict the value

of y21 in order to evaluate a solution. Based on this, our approach

uses a model of the linking function that provides the values for

the corresponding linking variable. This model is accessible to a

subsystem, and allows, for instance, for Subsystem 1 to conduct

an optimization task independently from Subsystem 2. The model

used by the subsystems is as follows:

(1) First iteration: each linking variable is modelled as a random

variable with a given probability distribution (e.g. a uniform

probability distribution varying within the bounds of the

linking variable). The assumption here is that the bounds of

the linking variables are known. Although this allows the

subsystem to explore the linking variable space, it may be

the case that some regions of this space are infeasible (pos-

sibly due to the constraints in the other subproblems), or

simply because the sampled values of the chosen probabil-

ity distribution are unrealistic or incorrect.

(2) Subsequent iterations: a supervised learning model learned

(or constructed) by using the information shared between

the subsystems. More details about the supervised learning

model will be provided in Section 4.2.

Many multi-objective optimization algorithms rely on the con-

cept of Pareto dominance for comparing solutions. This concept is

de�ned as follows.

De�nition 4.1. (Classical Pareto Dominance). Let the decision

vector of two solutions be given by x, x′ ∈ RD , where D is the

number of decision variables. Assuming minimisation, x is said to

dominate x′ (or x � x′) i�: (i) fi (x) ≤ fi (x
′) ∀i = 1, . . . ,M , where

M is the number of objectives and (ii) ∃j ∈ {1, . . . ,M } such that

fj (x) < fj (x
′).

An optimization task running from the perspective of a sub-

system that relies on Pareto dominance, will attempt to �nd the

non-dominated subsystem solutions that produce the best trade-

o�s amongst the objectives in the given subproblem, but it may

fail to capture the trade-o� solutions between the objectives of the

di�erent subproblems. This is because the subsystems do not have

access to the objectives of each other’s subproblems, hence, subsys-

tem solutions that appear dominated for a subproblem may actu-

ally be non-dominated for the entire system problem. One way to

capture such solutions is to rely on the Parameterized Pareto Dom-

inance relation, previously proposed in [7], and de�ned as follows:

De�nition 4.2. (Parameterized Pareto Dominance). Let the deci-

sion vector of two solutions be given by x, x′ ∈ RD . Let also the

parameter vectors of the two solutions be p, p′ ∈ RP , respectively,

where P is the number of parameters. Then, x is said to parametri-

cally dominate x′, i� p = p′ and x � x′.

Note that the parameter vectors in De�nition 4.2 are analogous

to the linking variables in a subproblem. The rationale for De�-

nition 4.2 lies in the argument that trade-o� solutions across the

system problem are likely to have di�erent linking variable values.

This is because the linking variables are an integral part of the ob-

jective function’s domain, since the objectives are often posed as a

function of the linking variables. Retaining such solutions during

an optimization task at subsystem level can be achieved by compar-

ing the values of their linking variables, which is captured by the

equality p = p′ in De�nition 4.2. However, this equality is di�cult

to satisfy for real-valued linking variables, which can induce all so-

lutions to become non-dominated. To overcome this, we propose

to relax the requirement for equality by discretizing the linking

space. This discretization involves partitioning the linking space

into cells of the same size. Then, equality is deemed to be satis�ed

if the linking variable values of two solutions lie inside the same

cell. The approach used for determining which cell a linking vari-

able belongs to, is taken from [14] (Section IV-B). This requires the

speci�cation of the number of bins (nb) per dimension of the link-

ing space. Note that, the larger nb is, the larger the number of cells

that partition the linking space.

4.2 Information exchange

After the subsystems have completed their own optimization tasks

(as described in Section 4.1), an information exchange process takes

place. This process is conducted on a peer-to-peer basis between

any two interacting subsystems, and involves two subsystems ex-

changing their subsystem solutions. The interchanged solutions

Collaborative Multi-Objective Optimization for Distributed Design of Complex Products GECCO ’18, July 15–19, 2018, Kyoto, Japan

are employed to update the models of the linking functions, and

subsequently, these models are used during the optimization pro-

cess of the subsystems to predict the values of the linking variables.

In case the models su�er from lack of accuracy (poor approxima-

tion to the corresponding linking functions), the obtained linking

variable values might be incorrect or even unrealistic. As a conse-

quence, subsystem solutions that contain such values: (i) cannot be

subsystem-feasible (De�nition 3.1) and, (ii) cannot be used to gen-

erate a system-feasible solution (De�nition 3.2). It is therefore im-

portant for the subsystems to continuously exchange information

about their linking variables as the iterations progress, allowing

for the linking variable models to improve their accuracy.

To explain the information exchange process and model build-

ing, consider the optimization model from Section 3. Subsystems

1 and 2 share a decision variable x0, and the interactions are rep-

resented by two linking variables, namely y21 and y12. The linking

variable, y12, is an output of Subsystem 1 and an input for Sub-

system 2. Hence, Subsystem 1 is able to generate values for y12
since it has access to the linking function, l1, while Subsystem 2

needs to predict the values of y12. Once Subsystem 1 completes

its own optimization task, the generated subsystem solutions are

shared with Subsystem 2. The shared solutions, contain the values

of x0 and correspondingy12, and represent the set of trade-o�s pre-

ferred by Subsystem 1. These values are then used by Subsystem

2 to construct a supervised learning model where x0 and y12 are

used as training data. This means that x0 is treated as the model

input, while y12 is the output (or target). Given this, we seek to

learn a function approximation of the linking function l1, with the

following form f1 (x0) = y12. The same procedure is followed by

Subsystem 1 for constructing a model to approximate the linking

function l2, that is f2 (x0) = y21, which allows for predictions to

be made about y21. For constructing either models, a supervised

learning algorithm can be used.

The constructedmodels are used by the Subsystems during their

own optimization task to predict the values of the linking variables.

This means that each time a new solution is to be evaluated, �rst,

the value of the shared variable (x0) is chosen by the optimizer, and

then, f1 (x0) (or f2 (x0)), is evaluated with the given, x0, and the pre-

dicted value of the linking variable is obtained. Let the prediction

value of the linking variable be denoted by ỹ12 for Subsystem 2 and

ỹ21 for Subsystem 1.

4.3 Generation of system solutions

The generation of a system solution involves combining subsystem

solutions, and the approach used is based on the Stackelberg com-

petition or leader-follower model [13]. This implies that a leader-

follower relationship is de�ned between the subsystems, and this

relationship is used to determine which subsystem solutions are

chosen for setting the values of the system solution. A system so-

lution generated in this way can incur in a consistency error, which

depends on the di�erence between the linking variable values of

the subsystem solutions. The number of system solutions to be gen-

erated is a user-de�ned parameter, and we suggest that it be set to

N , the size of the initial population.

An archive is used to keep track of all generated system solu-

tions, including the subsystem solutions used to generate them.

Given that the number of solutions in the archive increases after

each iteration, it is proposed to use a threshold that sets an upper

bound on the number of solutions allowed in the archive, and let

it be Ṅmax . Thus, when the number of solutions in the archive ex-

ceeds Ṅmax , a selection approach described in Section 4.4 is used

to reduce the number of solutions to exactly Ṅmax .

To generate a system solution, it is �rst required to draw a ran-

dom sequence that de�nes an order between the subsystems. This

allows for di�erent relationships between the subsystems to be ex-

plored. For a single system solution, let this sequence be denoted

by r = {r1, . . . ,rS } where ri ∈ {1, . . . ,S }, ri , r j ∀i,j=1...S,i,j , and

S is the number of subsystems. The following two steps lead to the

generation of a single system solution. The �rst applies a criterion

to select the subsystem solutions (one from each subsystem), while

the second generates a system solution by combining the chosen

subsystem solutions. The following two sections describe the pro-

cedure adopted by each step.

4.3.1 Selectionof subsystem solutions. The subsystem solutions

can be selected from:

(1) The populations of subsystem solutions obtained by each

optimizer: Let P = {P1, . . . ,PS } be a set that stores the

populations from all subsystems, and Pi = {xi1, . . . ,xiN },

where xi j is a subsystem solution for the ith subsystem in

the jth position of the population Pi .

(2) An archive: let it be given by A = {A1, . . . ,AS }, where

Ai = {ẋi1, . . . , ẋi Ṅ }, and ẋi j is a subsystem solution for

the ith subsystem in the jth position of the archive. Let Ṅ

to be the current number of solutions in the archive where

0 ≤ Ṅ ≤ Ṅmax . For each set of subsystem solutions at

any position in the archive (say the jth position), that is

{ẋ1j , . . . , ẋS j }, the archive also keeps track of the correspond-

ing system solution. During the �rst iteration, the subsys-

tem solutions are only selected from P since, initially, the

archive is empty.

The selected subsystem solutions are stored in a set, given by

s = {s1, . . . ,sS }, where si is the subsystem solution of the ith sub-

system. Di�erent strategies can be employed to select the subsys-

tem solutions. A simple strategy is to select the solutions randomly

from P . First, letU (N) denote a uniform distribution on {1, . . . ,N }.

Then, the solution for the ith subsystem is

si = xi j , such that j ∼ U (N). (4)

Equation 4 is used to select the solutions in s which correspond

to “leader” subsystems, as opposed to “follower” subsystems. A

subsystem is considered to be a leader if it is the �rst in the se-

quence r , amongst the subsystems that share the same decision

variable(s), while the others are the followers. Thismeans that each

follower subsystem can use a leader subsystem as a reference for se-

lecting its own solutions. Thus, the solutions in s corresponding to

leader subsystems are selected �rst, and afterwards, the selection

takes place for follower subsystems. Given this, the strategy for se-

lecting solutions in s which correspond to follower subsystems is

as follows. First, let the ith subsystem be any follower subsystem,

and let the l th subsystem be the corresponding leader. Then, the

GECCO ’18, July 15–19, 2018, Kyoto, Japan J. A. Duro et al.

Subsystem 1 Subsystem 2

Figure 3: Generation of a system solution, where Subsystem

1 is the leader and Subsystem 2 is the follower.

solution for the ith subsystem is

si =

{

xi j , if h
(

xi j ,sl
)

≤ h (ẋik ,sl)

ẋik , otherwise

such that

j = argmin
j∈{1, ...,N }

h
(

xi j ,sl
)

and k = argmin
k ∈{1, ...,Ṅ }

h (ẋik ,sl)

(5)

where the function h(·) uses the Euclidean distance to calculate

the distance between the shared variable values of the two solu-

tions given as input. Equation 5 aims to reduce the consistency

error of the system solution that is to be generated by the chosen

subsystem solutions in s. Given that this error increases with an

increment in the di�erence between the values of the linking vari-

ables, a way to reduce it, is to select the subsystem solutions such

that the distance between their linking variables values is as small

as possible. For this, we use the shared variables, since the model

used to predict the values of the linking variables is posed as a func-

tion of the shared variables. Hence, the closer the shared variable

values are, the closer the linking variable values are likely to be,

e�ectively reducing the consistency error of the system solution.

Note that, for the model of Section 3 there are only two subsys-

tems in the problem, implying that only two sequences for r are

possible, that is, either r = {1,2} or r = {2,1}. For the former, Sub-

system 1 is chosen as the leader while Subsystem 2 is the follower,

and subsystem solutions from Subsystem 1 and 2 are selected by

Equations 4 and 5, respectively. The contrary is true for the latter.

4.3.2 Generation of a system solution. A system solution is now

generated by using the subsystem solutions in s and the sequence

in r . Due to space limitations, we describe this procedure only with

respect to the model of Section 3. However, this procedure can be

generalised for problems with a greater number of subsystems and

di�erent characteristics.

Consider a subsystem solution for Subsystem 1 denoted by x1 =

(x0a ,x1,ỹ21) with output (f11, f12,y12). Similarly for Subsystem 2,

let x2 = (x0b ,x2,ỹ12) be a subsystem solution and the output is

(f21, f22,y21). Note that x0a and x0b represent the same shared

variable, but their values can be di�erent. The procedure is now

described only for the sequence r = {1,2}, and it is also illustrated

in Figure 3. The steps are as follows:

(1) create a solution for Subsystem 2 by selecting the shared

variable and linking variable from x1, and the local variable

from x2, leading to x′2 = (x0a ,x2,y12).

(2) conduct an evaluation of Subsystem 2 (Equation 2) with x′2
and obtain (f ′21, f

′
22,y

′
21).

(3) create a system solution that is comprised of the shared, lo-

cal and linking variables from x1, and also the local variable

from x2, leading to x = (x0a ,x1,x2,y12,ỹ21). The output of

the system solution is comprised of the output from x1, the

output from x′2, which leads to (f11, f12, f
′
21, f

′
22,y12,y

′
21).

(4) the consistency error of the system solution is the di�erence

between (i) the predicted value of linking variable by x1, i.e.

ỹ21 and, (ii) the new linking variable value obtained by the

evaluation in step 2, i.e. y′21. This is given by | |ỹ21 − y
′
21 | |.

4.4 Selection of system solutions

A selection procedure is applied to the system solutions in the

archive and a subset of system solutions is chosen. The procedure

is based on the selection used by NSGA-II [2] to select an elite

population. This consists of a constraint handling approach, non-

dominated sorting and crowding distance. The �rst requires a con-

straint function to be speci�ed, the second ensures that only solu-

tionswith improved convergence are selected, and the third is used

to guarantee a good distribution across the Pareto-optimal set. It is

suggested that the size of the selected subset is set to be one-half of

the population size (N). This means that half of the population of

each subsystem in the next iteration is determined by the system

solutions, while the other half is generated randomly.

The constraint function used by the selection approach is now

described. One possible constraint function is to simply use the

consistency error of the system solutions. Then, if this error is

greater than zero, the solution is considered infeasible, otherwise

it is feasible. However, this error is never likely to be exactly zero,

since the computation of this error may involve determining the

di�erence between real-valued numbers. Therefore, this means in

practice that all system solutions may be infeasible and the solu-

tions are “always” only ranked based on their infeasibility, rather

than non-dominated sorting and crowding distance. To avoid this,

we propose a dynamic threshold that depends on the current iter-

ation number. For this, consider the set x = {1, . . . ,Niter }. Then,

the threshold value at the ith iteration is given by the following

regression function

δi =

cmax , i = 1,

cmax −
cmax−cmin

N
1/p
iter

x
1/p
i , i = 2, . . . ,Niter ,

(6)

where cmax and cmin are themaximum and minimum consistency

errors, while p is the power (or inclination) of the regression. It is

suggested that cmin = ϵ where ϵ is set to a very small number

(say 1 × 10−6), while cmax and p are user-de�ned parameters. The

threshold value obtained by the function in Equation 6 decreases

from cmax to cmin , over the successive iterations. Furthermore,

a system solution (x0 ,x1,x2,y12,y21)
⊺ is considered to be system-

feasible at the ith iteration if its consistency error (let it be denoted

by xe) is less than or equal to δi . This is expressed mathematically

by the expression

дi (x0 ,x1,x2,y12,y21) ≡ xe ≤ δi . (7)

The constraint function in Equation 6 ensures that not all sys-

tem solutions are considered as infeasible in the early stages of the

distributed optimization run. This allows other operators (conver-

gence and diversity) to participate in the selection process. As the

Collaborative Multi-Objective Optimization for Distributed Design of Complex Products GECCO ’18, July 15–19, 2018, Kyoto, Japan

threshold value approaches cmin , the pressure to generate system

solutions with a lower consistency error increases, leading to a set

of solutions that are consistent, and with a good convergence to

and diversity across the Pareto-optimal front.

4.5 Convert system solutions to subsystem
solutions

Individual subsystem solutions are now extracted from the selected

system solutions. This procedure is described with respect to the

model from Section 3. For this, let a system solution be denoted by

(x0 ,x1,x2,y12,y21) and the output is (f11, f12, f21, f22,y
′
12,y

′
21). The

extracted subsystem solution for Subsystem 1 is (x0,x1,y21) and

the output is (f11, f12,y
′
12). In addition, the subsystem solution for

Subsystem 2 is (x0 ,x2,y12) and the output is (f21, f22,y
′
21).

The subsystem solutions obtained by this procedure are used

to in�uence the optimization task of the subsystems, during the

next iteration. For this, these solutions replace a fraction of the

initial (randomly) generated solutions. Given that the suggested

size of the selected solution subset is one-half of the population

size (N) (as mentioned in Section 4.4), it implies that half of the

initial population corresponds to the selected subsystem solutions,

and the other half are generated randomly.

5 DEMONSTRATION OF THE NEW
METHODOLOGY

5.1 Experimental setup

The general parameters are as follows. The budget allocated for

the optimization run is 100000 system solution evaluations, with

subsystem evaluations counting partially toward the budget. The

available budget is distributed amongst the number of iterations,

which is set to Niter = 50. This implies that the number of func-

tion evaluations per iteration is 100000/50 = 2000. This number

needs to be divided between the optimization in the subsystem

unit and the generation of system solutions. First, knowing that

the population size for each subsystem is set to N = 120, and

that only half of the objectives are evaluated for each generated

system solution, the number of function evaluations for the gen-

eration of system solutions is N /2 = 60. Second, the number of

function evaluations per subsystem is then set to the remainder,

that is, (2000 − 60) = 1940.

The speci�c parameters for each task of the proposed method-

ology are as follows:

(1) For subsystem optimization (Section 4.1): NSGA-II is cho-

sen as the underlying optimizer for each subsystem, where

the probability of crossover and mutation are 0.9 and 0.1, re-

spectively. For partitioning the linking variable space, the

number of bins (nb) is set to 20.

(2) For information exchange (Section 4.2). An arti�cial neural

network (ANN)1 is chosen as the supervised learning model.

The chosen parameters correspond to those suggested by

the author of the library. These are as follows, (i) the number

of hidden layers is set to 1, (ii) the number of hidden nodes

in the hidden layer is set to 13, (iii) the Sigmoid symmetric

1The fast arti�cial neural network (FANN) library is used and a description is found
in http://fann.sourceforge.net/fann_en.pdf .

1 2 5 10 20 50
Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
on

si
st

en
cy

 e
rr

or

Figure 4: Consistency error of the selected system solutions

along the iterations of the distributed approach, for one run.

function is used as the hidden and output functions and, (iv)

the maximum number of epochs is set to 200.

(3) For generation of system solutions (Section 4.3): The maxi-

mum number of solutions in the archive is Ṅmax = 2000.

(4) For selection of system solutions (Section 4.4): cmax is set

to the lowest consistency error obtained by at least 5% of

the system solutions in the �rst iteration of the distributed

approach, and the regression power p is set to 3.

A comparative analysis is conducted between the proposed ap-

proach and a monolithic approach based on the AAO problem.

NSGA-II is the optimizer for the monolithic approach, set with the

same parameters mentioned above. Both approaches are applied

to the model from Section 3, and the parameters of the model are:

A =

(

0.873 0.291 0.622 0.142 0.844

0.801 0.801 0.546 0.165 0.944

)

⊺

,

b = (0.020,0.059,0.087,0.419,0.415)⊺,

c = (0.148,0.262,0.132,0.223,0.235)⊺.

(8)

For comparing the results between the two approaches, the hy-

pervolume indicator is used. The computation uses a dimension-

sweep algorithm, taken from [3]. To select the reference point re-

quired to measure the hypervolume, the non-dominated solutions

obtained at the end of each iteration are used. To ensure that any

population of solutions can be compared, the reference point is set

to the maximum objective values obtained by all iterations across

all simulations conducted.

5.2 Experimental results

This section demonstrates the application of the proposed method-

ology to the optimization model described in Section 3.

The �rst analysis is conducted based on one single simulation

run. In Figure 4 the consistency error of the system solutionswhich

have been selected by the system unit is shown. Note that the x-

axis scale is not linear, and that in just 10 iterations the consistency

error has dropped from a maximum of 0.7 to a value less than 0.1.

This highlights the e�ectiveness of the proposed methodology in

reducing the consistency error of the system solutions.

We now conduct a comparative analysis between the distributed

approach and the monolithic approach. Both the distributed ap-

proach and the monolithic approach are run for the same number

http://fann.sourceforge.net/fann_en.pdf

GECCO ’18, July 15–19, 2018, Kyoto, Japan J. A. Duro et al.

Monolithic Distributed

2.35

2.4

2.45

2.5

2.55

2.6

H
yp

er
vo

lu
m

e

Figure 5: Comparative analysis betweenmonolithic and dis-

tributed approach, each boxplot corresponds to 20 runs.

of function evaluations, and a total of 20 runs are conducted. For

the distributed approach, the hypervolume metric is applied to the

objective vectors of the system solutions after being evaluated by

the monolithic problem formulation. This is because the objective

values of the system solutions that have been evaluated by the dis-

tributed approach, can di�er from those values that are obtained

by the monolithic problem due to the consistency error.

The hypervolume obtained for the �nal population by each ap-

proach is shown in Figure 5. Note that, as expected, the mono-

lithic approach outperforms the distributed approach, where the

obtainedmean for themonolithic approach is 2.48 and the obtained

mean for the distributed approach is 2.43. The relative percentage

di�erence2 between the two means is only 2.31%, which highlights

that the performance of the distributed approach is comparable to

the monolithic one in this particular case study.

6 CONCLUSION

This paper has proposed a new methodology for distributed multi-

objective optimization of complex systemswith interacting subsys-

tems. This methodology adopts a distributed approach where the

subproblems do not have access to each other’s design problems,

and only limited information is shared between them. A system

unit is used to aid the subsystems to generate subsystem-feasible

solutions, eventually leading to system-feasible solutions.

At the subsystem level, the optimization task for each subprob-

lem uses the parameterized dominance relation, which has been

adapted to handle real-valued linking variables. For handling the

interactions, the subsystems exchange information about their own

optimal solutions on a peer-to-peer basis. The received informa-

tion is used to construct a representative model of the linking vari-

ables by employing a supervised learning algorithm, which allows

the subsystems to predict each other’s responses. At the system

level, a leader–follower based approach is employed for the gener-

ation of system solutions. The best system solutions are chosen to

in�uence the optimization at subsystem level.

The performance of the new methodology has been studied on

a complex systemwith two interacting subsystems. A comparative

2The relative percentage di�erence between two values (say v1 and v2) is given by
|v1 − v2 |/max(|v1 |, |v2 |) × 100.

analysis of the proposed distributed approach vs a monolithic ap-

proach has been conducted. The obtained results show that the pro-

posed approach is not outperformed by the monolithic approach.

The signi�cance of the method described is that it e�ectively ad-

dresses the need to design complex systems, where subsystems are

designed by teams adopting a collaborative asynchronous strategy.

7 ACKNOWLEDGMENTS

This workwas supported by Jaguar Land Rover and the UK-EPSRC

grant EP/L025760/1 as part of the jointly funded Programme for

Simulation Innovation. JAD is the primary author and researcher;

YY contributed to the development of the software architecture

that supported our work; RCP and PJF provided guidance and con-

tributed to the development of the methodology and paper.

REFERENCES
[1] B. Dandurand and M. M. Wiecek. 2015. Distributed Computation of Pareto Sets.

SIAM Journal on Optimization 25, 2 (June 2015), 1083–1109.
[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast Elitist Multi-

Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation 6, 2 (April 2002), 182–197.

[3] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. 2006. An Improved Dimension-
Sweep Algorithm for the Hypervolume Indicator. In International Conference on
Evolutionary Computation. IEEE, Vancouver, CA, 1157–1163.

[4] C. Huang, J. Galuski, and C. L. Bloebaum. 2007. Multi-Objective Pareto Concur-
rent Subspace Optimization for Multidisciplinary Design. AIAA Journal 45, 8
(August 2007), 1894–1906.

[5] K. Klamroth, S. Mostaghim, B. Naujoks, S. Poles, R. Purshouse, G. Rudolph, S.
Ruzika, S. Sayin,M.M.Wiecek, and X. Yao. 2017. Multiobjective optimization for
interwoven systems. Journal ofMulti-Criteria Decision Analysis 24, 1-2 (February
2017), 71–81.

[6] W. Maier M. 1999. Architecting principles for systems-of-systems. Systems En-
gineering 1, 4 (February 1999), 267–284.

[7] R. J. Malak and C. J. J. Paredis. 2010. Using Parameterized Pareto Sets to Model
Design Concepts. Journal of Mechanical Design 132, 4 (April 2010), 1–11.

[8] J. R. R. A. Martins and A. B. Lambe. 2013. Multidisciplinary design optimization:
a survey of architectures. AIAA journal 51, 9 (July 2013), 2049–2075.

[9] C.D. McAllister and T.W. Simpson. 2003. Multidisciplinary robust design Opti-
mization of an internal combustion engine. Journal of mechanical design 125, 1
(March 2003), 124–130.

[10] C.D.McAllister, T.W. Simpson, K. Hacker,K. Lewis, andA.Messac. 2005. Integrat-
ing linear physical programming within collaborative optimization for multiob-
jective multidisciplinary design optimization. Structural and Multidisciplinary
Optimization 29, 3 (October 2005), 178–189.

[11] S. Parasha and C. Bloebaum. 2006. Multi-Objective Genetic Algorithm Concur-
rent Subspace Optimization (MOGACSSO) for Multidisciplinary Design. In 47th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, Vol. 8. AIAA, Newport, Rhode Island, 5523–5533.

[12] S. Rabeau, P. Dépincé, and F. Bennis. 2007. Collaborative optimization of com-
plex systems: a multidisciplinary approach. International Journal on Interactive
Design and Manufacturing 1, 4 (November 2007), 209–218.

[13] J. R. J. Rao, K. Badhrinathy, R. Pakalay, and F. Mistree. 1997. A Study of Opti-
mal Design Under Con�ict Using Models of Multi-Player Games. Engineering
Optimization 28, 1-2 (October 1997), 63–94.

[14] D. K. Saxena, A. Sinha, J. A. Duro, and Q. Zhang. 2016. Entropy-Based Termi-
nation Criterion for Multiobjective Evolutionary Algorithms. IEEE Transactions
on Evolutionary Computation 20, 4 (August 2016), 485–498.

[15] R. V. Tappeta and J. E. Renaud. 1997. Multiobjective Collaborative Optimization.
Journal of Mechanical Design 119, 3 (September 1997), 403–411.

	Abstract
	1 Introduction
	2 Related literature
	3 A distributed multi-objective optimization problem
	4 A new methodology for distributed multi-objective optimization
	4.1 Subsystem optimization
	4.2 Information exchange
	4.3 Generation of system solutions
	4.4 Selection of system solutions
	4.5 Convert system solutions to subsystem solutions

	5 Demonstration of the new methodology
	5.1 Experimental setup
	5.2 Experimental results

	6 Conclusion
	7 Acknowledgments
	References

